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Abstract: Downsampling input images is a simple trick to speed up visual object-detection algorithms,
especially on robotic vision and applied mobile vision systems. However, this trick comes with
a significant decline in accuracy. In this paper, dual-resolution dual-path Convolutional Neural
Networks (CNNs), named DualNets, are proposed to bump up the accuracy of those detection
applications. In contrast to previous methods that simply downsample the input images, DualNets
explicitly take dual inputs in different resolutions and extract complementary visual features from
these using dual CNN paths. The two paths in a DualNet are a backbone path and an auxiliary
path that accepts larger inputs and then rapidly downsamples them to relatively small feature
maps. With the help of the carefully designed auxiliary CNN paths in DualNets, auxiliary features
are extracted from the larger input with controllable computation. Auxiliary features are then
fused with the backbone features using a proposed progressive residual fusion strategy to enrich
feature representation.This architecture, as the feature extractor, is further integrated with the Single
Shot Detector (SSD) to accomplish latency-sensitive visual object-detection tasks. We evaluate the
resulting detection pipeline on Pascal VOC and MS COCO benchmarks. Results show that the
proposed DualNets can raise the accuracy of those CNN detection applications that are sensitive to
computation payloads.

Keywords: dual-resolution; CNN; visual object detection; progressive fusion

1. Introduction

In robotic applications, there is a trend of integrating robotics with human beings and their
environments. Reliable object detection in real-time speed is usually a necessary early step to achieve
interaction between robots and environments. However, object detection is a challenging task in robotic
vision, and Convolutional Neural Network (CNN)-based object-detection methods have emerged
in the mainstream [1-6] due to their great performance in complex scenes. Among them, Faster
R-CNNs [6-8], Feature Pyramid Network (FPN) variants [1,9], YOLO [5], and Single Shot Detectors
(SSD) [2] are some of the mainstream approaches that have shown to be accurate and/or efficient.
Despite the immense success of those methods, the high computational cost of large-scale CNN models
still hinders applications of CNN-based detectors on embedded systems, such as mobile phones,
self-driving cars, and drones.

A widely used trick to lower the computational cost of a CNN model is to downsample input
images to lower resolutions. This trick, despite instant results, is known to sacrifice detection
accuracy [2,10,11]. Because computation becomes squared if one merely doubles the input width, it is
not feasible to accept large inputs on all applied systems.
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To address this problem, efficient CNN models were proposed for embedded devices and have
achieved high inference speed with a non-negligible accuracy drop [10-12]. For example, depthwise
separable convolutions were proposed in MobileNets [10] to bring down the computational cost. These
mobile-oriented CNN architectures, as feature extractors, are used in conjunction with the detectors
mentioned above, resulting in CNN-based object-detection pipelines with high inference speed but
limited detection accuracy. By integrating SSD [2] and MobileNets, the resulting MobileNet-SSD
pipeline achieved the state-of-the-art performance of mobile models on visual object detection [11]. As
a trade-off between computational cost and accuracy, the MobileNet-SSD pipeline with depthwise
separable convolutions achieved high inference speed but limited accuracy.

To diminish existing performance gaps, in this paper we propose DualNets, dual-resolution
dual-path CNNs, to bump up the accuracy of object-detection applications that are sensitive to
computation payloads such as those deployed on embedded devices. DualNets are designed to extract
features from dual inputs in different resolutions aiming to enrich visual features. To be specific, the
dual paths in a DualNet consist of a backbone path (MobileNetV2 in Figure 1) and an auxiliary path,
which accepts larger inputs (e.g., 600 pixels squared, which is twice the input width of the backbone
path) and then rapidly downsamples them to relatively small feature maps. A feature map from the
auxiliary path is fused with the corresponding backbone feature as long as their dimensions meet; this
strategy is named progressive fusion in this paper. We further developed a novel residual-learning
formula as the core of the progressive fusion strategy.
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Figure 1. Architecture of proposed DualNets. There are dual paths in a DualNet: upper path is
the backbone convolutional neural network (CNN) architecture (e.g., MobileNetV2 [11]); the lower
is auxiliary path with larger inputs but less stacked layers. Feature maps in the auxiliary path
are fused with the corresponding backbone feature in a residual-learning manner as long as their
dimensions meet.

Figure 2 shows the motivation of the proposed fusion strategy in this paper. The two CNN paths
in Figure 2 are the backbone path (top) and the auxiliary path (bottom), and heatmaps are the two-norm
of feature maps extracted from the example image from the MS COCO dataset [13]. Backbone features
are extracted from small inputs by the backbone path. Auxiliary features are extracted from the large
inputs by the designed auxiliary path, which has fewer stacked layers to reduce computational costs.
Fusing those complementary features from both paths with a progressive fusion strategy helps to
improve the detection results. Experiment results show that the designed fusion strategy, which is
based on a novel form of residual learning, contributes to an overall accuracy gain. Spatial resolutions
of the feature maps in the auxiliary paths are kept low using rapidly downsampling CNN streamlines
to keep computational costs affordable on embedded devices. Figure 1 is an illustration of the proposed
DualNets architecture.
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We summarize our contributions as follows:

(1) A novel dual-resolution dual-path framework, DualNets, was designed to enhance CNN-based
object-detection applications that are sensitive to computational payloads. DualNets consist of
dual CNN paths taking different input resolutions and holding complementary features, resulting
in strengthened capability for visual-feature representation.

(2) The auxiliary paths in DualNets were designed to accept larger inputs to enrich visual features
for object detection. The auxiliary feature maps were then rapidly downsampled to lower overall
computation payloads. With such design patterns, computational cost can be flexibly controlled.

(8) Feature maps extracted by auxiliary paths are progressively fused into the backbone CNN
streamline. We developed a novel form of residual learning [14], which is the core of the proposed
progressive fusion strategy. Applying the fusion strategy on complementary features extracted
by the dual paths, DualNets can raise the accuracy of mobile-oriented CNN detectors.

Figure 2. How visual features are enriched in DualNets. Heatmaps show complementary features
extracted from small (top) and large (bottom) inputs. According to residual-learning theory, the
magnitudes of the auxiliary features are relatively small. Largest magnitude values (clipped to a
maximum of 5) are mapped yellow, while the smallest are mapped dark blue.

2. Related Work

In this section, we briefly introduce related works in three aspects. Several representative visual
object-detection methods are first reviewed. Then, state-of-the-art CNN architectures that focus on
mobile or embedded platforms are described. Third, we compare our DualNets with other methods
that also hold dual CNN paths.

2.1. CNN-Based Object Detection

Current mainstream CNN-based detectors can be divided into two categories: anchor-based
detectors and anchorfree detectors. It is noted that anchor-based detectors can be categorized as
two-stage detectors [6] and single-stage detectors [2]. An anchor [6] is a predefined reference box
(i.e., the default box) centered at a given position in a feature map, and is associated with the scale and
aspect ratio. Anchor-based detectors then predict offsets that are parameterized relative to k anchors,
where k denotes the number of anchors (k = 9 in this paper).

A faster R-CNN [6] is one of the forerunners of the two-stage detectors. This widely used detection
framework consists of a CNN-based feature extractor, a region proposal network, and a classifier.
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The two stages can then be defined as the proposal generation stage (i.e., the body) and the proposal
recognition stage (i.e., the head) [15], and there is a large number of detectors following this framework.
FPN [1] is aimed at detecting multiscale objects by upsampling the feature maps of the CNN feature
extractor, resulting in considerable performance gains in small- and medium-scale object detection.
Because higher-resolution feature maps are used for smaller-scale object detection, many FPN variants
enrich those features in various approaches [9,16,17].

In contrast with the two-stage methods, unified CNN pipelines are exploited in single-stage
detectors [2,5,18-20]. YOLO [5] and SSD [2] are two representative one-stage detectors. In YOLO [5], a
single neural network is used to directly predict proposals and class probabilities from input images.
Another unified CNN pipeline was designed in SSD [2] in order to meet the challenges of multiscale
detection, where multiresolution feature maps are taken into account. In SSD, those multiresolution
feature maps are directly extracted from backbone CNN features instead of upsampling the smaller
feature maps, as done in FPN.

To meet real-time demands on embedded devices, single-stage detectors such as SSD [2], are
preferred over two-stage ones. Therefore, we integrated SSD into the proposed DualNets and
conducted the experiments with such integration in this paper.

2.2. Fast Inference Using Small CNN Models

Inference efficiency is one of the primary considerations on embedded object-detection systems.

Multilayer Channel Features (MCF) [21] is an object-detection framework that can reject numbers
of irrelevant regions early to avoid further computation. Sharing a similar motivation to MCF, another
early-prediction solution, GlanceNets [22], was proposed to reduce average inference time. Pointwise
group convolutions and channel shuffle operations, which can both reduce computation cost with
limited accuracy drop, were proposed in ShuffleNet [12]. Depthwise separable convolutions were
proposed in MobileNets [10,11] to bring down computational costs.

By integrating MobileNets with SSD [2], object detection can be conducted on modern mobile
phones. As a trade-off between computational cost and accuracy, the MobileNet-SSD pipeline achieved
promising inference speed but limited accuracy.

Downsampling inputs of those models to lower resolutions (e.g., 300 pixels) can further reduce
computation to a square-root level while suffering from a significant drop in accuracy. To solve the
dilemma, we introduce a novel architecture that can extract features from dual-resolution inputs
without the squared computational costs.

2.3. Dual-Path Models

In this subsection, existing representative dual-path networks are briefly reviewed. We then
distinguish the proposed DualNets with those dual-path CNN models.

The first family of dual-path CNN architectures is knowledge distillation [23,24], which usually
consists of a teacher network and a student network. It is introduced to accelerate and compress
the CNN models [23] and has many variants [24-27]. Following [23], distillation is exploited on
object-detection tasks with a mimicking network [24]. Those distillation methods are aimed at training
a more compact model that can learn from the output of a large model, that is, the teacher network
(the larger model) is used to only help the student network (the smaller model) at the training stage.
The teacher network is then trimmed off at the inference stage. The main drawback of knowledge
distillation is that the teacher network is large not only in feature map resolutions but also in the depth
of the stacked CNN layers, resulting in complicated training stages. It is worth noting that there is no
hindrance to prevent imposing model mimicking or distilling on DualNets.

A Guided Upsampling Module [28] was recently proposed to guide the decoder layers within an
encoder-decoder semantic-segmentation pipeline using an extra-large-input weight-sharing CNN path.
In contrast with a Guided Upsampling Network (GUN) [28] for semantic segmentation, proposed
DualNets are armed at object detection on embedded devices. The extra path output is only fused
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into the decoder using multilayer fusion modules in the GUN, whereas auxiliary feature maps are
progressively fused into the backbone in the proposed DualNets. Moreover, the avoidance of weight
sharing gives us the flexibility to design a rapidly downsampling auxiliary path that achieves less
computation but has strengthened representation capability.

In this paper, aiming to improve the detection accuracy of small CNN models, enriched features
were extracted by the novel auxiliary residual path where high-resolution input images were rapidly
downsampled. With the designed progressive-fusion strategy, auxiliary features were fused with the
backbone; thus, result features were enhanced.

3. DualNets: Dual-Input Dual-Path CNNs

The details of the proposed DualNets are described in this section. Some preliminary approaches
are briefly reviewed in Section 3.1, as DualNets was designed mainly based on MobileNetV2-SSD [10,11].
The composition of DualNets, including dual inputs, dual paths, and progressive-fusion strategy, is
then introduced in Sections 3.2 and 3.3.

3.1. Brief Review of MobileNets and SSD

DualNets are composed of depthwise separable convolutions proposed in MobileNets [10] and
SSD [2]. We give a brief review of those cornerstones in this subsection.

A depthwise separable convolution [10] is a form of convolutions that is factorized into a
depthwise convolution and a pointwise (1 x 1) convolution. In a depthwise convolution, only
a single convolution filter is applied in each channel, in contrast with multiple filters used in a
classic convolution. Computation can be drastically reduced with the help of depthwise separable
convolutions, resulting in fast inference on embedded vision systems. Depthwise separable
convolutions are widely used [10-12] and are building blocks of the proposed DualNets.

Bottleneck-with-expansion layers, denoted as Expanded depthwise separable CONVolution
(econv) layers in this paper for simplicity, were proposed upon the depthwise separable convolution
layers in MobileNetV2 [11]. Figure 3b is an illustration of an econv layer. The input feature map of
an econv layer is first expanded in channels by pointwise convolution and then fed into depthwise
convolution, followed by another pointwise convolution to project the channel-expanded feature map
to the desired channel size. MobileNetV2 [11] is a stack of one 3 x 3 convolutional layer, seventeen 3 x 3
econv layers (2nd-18th layers), and one 1 x 1 convolutional layer (the 19th layer), as shown with the
hollow blue boxes in Figure 1. MobileNetV2 can be integrated with SSD [2] as the feature extractor
to enable the result MobileNetV2-SSD pipeline to detect objects on mobile devices. Four pairs of
one-stride 1 x 1 and two-stride 3 x 3 convolutional layers were cascaded after the MobileNetV2
architecture (solid blue boxes in Figure 1) to extract lower-resolution features for larger-scale object
detection. Output feature maps of the expansion convolution of the 15th econv layer, the 19th layer,
and the last four layer pairs are fed into the SSD (blue arrows in Figure 1). By doing so, feature maps
at six distinct resolutions are integrated for multiscale object detection.

Despite the multiscale detection capability and fast inference of MobileNetV2-SSD, detection
accuracy is still limited. We propose DualNets to improve the detection accuracy of small detection
models, and we chose the representative mobile-oriented MobileNet-SSD pipeline as a baseline. The
dual paths in the proposed framework were designed according to a novel form of residual learning
that could help to extract enriched features with affordable computation.
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Figure 3. Different forms of residual learning. (a) Classical skip-connection form of residual learning;
(b) inverted residual block used in MobileNetV2 [11]; (c) proposed residual learning formula.

3.2. Dual Inputs and Dual Paths

It is natural to use high-resolution inputs to help low-resolution models with a dual-input
or multi-input design as done in [28,29]. We argue that merely stacking input images into image
pyramids is not applicable to all vision systems in consideration of the squared computational payloads.
Therefore, a lightweight auxiliary path that has controllable computational costs is introduced in
DualNets (colored in green in Figure 1).

A DualNet accepts two inputs, a lower-resolution image and a higher-resolution one. The
former is directly fed into the backbone MobileNetV2 feature extractor, and the latter is fed into
the designed auxiliary path to help enrich the extracted features. In the auxiliary path, inputs are
rapidly downsampled with strided convolutions in the first several layers. To be specific, we stacked
one 3 x 3 convolutional layer and eight 3 x 3 econv layers (Layers 2-9), resulting in a lightweight
CNN path with nine layers in total. As shown by the solid green boxes in Figure 1, the first four layers
(Layers 1-5) are convolutions with stride 2. Thus, the output resolutions of those rapid downsampling
layers are, respectively, 300, 150, 75, 38, and 19 pixels. Following the design pattern of MobileNetV2,
the sixth econv layer is responsible for transiting feature depths (the channel dimensions) instead of
downsampling. The feature maps are further downsampled into 10 pixels by the seventh econv layer,
which is followed by two nonstrided econv layers for feature-depth transition. A detailed comparison
of MobileNetV2 and DualNets is shown in Table 1, where key configuration parameters are presented
side by side.
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Table 1. Detailed comparison of MobileNetV2 and DualNets. Layers denoted in form of operation
types and kernel sizes in the op. ker. column; corresponding strides and channels shown in the str. and
the ch. columns.

DualNets
MobileNetV2

# op.ker. str. ch. # op.ker str. ch.

input 300px - 3 input 600px - 3
1 conv.3 2 32 1 conv.3 2 32
2 econv.3 1 16 2  econv.3 2 16
3 econv3 2 24 3 econv.3 2 24
4 econv.3 1 24
5 econv.3 2 32 4  econv.3 2 32
6 econv.3 1 32
7  econv.3 1 32
8 econv.3 2 64 5 econv.3 2 64
9 econv.3 1 64
10  econv.3 1 64
11  econv.3 1 64
12 econv.3 1 96 6 econv.3 1 96
13 econv.3 1 96
14  econv.3 1 96
15 econv.3 2 160 7 econv.3 2 160
16  econv.3 1 160
17  econv.3 1 160
18 econv.3 1 320 8 econv.3 1 320
19 conv.1 1 1280 9 econv.3 1 1280

By utilizing computational-analysis tools of econvs [10], the computation costs of each convolution
in an econv layer can be calculated as:

Cpointl =M- (M ’ t) : D}%/ @
2 D¢

Cdepth = Dic- (M- ) - 2 ()
D2

CpointZ = (M : t) "N - SizF/ (3)

where M denotes the number of input channels, N denotes the number of output channels, t denotes
the expansion ratio as described in [11], s is the stride of the econv layer, Di (= Dy - Dy) denotes
the kernel size of the depthwise separable convolution, and D2 (= D - Dg) denotes the resolution
of the input feature map. There are expansion pointwise convolution (Cpoint1), depthwise separable
convolution (Cgeptn), and projection pointwise convolution (Cpointz) in an econv layer. Thus, the
computational cost of the econv layer is:

Ceconv = Cpointl + Cdepth + Cpointz

D2+ N )
PNy mon- DR

=(M+

According to Equation (4) and Table 1, the total computational cost of MobileNetV2-SSD with

a 300-pixel input is around 854 M Multiply-Adds, and the number becomes 3416 M when using
MobileNetV2 on 600-pixel inputs, whereas it is 688 M Multiply-Adds for the auxiliary path in DualNets.
It is also notable that configurations of auxiliary paths in DualNets can be changed to meet various
requirements. Shown in this paper is an experimental configuration to illustrate the proposed DualNets
framework and progressive residual fusion strategy, which is introduced in the following subsection.



Sensors 2019, 19, 3111 8 of 16

It is noted that Batch Normalization (BN) and the ReLU activation function were employed after
the convolutional layers.

3.3. Progressive Residual Fusion

Residual learning was introduced into CNNs in ResNet [14] aiming to address the degradation
problem in training deep CNN models. The hypothesis of residual learning is that fitting residual
mappings of features is easier than learning the original mappings. Shortcut connection (as shown
in Figure 3a) is the original and widely used implementation of residual learning. It is also used
in MobileNetV2 [11] in the form of the inverted residual block, where the inputs of an econv are
added to the outputs (as shown in Figure 3b). In this paper, we introduce a novel residual-learning
approach that was designed for DualNets as well as any other model that requires fusion from two
asymmetric pipelines.

The proposed residual-learning formula is different from the classical in that appended residual
mappings can be captured from the higher-resolution inputs by the auxiliary path in DualNets.
Figure 3c is an illustration of the proposed residual-learning approach. Classical residual learning
implemented with shortcut connection (Figure 3a) can be denoted as:

H(x) = F(x) +x, (5)

where x is the input of a single-input CNN model, such as ResNets [14,30]. As forcing the model to
fit desired mapping H(x) suffers from degradation [14], residual mapping F(x) is learned instead,
which is substantially easier to fit than desired mapping H(x). Thus the desired mapping becomes
the summation of identical mapping x and residual mapping F(x), as shown in Equation (5). In the
proposed DualNets (Figure 3¢), on the other hand, the formula of desired mapping H(x) is extended as:

H(x) = (F(xs) + x5) + R(xL), (6)

where xg denotes the original small inputs of DualNets, and x, denotes the large auxiliary inputs.
First term F(xs) + xg is the desired mapping whose inputs are the smaller images. Existing methods
using this mapping for detection suffer from limited accuracy because all details are blurred during
downsampling. An extra term, residual mapping fitted from large inputs R(xy), is therefore introduced
into the new residual-learning equation. The design philosophy of R(xy ) lies on two facts: (1) Simply
enlarging input width causes squared increment in model computation; (2) Dual paths in DualNets
are asymmetric, that is, they do not share similar layer stacks. Expecting a simple model as the
auxiliary path to fit the desired mapping results in underfitting that harms detection. We leveraged
the computational cost and model capability with the novel form of residual learning. The auxiliary
path plays the role of R(x), and Equation (6) was implemented by the proposed progressive residual
fusion in DualNets.

The remaining problem is where the formula should be performed. The most intuitive fusion
strategy is to fuse feature maps from dual paths after the feature-extraction workflow, that is, the dual
paths work independently and are fused together before detection. Experiment results (described in
Section 4.1) show that such a simple design pattern cannot bring performance gains. Thus, we designed
a progressive-fusion strategy. As the name suggests, fusions take place progressively when information
flows in asymmetric DualNets, resulting in enhanced feature extraction and representation.

As shown in Table 1, there can be multiple layers holding the same output channel size in a CNN
model. For example, there are four layers (Layers 8-11) that hold 64-channel feature maps in the
backbone path. Thus, auxiliary feature maps sharing the same channel size (the fifth auxiliary layer)
can be fused into any of the four backbone layers. We then explored two progressive-fusion strategies:
early and late fusion. In the early progressive-fusion strategy, output feature maps in the auxiliary
path are fused with the backbone as long as their output dimensions meet. Retake the above example:
the 64-channel output from the fifth auxiliary layer is fused with the output of the eightth backbone
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layer according to the early fusion strategy. The summation of those two then becomes the input
of the ninth backbone layer. In the late progressive-fusion strategy, the output feature maps in the
auxiliary path are fused with the last outputs within the sequence of layers with matching dimensions.
For the 64-channel example, the fifth auxiliary feature maps are fused with the output of the 11th
backbone layer.

The difference between the two progressive-fusion strategies is that, from the perspective of the
proposed form of residual learning, fusion results are further utilized as inputs of subsequent layers in
early fusion, which makes the following residual mapping (F(xs) in Equation (6)) much easier to fit.
Because small models, such as MobileNets, suffer more from underfitting rather than overfitting [10],
making the mapping easy-to-fit benefits the training of DualNets. Comparison experiments were
conducted on the proposed progressive residual fusion, and results are shown in Section 4.1.

Because the input of the upper path of the DualNet described in Figure 1 and Table 1 is of
resolution of 300 x 300 pixels, we denoted it DualNet-300. Similarly, we could construct DualNet-512
where the resolution of the input of the upper path is 512 x 512 pixels. The architecture of DualNet-512
is the same as that of DualNet-300 except for two differences: (1) input resolution of the upper path of
DualNet-512 is 512 x 512 pixels; (2) the first layer of the auxiliary path of DualNet-512 is resized to
256 x 256 pixels by bilinear interpolation after stride-2 convolution with 3 x 3 kernels.

4. Experiments

The DualNet-300 configuration for experiments is as shown in Table 1 and Figure 1. The difference
between DualNet-512 and DualNet-300 is described at the end of Section 3. Results are compared with
those from our trained MobileNetV2-SSD [2,11] model.

Ablation studies of DualNet-300 (Section 4.1) were conducted on the Pascal VOC dataset [31]:
Training and validation data from both Pascal VOC 2007 and 2012 (named trainval0712) were used
for training, and the labeled test data from Pascal VOC 2007 (named test2007) were used for validation.
The DualNet model for the MS COCO dataset [13] (Section 4.2) was trained with the trainval3bk
dataset [6] and was evaluated using the test-dev2018 dataset by the MS COCO evaluation sever.
Results in this section were measured by the mean Average Precision (mAP), mAP for medium-scale
objects, and mAP for large-scale objects from the MS COCO dataset, which are more comprehensive.
The metrics for small-scale objects were omitted because it is too challenging to detect them using
downsampled input images by mobile-oriented models. The mAP numbers for Pascal VOC were
measured by mAP at 0.5 mean Intersection over Union (mlIoU) for comparison, which is one of the
original Pascal VOC metrics.

4.1. Ablation Study on Dualnet-300

Ablation experiments in this subsection were conducted to analyze the impact of weight sharing,
initialization, and fusion strategies. Taking publicly available MobileNetV2 checkpoint pretrained on
the ILSVRC classification dataset [32,33], we finetuned the experimental DualNet model (Table 1) using
SGD with an initial learning rate of 2 x 1072 and a batch size of 24. The learning rate was lowered by a
factor of 0.7 every 10,000 iterations. Other hyperparameters were set following MobileNets [10,11].
Aiming at demonstrating the roles of the proposed components in DualNets, most of the training
in this subsection was stopped at near 50,000 iterations, which is acceptable for an ablation study
that is not yet fully converged. Curves of validation accuracy (during training) on the Pascal VOC
test2007 dataset are shown in Figure 4 as an illustration of the difference between 50 k and 100 k
iteration training.
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Figure 4. Validation mAP curves at mIOU threshold 0.5: a comparison between 50 k and 100 k
iteration training. According to our observation, models trained around 50,000 iterations are
sufficient for comparison in ablation studies. Thus, results in Section 4.1 are reported as those of
50 k-iteration trainings.

4.1.1. Weight Sharing

The GUN [28] mentioned in Section 2.3 is a CNN model that accepts dual inputs as DualNets
do. GUN differs from our proposed DualNets in that two paths in the GUN share the same structures
and weights. Considering that dual paths in DualNets are asymmetrical, both in input resolutions and
structures, we argue that forcing those two paths to share weights is harmful.

According to the configurations of the dual paths (shown in Figure 1 and Table 1), the depths
of those are distinct. For example, the 15th layer in the backbone has an identical form of weights to
that of the seventh layer in the auxiliary; thus, their weights can be shared. As stacking more layers
helps with the model capability of feature representation, the capability gap between a 15th layer and
a seventh cannot be ignored for such a small model. To test that hypothesis, experiments on DualNets
with weight sharing were performed. Specifically, weights of all layer pairs shown in the same row
in Table 1 were shared, e.g., weights of the 15th backbone layer and the seventh auxiliary layer were
shared. Results (Table 2) show that forcefully sharing layer weights is harmful when those layers are
at different levels, i.e., when they have significant capability gaps.

Table 2. Comparison of auxiliary-path initialization strategies. For the weight-sharing entry, weights
were shared between auxiliary path and backbone. Pretrained means the auxiliary path was initialized
with the pretrained model but independently finetuned. The auxiliary was randomly initialized in the
Random entry. The Pascal VOC trainval0712 dataset was used for training, and test2007 for the test
in the ablation-study experiments (Section 4.1).

Initializer mAP  mAP (Medium Scale) mAP (Large Scale)
Weight-sharing  50.07% 7.88% 36.20%
Pre-trained 63.43% 10.93% 45.72%
Random 64.39% 10.93% 46.45%

4.1.2. Initializing from a Pretrained Model

Another intuitive approach to initialize weights in the auxiliary path is to load them from a
pretrained MobileNetV2 model. Initialization from the MobileNetV2 weights pretrained on the ILSVRC
dataset [32,33] can provide a good starting point for the auxiliary path during model optimization.
However, as mentioned above, existing gaps between backbone layers and auxiliaries caused by
the asymmetry cannot be diminished. To explore the impact of this initialization method, layer
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pairs as defined in weight-sharing experiments were initialized using the pretrained MobileNetV2
model. Initialized identically, those weights were then independently finetuned, in contrast with the
aforementioned weight-sharing strategy. The results (denoted as Pretrained in Table 2), compared with
the results of weight-sharing experiments, show that the pretrained model does provide a good start.

However, rethinking Equations (5) and (6) in residual learning [14,30] (Section 3.3), our appended
residual mappings R(xy) were expected to be easy-to-fit mapping, especially for small models such
as MobileNets and DualNets. Thus, a random initialized auxiliary path, along with a pretrained
MobileNetV2 model initialized backbone path was trained according to our proposed residual-learning
formula (Equation (6)). Results of that exploration are shown in the Random row in Table 2. It is
shown that random initialization on the auxiliary path outperformed the other two strategies, which
further demonstrates that the proposed form of residual learning can diminish level gaps caused by
layer asymmetry.

4.1.3. Fusion Strategy

Following the flow in Section 3, the remaining problems are fusion timing and method.

Concatenation and summation are two widely used fusion methods in CNN models [14,28-30,34].
Thus, comparison experiments between concatenation and summation were conducted on the
experimental configuration of DualNet. The architecture shown in Figure 1 and Table 1 remained
unchanged, except that outputs of a layer pair were concatenated in the concatenation experiments
(denoted as concat. in Table 3) instead of being element-wise summed in the summation experiments
(denoted as res. in Table 3, as summation is the default in the classical residual-learning context [14,30]).

For fusion timing, experiments were conducted to compare fusion before detection, progressive
late fusion, and progressive early fusion. The first strategy was to only fuse (concatenate or sum)
features from the last three auxiliary layers with the backbone features from Layers 15, 18, and 19,
respectively. In our proposed progressive-fusion strategy, fusions were performed as long as the
feature-map dimensions met. To be specific, in the progressive early fusion strategy, outputs were
fused together and results were fed into the subsequent backbone layer for each layer pair in Table 1.
As described in Section 3.3, auxiliary features were fused with the backbone features before the
next strided convolutional layer in the progressive late fusion strategy. Results shown in Table 3
demonstrate that the proposed progressive residual fusion strategy helps with both medium-scale and
larger-scale object detection. The designed progressive early fusion outperformed other strategies, so
we used this strategy for the final experimental model.

Table 3. Comparison of fusion timing and methods. In the timing column, det. stands for fusion
only before detection (i.e., only the last three auxiliary layers were fused into the backbone); prog.
late stands for progressive late fusion,and prog. early is our proposed form of progressive residual
fusion. For the fusion methods, concat. stands for fused using concatenation; res. denotes the form of
residual learning.

Timing Method mAP  mAP (Medium Scale) mAP (Large Scale)

Det. concat.  58.51% 9.51% 41.32%
Det. res. 59.39% 9.56% 42.35%
Prog. late res. 61.45% 9.99% 45.44%
Prog. early res. 64.39% 10.93% 46.45%

4.2. Results

We trained the DualNet-300 with theconfiguration of Table 1 and Figure 1 using the progressive
early fusion strategy. The DualNet-512 was trained in the same manner. Note that the chosen learning
rates were lowered tens of times faster than in MobileNets [10] and only a single GPU was used during
training due to resource limitation, resulting in a performance drop on the metrics compared with that
reported by MobileNetV2 [11]. Aiming to introduce a way of incorporating high-resolution inputs
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with controllable computational cost, we reported the experiment results trained on our own for a
fair comparison.

For the Pascal VOC dataset, most training parameters were the same as used in Section 4.1, except
for the model that was trained for around 100,000 iterations. Results in terms of the detection mAP
and detection time are given in Table 4. Compared with the MobileNetV2-SSD detection pipeline, the
proposed DualNet-300 could achieve mAP 67.01% with mIoU threshold 0.5 and have higher accuracy
on all metrics (see Table 4). Moreover, both MobileNetV2-SSD and DualNet spent much less time
for inference.

Table 4. Results of DualNet-300 compared with MobileNetV2-SSD-300[11] on Pascal VOC dataset.

mAP@If)UO.5 mAP (Medium Scale) mAP (Large Scale) Time (ms)
100 k iter.
MobileNetV2-SSD-300 66.48% 12.16% 48.91% 6.18
DualNet-300 67.01% 12.45% 49.09% 10.7
Faster R-CNN (VGG, 600 px) 70.40% - - 110

For the challenging MS COCO dataset, the initial learning rate was set to 2 x 107> and was
lowered by a factor of 0.7 every 20,000 iterations. Both the baseline MobileNetV2-SSD and the
proposed DualNets were trained on our own with batch size 24 on a single NVIDIA 1080 Ti
GPU for fair comparison. Results are given in Table 5. The results demonstrate that both the
proposed DualNet-300 and DualNet-512 with dual paths fused by progressive fusion outperformed
the corresponding baselines of MobileNetV2-SSD-300 and MobileNetV2-SSD-512, especially on the
mAP for large-scale objects.

Table 5. Results of DualNets compared with MobileNetV2-SSD [11] on the MS COCO dataset.

mAP@IoU.5:.05:.95 mAP (Medium Scale) mAP (Large Scale)

MobileNetV2-55D-300 13.7% 10.5% 27.0%
DualNet-300 14.1% 10.8% 28.4%
MobileNetV2-55D-512 15.2% 12.1% 28.4%
DualNet-512 15.6% 12.5% 29.5%

Figure 5 visualizes detection results. For every two rows in Figure 5, the upper shows the results of
MobileNetV2-SSD-300 and the lower shows those of the proposed DualNet-300. Figure 5a shows that
more foreground objects could be detected by the DualNet-300 model. For example, in the first row,
the nearer bus in the second image and the surfboard in the third could be detected using our DualNet.
Figure 5b presents some cases in which DualNet-300 performs not as well as the MobileNetV2-5SD.
According to our observation, DualNets have better performance on large-scale objects that cover a
large portion of pixels in an image (e.g., the cup in the second image of Figure 5b), which is a common
design purpose in some embedded vision systems. Figure 5c is some challenging examples for both
MobileNetV2-55D-300 and DualNet-300. The two detectors could not manage to detect the ambiguous,
occluded, or truncated objects in those images. Despite the performance gain brought by the designed
DualNets, tackling those problems in embedded systems remains a challenge. It is concluded from
Figure 5 that the proposed DualNets is capable of reducing false negatives because the proposed
auxiliary path introduces detailed and discriminative information to the upper path (backbone).



Sensors 2019, 19, 3111 13 of 16

Figure 5. Representative detection results. (a) More foreground objects could be detected by
the DualNet-300 model. (b) Some cases in which DualNet-300 performs not as well as the
MobileNetV2-SSD. (c) Some challenging examples for both MobileNetV2-55D-300 and DualNet-300.
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5. Conclusions

We presented a CNN framework, DualNets, that accepts dual inputs in different resolutions and
consists of dual paths that hold asymmetric CNN models. Our method is aimed at extracting enriched
visual features from higher-resolution input images without suffering from squared computational
cost. A fusion strategy called progressive fusion based on a novel form of residual learning was
designed to diminish the capacity gaps between two asymmetric CNN models in DualNets. While
we only presented an exemplary configuration of our DualNets on the MobileNetV2-SSD pipeline,
this approach could also be flexibly applied to other small detection models that are sensitive to
computation payloads. In future work, we will apply our object detector to facilitate real-world
applications, including image retrieval [35,36], image tracking [37], and image classification [38].

Author Contributions: Conceptualization, J.P. and J.H.; methodology, J.P. and Z.S.; software, ]J.P. and H.S.;
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