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Abstract: The performance of a sensor platform for environmental or industrial monitoring is
sensitive to the cost and performance of the individual sensor elements. Thus, the detection
limits, accuracy, and precision of commercially available, low-cost carbon dioxide and methane
gas concentration sensors were evaluated by precise measurements at known gas concentrations.
Sensors were selected based on market availability, cost, power consumption, detection range,
and accuracy. A specially constructed gas mixing chamber, coupled to a precision bench-top analyzer,
was used to characterize each sensor during a controlled exposure to known gas concentrations.
For environmental monitoring, the selected carbon dioxide sensors were characterized around
400 ppm. For methane, the sensor response was first monitored at 0 ppm, close to the typical
environmental background. The selected sensors were then evaluated at gas concentrations of
several thousand ppm. The determined detection limits accuracy, and precision provides a set of
matrices that can be used to evaluate and select sensors for integration into a sensor platform for
specific applications.
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1. Introduction

Monitoring the concentrations of carbon dioxide (CO2) and methane (CH4), two important
environmental gases, is necessary to understand their impact on the environment. Additionally,
monitoring is critical to ensure worker safety by early identification of potential leaks. An example is
monitoring CO2 and CH4 around carbon sequestration operations and oil fields. In such a scenario,
collection of multiple samples at several locations in a given area is critical to obtain a reliable
understanding of gas emission from the site (see Keith et al. [1] for aspects of effective sampling).
Thus, cost becomes an important factor in the evaluations. For monitoring applications, available
sensors include, but are not limited to, those used in HVAC air handlers [2,3], chemical processing
units [4], oil well monitoring devices [5,6], and environmental monitoring [7–11]. In designing a
monitoring platform, one must also consider the limit of detection, precision, accuracy, reliability,
and power consumption for each sensor integrated within the unit. Given the large number of
commercially available sensors and papers discussing their use in various applications, there is limited
literature that directly compares sensors from different manufacturers. Although information can be
obtained by the manufacturer of each sensor, in many cases the provided information is incomplete.
For example, many sensors quote the resolution (in the case of a digital output) but do not report the
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limit of detection determined by the fluctuation of the baseline. In addition, manufacturers may have
different methodologies and test their sensors under different conditions.

To address this issue, an array of commercially available, low-cost sensors for CO2 and
CH4 were evaluated using the same methodology at concentrations typical to those required for
environmental monitoring, and monitoring around carbon sequestration operations and oil fields.
The sensors were evaluated at environmental concentrations of CO2 (around 400 ppm [12,13]) and
CH4 (under 2 ppm [14–16]), and at concentrations of several thousand ppm, which simulates a
potential leak. By evaluating these sensors at environmental concentrations and at concentrations
simulating a potential leak, the results are transferable to a wide range of environmental and industrial
monitoring applications. In this study, all testing was performed using controlled mixtures of pure gases.
This way, the detection limits, accuracy, and precision of these sensors could be determined by precise
measurements at known gas concentrations under identical and reproducible conditions. As this study
focused on the performance of sensors to the analyte gas, sensitivity toward the specific target and
other potential interference were not explored.

2. Methods

2.1. Sensor Selection

Selections were made from commercially available sensors. Potential sensors were categorized by
detection method. Principal among these methods are optical absorption, chemiresistive (based on the
resistance changes of a material due to chemical reaction with an analyte [17]), and electrochemical.
Since studies have cited concerns with electrochemical gas concentration sensors, such as a short
lifetime and lack of robustness [18], only optical and chemiresistive sensors were selected for evaluation
in this study. Additional details on the sensing technology or detection method can be found in the
Supplementary Materials. Briefly, NDIR detection is generally used for CO2 due to its relatively large
molar absorption coefficient, allowing for short path lengths to be used in devices. Use of NDIR
detectors for CH4 is limited in practical applications due to the lower absorption coefficient and
overlapping symmetric C-H stretches. Thus, chemiresistive sensors are popular for the detection of
CH4 and typically use a thin oxide film [18], on which the analyte adsorbs and reacts with surface
oxygen species resulting in a change in the electrical conductivity [19–21]. Since the sensor depends on
chemical reactions involving both atmospheric oxygen and CH4 for proper functioning, chemiresistive
sensors are dependent on atmospheric properties such as relative humidity and temperature in
addition to film preparation. Both optical and chemiresistive CH4 sensors can respond to a range of
hydrocarbon gases. For optical sensors, overlapping stretches makes CH4 difficult to distinguish from
other common aliphatic gases such as ethane and propane [22]. For chemiresistive sensors, similar
reactivity results in sensitivity to a range of hydrocarbon gases [23].

With two exceptions, the sensors selected were all commercially available in large volumes
(at least 1000 units) at low-cost (defined here as less than $100 per unit in bulk) Additional information
on the selection rationale can be found in the Supplementary Materials. Selected sensors were
expected to have sensitivity at the environmental concentrations of CO2 and CH4. For CO2,
this level is around 400 ppm [12,13]. For CH4, the baseline atmospheric concentration is under
2 ppm [14–16]. In total, six CO2 sensors were selected for testing, the K-30 SE-0018, COZIR AMB
GC-020, Gascard CO2, MSH-P/CO2/NC/5/V/P/F, MSH-DP/HC/CO2/NC/P/F, and Telaire T6615.
Given the prevalence of optical sensors for CO2, no chemiresistive sensor was selected for this
analyte. For CH4, seven sensors were evaluated, the MQ-4, Gascard CH4, MSH-P/HC/NC/5/V/P/F,
MSH-DP/HC/CO2/NC/P/F, TGS-2600, TGS-2610, and TGS-2611. The relevant properties, obtained
from the manufacturer documentation, for the CO2 (Table S1) and CH4 sensors (Table S2) are
summarized in the Supplementary Materials. The selected sensors meet the requirements for use in
portable low-power monitoring devices [24].
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The K-30, COZIR, Dynament, and Telaire sensors are all NDIR CO2 sensors. The Dynament
hydrocarbon sensor (MSH-P/HC) was chosen as an inexpensive candidate for CH4 detection.
Dynament also provides a dual gas NDIR sensor (MSH-DP/HC/CO2) designed to measure both CO2
and CH4 concentrations, which is attractive for applications requiring both low-cost and portability.
Finally, CO2 and CH4 Gascard (sold by GHG Analytical) sensors were included, even though they
were more expensive than the other chosen NDIR sensors. However, the Gascard sensors are still
significantly less expensive than typical bench-top instruments. The inclusion of pressure and
temperature sensors make them attractive enough to compensate for the expense.

The low-cost chemiresistive-based CH4 sensors studied here are typically used in gas warning
systems [25]. Selected sensors include the MQ-4 from Hanwei Electronics and TGS-2600, TGS-2610,
and TGS-2611 manufactured by Figaro Engineering Inc. sensors. The TGS sensors are used in
commercial CH4 detectors, and the TGS-2600 sensor has been previously evaluated for atmospheric
applications [26,27]. There are several different MQ versions optimized for hydrocarbon sensing.
The MQ-4 sensor was chosen as this variant was specifically tuned for CH4. Chemiresistive sensors
required a minimum conditioning period or “burn-in” time. This “burn-in” time is a period
(often exceeding 24 h) during which the heating element is allowed to constantly heat the sensing
element of the sensor. The “burn-in” time was met or exceeded for all chemiresistive sensors.

2.2. Analyte Preparation and Sensor Testing

To test these sensors under controlled conditions, a gas mixing apparatus (Figure 1) was
constructed which prepares gas mixtures of known concentration by controlling the positive pressure
flow of gas streams into a mixing chamber. A high-quality bench-top analyzer (California Analytical
Instruments, Inc. ZRE Non-Dispersive Infrared Analyzer), sensitive to both CO2 and CH4, was used
as a precision reference. This setup allows gas flows of a known concentration to be prepared from a
calibrated gas cylinder by mixing with a carrier gas. The calibrated gas contained a mixture of gases
at concentrations listed in Table 1 depending on the specific experiment being performed. Since the
objective is to address the accuracy, precision, sensitivity, and limits of detection, only CO2 and CH4
were utilized. However, selectivity requirements must be considered when these sensors are integrated
into a monitoring platform. For CO2 experiments, the carrier gas was typically nitrogen. For CH4,
medical grade air was utilized as a carrier gas since the chemiresistive sensors required oxygen to
correctly measure the CH4 concentration. All reported concentrations were determined using the
bench-top analyzer. Thus, the concentration ranges and all related values are reported here not as
whole numbers but direct observations.

The calibrated gas mixtures were provided by and certified within ±2% by Airgas Inc.
The calibrated gas was diluted using either air or nitrogen gas by a set of mass flow controllers
to produce specific concentration of the analyte gases. The solenoid valves in the gas mixing apparatus
were used to send either the undiluted calibrated gas or the carrier gas to analyzer for calibration
purposes. This ability allows the analyzer to be periodically calibrated. The uncertainty in the gas
concentration results in a systematic error. Around atmospheric levels of CH4, this error is less than
0.4 ppm. For atmospheric levels of CO2, the error is approximately 8 ppm. Since the fluctuations
around the mean were independent of the exact concentration (see Section 3.3), this systematic error
will not effect the results from the baseline noise or the International Union of Applied Chemistry
(IUPAC) limit of detection, discussed below. For the sensor calibrations, uncertainty in the absolute
concentration of the carrier gas will introduce an error in the intercept but not the slope. While any
systematic error will have small effect on the calibration-corrected limit of detection, the random
uncertainty dominates any potential systematic bias of a few ppm.

Multiple sensors were operated concurrently as shown in Figure 2. The “Gas Mixer” in this
diagram is the gas mixing apparatus shown in Figure 1, and the “Gas Analyzer” is the California
Analytical Instruments, Inc. ZRE Non-Dispersive Infrared Analyzer. There are two types of sampling
methods used by the selected sensors; diffusion and flow (see Tables S1 and S2 in the Supplementary
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Materials). Flow sampling sensors are designed such that the analyte gases must physically pass
through a sampling chamber within the sensor. In terms of applications, these sensors typically
require additional filters to be added upstream to prevent inclusion of particulate matter, which may
damage the sensor or introduce measurement error. In the experimental setup (Figure 2), the flow
capable sensors were connected directly to gas flow from the mixing apparatus. In addition to the flow
sensors, another common sampling technique relies on diffusion through a fine mesh screen or film.
The diffusion method allows the sensing element to be exposed to the analyte gas while still being
protected from particulate contaminants. This method also eliminates the extra pump and particulate
filters required for sensors that require gas flow. The small “sensor flow box” enclosures depicted
in Figure 2 contained the K-30 CO2 sensor and a socketable chemiresistive CH4 sensor (such as the
MQ-4 or TGS series sensors). The larger “gas flow chamber” contained the COZIR, Telaire, Dynament,
and K-30 sensors. Given the large total volume, data collected from the sensors in this chamber were
analyzed only after the system reached a constant concentration following the introduction of a gas
with known concentration of CO2 or CH4. In some experiments, performed to accurately measure the
response time for chemiresistive sensors, a smaller sensor enclosure (internal volume 2.54 cm3) was
used to minimize the time to reach a stable concentration.

Figure 1. Component diagram of controlled gas exposure apparatus with chamber for diffusion-type sensors.

Table 1. Calibrated gas mixtures used to prepare various gas mixtures with a carrier gas.

Carbon Dioxide Methane Balance Gas

3000 ppm 3000 ppm nitrogen
100 ppm 100 ppm nitrogen

0 ppm 20 ppm nitrogen
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Figure 2. The diagram shows the flow of gas from the mixing apparatus to Gascard sensors,
small enclosures containing sensors, the large gas flow chamber, and finally to the California Analytical
Instruments, Inc. ZRE Non-Dispersive Infrared Analyzer. The gas mixing apparatus is shown in
Figure 1. The reported concentrations are based on the value detected by the California Analytical
Instruments, Inc. ZRE Non-Dispersive Infrared Analyzer.

2.3. Sensor Output and Data Collection

ς =
Vmeasured

Vcc − Vmeasured
× 1

Rre f
(1)

The output of each sensor was logged as a function of time using software provided by the
manufacturer as part of development kits when provided, or using an Arduino microcontroller with
a prototyping board and microSD card. Due to the unique interface requirements of each sensor,
development kits were purchased when possible. In all cases, the internal electronics within the
selected optical sensors process the option data and provide a digital output. For example, the K-30
reports the concentration directly, while the Gascard reports a digital value between zero and one,
with one being the maximum concentration (30,000 ppm CO2 for the sensor used in this study).
For the Gascard, scaling was applied to the output before analyzing. The chemiresistive sensors were
energized using the recommended voltage for the heater element and the response was measured
using a 12-bit A/D converter, after buffering and filtering, across a reference resistor (a 10 kΩ resistor
was used for Rre f ). The A/D converter was referenced using the 5 V supply, which was also connected
to the sensing element of the chemiresistive sensor. Equation (1) describes the conversion of the
measured voltage (Vmeasured) to the conductivity (ς), measured in Siemens (S).

2.4. Calibration and Fitting Procedures

Calibration curve of each sensor was determined by varying concentrations and recording the
output with time. The CO2 sensors were calibrated using gas concentrations from 34.5 to 1020 ppm.
For the CH4 sensors, calibration curves were generated from gas concentrations between 1.85 and
995 ppm. The procedure starts with a constant flow of the carrier gas until stable baseline is obtained.
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Next, the analyte gas at a known concentration is introduced. After 24 h, the carrier gas is reintroduced
and the system is again allowed to stabilize before the next measurement. During this procedure,
concentration data from each sensor was continually collected. From these data, the average baseline
and response to each gas concentration was extracted. The average response at each concentration was
determined from the data collected after the system stabilized (include any overshoot or ringing) after
each new concentration.

f (x) =
a × b × x
1 + b × x

(2)

The fitting procedures for the optical and chemiresistive sensors differ. The raw output of the
optical absorption-based sensors is expected to follow Beer-Lambert law. In all cases, the internal
electronics within the selected optical sensors process the absorbance and provide a digital output.
For the optical sensors, the accuracy and precision of the internal calibration are quantified by
linear regression. The calibration curves for the chemiresistive are non-linear, and modeled using
a Langmuir-like or Langmuirian form (Equation (2)). Equation (2) converges to a linear function
when the ppm approaches zero, which simplifies the limit of detection calculations discussed below.
The parameters a and b, along with the asymptotic standard errors, are determined by fitting the
experimental data using the Levenberg-Marquardt algorithm in gnuplot [28]. Additional non-linear
functions have been suggested by kinetic analysis [29,30]. Of these, a power law model, where the log
of the output is proportional to the log of the concentration in ppm, is considered.

2.5. Precision and Baseline Noise Tests

Precision of the sensors was determined by a 20 h to 30 h data collection period at a known
concentration and uniform flow. These experiments were performed around the baseline atmospheric
concentration for each analyte gas, which is approximately 400 ppm for CO2 [12,13] and under 2 ppm
for CH4 [14–16]. For CO2, 400 ppm was utilized, and for CH4, 0 ppm of methane was used for the
baseline noise measurements.

2.6. Limit of Detection Determination

The limit of detection is the minimum concentration that can be detected as significantly different
from the background [31–33]. IUPAC defines the limit of detection as three times the standard deviation
(σ) from the background. For the sensors discussed here, the raw output from the sensors must be
transformed into a concentration, and any uncertainties in the calibration will affect the limit of
detection. For measurements requiring a calibration curve, Long and Winefordner provide a review of
the various definitions as well as several examples [31]. For optical sensors, their procedure to include
the uncertainties in the slope and intercept in the calculated limit of detection was utilized. For the
non-linear chemiresistive sensors, the asymptotic standard uncertainties in a and b were propagation
to correct the IUPAC limit of detection.

3. Results and Discussion

3.1. Sensor Response

In general, all selected optical sensors responded quickly to an increase in CO2 inside the
environmental chamber, with the response only limited by the internal sampling rate of the sensor.
The chemiresistive sensors exhibit more complex behavior when exposed to a rapid change in
concentration. Figure 3 depicts a plot of the response of an MQ-4 sensor upon exposure to five
different concentrations of CH4 between 500 ppm and 2200 ppm, which could represent a CH4 leak.
In our setup, the MQ-4 produces significant overshoot. Some of the overshoot is inherent to the
sensor, but could also be a result of the small interruption in the gas flow during a concentration
change. For all concentrations, a stable value within 2.5% of the mean was produced after 78 ± 10 s,



Sensors 2019, 19, 3157 7 of 15

when averaged over all experiments. The settling time for the MQ-4 sensor did not appear to be
concentration dependent. Shorter settling time and less overshoot was observed for the TGS sensors.
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Figure 3. The MQ-4 response to difference CH4 concentrations determined by the California Analytical
Instruments, Inc. ZRE Non-Dispersive Infrared Analyzer.

3.2. Calibration Result

Typical calibration plots for an optical and a chemiresistive sensors are shown in Figure 4.
The analyte concentration (x-axis) was generated by the gas mixing apparatus (Figure 1) and measured
using California Analytical Instruments Inc. ZRE Non-Dispersive Infrared Analyzer. The data points
are the measured values at each concentration, while the line is a fit to the data. The upper plot
in Figure 4 is the CO2 calibration curve obtained from the Gascard sensor, along with the linear fit.
The y-axis is concentration reported by the sensor. The slope is 1.02 ± 0.02 indicating an excellent
calibration and precision. There is a significant gap between the highest two CO2 concentrations
and the next highest, which could potentially bias the linear regression. However, elimination of
these two highest points does not change the slope of the fit. Above their respective detection limits,
good linear fits were obtained for each optical sensor. Linear regression results show the slopes for
the selected sensors are all close to one, indicting good precision. For the CO2 sensors, the slopes
range from 1.11 to 0.86, with the MSH-P/CO2 and Telair as the high and low outliers, respectively.
Excluding these sensors, the average slope is 0.99. For the CH4 sensors, the slopes are 0.98 (Gascard),
1.03 (MSH-DP/HC/CO2), and 1.20 (MSH-P/HC). The fact that a majority of the slopes are close to one
is expected as the optical path length and the physical properties of the analyte determine the response.
In contrast to the slopes, the value of the vertical intercept or the response at zero concentration vary
widely, exceeding several 100 ppm in many cases. Large variations are found even between sensors
from the same manufacturer. Since the intercept depends on the intensity of the source and the detector,
these variations are not unexpected. To address this issue, a majority of the optical sensors tested
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provide an easy way to adjust the intercept. For example, the K-30 sensors can auto-calibrate the zero
based on known average background level of CO2. In general, it was found the intercept must be
adjusted before use.
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Figure 4. The upper panel of the figure shows the reported concentration from a Gascard optical CO2
sensor along with the expected linear fit. The lower panel of the figure shows reported conductivity
measured from an MQ-4 chemiresistive CH4 sensor along with a fit to the expected non-linear fit.
The analyte gas at various concentrations was generated by the gas mixing apparatus (Figure 1) and
measured using California Analytical Instruments Inc. ZRE Non-Dispersive Infrared Analyzer.

The lower plot in Figure 4 shows the measured conductivity (y-axis) of a MQ-4 chemiresistive
CH4 sensor as a function of CH4 concentration. The solid line is a non-linear fit to a Langmuirian form
(Equation (2)). The responses above 500 ppm were generated from the data in Figure 3. Additional
points were generated at concentrations close to zero to better determine the Limit of Detection,
which relies on the initial slope of the calibration curve close to zero. For ppm concentration above 500
ppm, acceptable results were also obtained using a power law model. However, this model produced a
fit that increased too rapidly with ppm at lower concentration. At high concentrations, this model did
not accurately represent a real sensor where the response approaches a constant. A lower concentration
reference gas was required to precisely prepare an analyte gas at 100 ppm and below. This action
resulted in a gap between 100 and 500 ppm in the lower plot. It is also significant that the chemiresistive
sensors show a rapid increase in conductivity with concentration below 100 ppm when compared to
the optical sensors.

Unlike optical sensors for CO2, which only needs reading at zero ppm to be experimentally
established, chemiresistive sensors require the measurement of a complete non-linear calibration curve
to ensure accuracy and precision. The output of the chemiresistive sensors are also dependent
on temperature and humidity, further complicating the calibration [34]. Although the selected
chemiresistive sensors have the requisite precision to provide a clear indication of a change (based on
number of σ above the noise, see Table 2 along with the associated discussion below) at the ppm level,
obtaining an accurate result is challenging.
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Table 2. The first two numbered are the computed standard deviation in ppm of Gaussian fitted
probability distributions and root-mean-squared error in the fit. The next two numbers are the
computed International Union of Applied Chemistry (IUPAC) (3σGAUSS) and calibration uncertainty
corrected Limits of Detections in ppm.

Sensor σGAUSS (ppm) RMSE IUPAC Corrected †

Carbon Dioxide

K-30 SE-0018 1.91 0.219 5.7 27.1

COZIR AMB GC-020 14.1 0.304 42.3 80.6

Gascard CO2 2.12 0.223 6.4 32.1

MSH-DP/HC/CO2 86.4 0.197 260 254

MSH-P/CO2 17.6 0.217 52.8 68.0

Telaire T6615 4.42 0.185 13.3 31.1

CH4/Hydrocarbon

MQ-4 26.7 ‡ 80.0 82.0

Gascard CH4 35.7 0.222 110 151

MSH-P/HC 3.54 0.152 10.6 170

TGS-2600 36.1 0.225 110 117

TGS-2610 37.1 0.237 111 113

TGS-2611 5.4 0.208 16.3 16.3

† A linear calibration was utilized for the optical sensor, while the chemiresistive utilized
the non-linear Langmuirian fit. See text. ‡ This value was determined directly from the
experimental response.

3.3. Precision and Baseline Noise Tests

The measurement precision and baseline noise of each sensor was performed as described in
Section 2.5. The precision of the sensors was determined by a 20 h to 30 h data collection time at
a known concentration (400 ppm for CO2, which is the typical atmospheric concentration [12,13],
and 0 ppm for CH4, representing the typical atmospheric concentrations of under 2 ppm [14–16]).
In general, the optical sensors displayed flat response or baseline response with time Figure 5 shows
a typical data set for the TGS-2611 and MQ-4 sensor. The TGS-2611 sensor displayed significantly
less variation in conductivity and baseline drift than the MQ-4 sensor. In addition, chemiresistive
sensors typically display baseline changes due to humidity and temperature, which must be taken into
account in monitoring applications.

Since the initial Fourier analysis showed no significant periodic variations, distribution of the
digitized sensor output around the mean response of the sensor was utilized to quantify the precision
and baseline noise. The data stream (sensor output with time) from each sensor was subtracted
from the mean response of the sensor, and a histogram of these differences was created. Since the
digitized sensor outputs have a finite number of possible output values, no additional bins were
created while producing the analysis. Although the data utilized for this analysis were obtained at
typical environmental concentrations, additional experiments found that the measured deviation
around the mean for each sensor was independent of the concentration of analyte gas. There was
insignificant correlation between the concentration of the analyte gas and the σ obtained at each
concentration, as quantified by the Pearson’s Correlation Coefficient (ρ = −0.173).

The resulting histograms, along with a best-fit Gaussian peak, are shown in Figures 6 and 7 for
the CO2 and CH4 sensors, respectively. In Table 2, σGAUSS is the standard deviation determined from
the Gaussian fit. The standard deviation (σ) calculated from the background subtracted sensor data is
almost identical to σGAUSS. In Figures 6 and 7, the abscissa (x-coordinate) was scaled by the standard
deviation of the data set and the area normalized to one. The resolution of the dual gas Dynament
(MSH-DP/HC/CO2) sensor was insufficient to properly determine the fluctuations around the mean,
as this sensor oscillated between two values with time at the given concentration. The limited responses
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are consistent with the resolution stated in their documentation, which lists 0.01% or 100 ppm as the
low end of the concentration range. The fluctuation around the mean for the single gas Dynament
(MSH-P/CO2) sensor is slightly less that the stated resolution of 50 ppm.
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Figure 5. Long term fluctuations in the measured conductivity as a function of time are shown for the
MQ-4 (upper panel) and TGS-2611 (lower panel) chemiresistive sensors. These baseline responses were
collected at approximately 0 ppm CH4, representing the typical atmospheric concentrations of under
2 ppm [14–16]) using medical grade breathing air.
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Figure 6. Frequency distribution of the digitized sensor output around the mean response of the sensor
(points), along with Gaussian non-linear for each CO2 sensor around the typical environmental baseline
concentration of 400 ppm. Any deviation between the center of the Gaussian fit and the mean are due
to significant asymmetry of the frequency distribution around the mean.
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Figure 7. Frequency distribution of the digitized sensor output around the mean response of the sensor
(points), along with Gaussian non-linear fit for each CH4 sensor around the typical environmental
baseline concentration of 0 ppm. Any deviation between the center of the Gaussian fit and the mean
are due to significant asymmetry of the frequency distribution around the mean.

To determine the quality of the Gaussian fits in Figures 6 and 7, the root-mean-squared error
(RMSE) between the fit and the experimentally generated histogram was calculated for each sensor.
These values are also listed in Table 2. For RMSE, a lower value indicates that the Gaussian function
fits closely to the data points, whereas a higher value indicates a poorer fit. The values listed in Table 2
range from roughly 0.150 to 0.300. As the probability density function to which the data were fit was
normalized to 1, the RMSE values are unitless. Since RMSE is a measure of fit, these values can be used
in conjunction with σGAUSS to characterize the sensors.

Of the CO2 sensors (see Figure 6 and Table 2), the Gascard and K-30 sensors produced the
smallest standard deviation around the mean, σGAUSS, or the highest precision. The σGAUSS value
of the Telaire sensor was approximately two times that of either the Gascard or the K-30 sensor.
The COZIR and Dynament (MSH-P/CO2) sensors generated σGAUSS values which were significantly
greater than that of the Gascard, Telaire and K-30 sensors. Finally, Table 2) shows that the dual gas
Dynament (MSH-P/HC/CO2) sensor produced the largest σGAUSS or deviation around the mean.
The fluctuations around the mean for Dynament sensors are still lower than the quoted resolutions in
the manufacturer’s documentation of 50 and 100 ppm, respectively, for these two sensors.

The Gascard sensor for CO2 produced a normal response around the mean detected value
with low RMSE. At times, there were some large fluctuations, several standard deviations around
the mean response, in the output of the Gascard. This suggests that some minimal digital
filtering may be required. For the K-30 sensor, a good Gaussian fit was produced (small RMSE).
However, the distribution for the K-30 was skewed toward higher concentration values and appeared
to contain two overlapping peaks. This caused the σGAUSS to be slightly larger and the RMSE to be
artificially inflated. Careful analysis of this double peak showed each peak had a similar standard
deviation (σ), suggesting a small shift in the mean measured value. Since the K-30 sensor periodically
adjusts for changing backgrounds in the firmware to ensure a normal output concentration of 400 ppm,
the observed change in the reported mean concentration in the middle of the run was likely caused by
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this period background adjustment. It is also possible the periodic temperature and pressure variations,
which were corrected by the Gascard sensor, were responsible for the observed skew in the K-30.
In general, precise work requires incorporation of pressure and temperature sensors into potential
environmental sensing units to allow ppm corrections to be performed at time of measurement.

The probability distribution of responses around the mean by the GE Telaire sensor is a single
peak with a σGAUSS that is approximately two to three times as large as that of the K-30 and Gascard
sensors. Since the GE Telaire and K-30 sensor share comparable sensing mechanisms and path lengths,
this larger σGAUSS was initially surprising. A direct comparison of the response for both the Telaire
and K-30 sensors both with and without ambient light, showed that, unlike the K-30 sensor, the Telaire
sensor was sensitive to ambient light level. Given that long data collection times are required to
produce reliable histograms, the ambient light conditions changed over the course of data collection.
It was suspected that the larger deviations around the mean for the Telaire sensor and resulting σGAUSS
values are due to changes in the ambient light. Further experiments with the sensor shielded from
ambient light substantiate this suspicion.

For the optical CH4 sensors (see Figure 7 and Table 2), the Gascard for CH4 produced a σGAUSS
with a low RMSE. The single gas Dynament (MSH-P/HC/) hydrocarbon sensor produced a very
low σGAUSS and performed well in terms of precision. The σGAUSS for the dual-gas Dynament
(MSH-DP/HC/CO2) sensor was not included in this table. As mentioned previously, the dual-gas
Dynament (MSH-DP/HC/CO2) sensor only reported two values for CH4 around the mean rather
than a distribution of several values. This result was consistent with the 100 ppm resolution quoted in
the manufacturer’s documentation for concentrations of less than 10% CH4.

The result for the chemiresistive CH4 sensors are also shown in Figure 7, with a σGAUSS and
an RMSE result in Table 2. The distribution curve for the MQ-4 sensor was not included. Since the
MQ-4 sensor displayed significant baseline drift when compared to the TGS-2611 sensor (Figure 5),
the standard deviation was instead calculated directly from a relatively flat region of the baseline.
This different treatment was not inconsistent with the use of the sensor in many applications
where drift is a result of temperature and humidity. In general, the use of a dynamic background
subtraction algorithm is required for chemiresistive sensors. The σGAUSS results of the TGS-2600
and TGS-2610 were similar, as expected due to their comparable sensing mechanisms. The baseline
noise, as quantified by σGAUSS, for the CH4 optimized TGS-2611 sensor was lower than the other
TGS sensors.

3.4. Limits of Detection

The limits of detection were determined as discussed in Section 2.6 and are listed in Table 2.
It should be noted these tests were carried out in a controlled environment and are best-case values.
Of the tested CO2 sensors, the Gascard, K-30, and Telaire sensors have comparable low limits of
detection. The COZIR and Dynament single analyte sensor (MSH-P/CO2) have the next highest limits
of detection, and the Dynament dual analyte sensor (MSH-DP/HC/CO2) has the highest. These results
reflect the ordering of σGAUSS in Table 2. These results can also be correlated with the optical path
lengths of the sensors—larger path lengths result in greater sensitivity.

The limit of detection for the Dynament single analyte CH4 sensor (MSH-P/HC) demonstrates
the important influence of calibration uncertainties on the reported limit. For this sensor, the 3.54 ppm
precision (σGAUSS) or deviation around the mean was significantly lower than the 50 ppm resolution
quoted in the manufacturer’s documentation at the low-end of the 1% concentration range of the
sensor. The IUPAC limit of detection is 10.6 ppm. After correcting for the calibration error, the limit of
detection is 170 ppm. This larger limit of detection is more consistent with expectations based on the
stated resolution of this sensor.
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Of the tested chemiresistive CH4 sensors, the TGS-2611 sensor had the lowest limit of detection
under controlled conditions, primarily due to its stable baseline, which influences both the background
noise and the quality of the calibration. Similar sensitivities have been reported for the TGS-2600 [26].
Both the non-methane optimized TGS-2600 and TGS-2610 sensors had similar limits of detection which
were slightly larger than the CH4 optimized TGS-2611 and the MQ-4. The MQ-4 sensor has precision
between the TGS-2611 and both the TGS-2600 and TGS-2610 sensors. The 82 ppm limit of detection
for the MQ-4 sensor is consistent with scatter in the calibration curve at concentration under 100 ppm
(see Figure 3).

4. Conclusions

The performance of a sensor platform for environmental or industrial monitoring is sensitive to the
cost and performance of the individual sensor elements. The detection limits, accuracy, and precision
for a range of potential sensors for measuring ppm concentrations of CO2 and CH4 for low-cost
monitoring instrumentation quantified under consistent conditions and experimental methodologies.
These parameters were quantified around the baseline atmospheric concentration for each analyte
gas, which is approximately 400 ppm for CO2 [12,13] and under 2 ppm for CH4 [14–16]. The selected
sensors were also evaluated at gas concentrations exceeding 1000 ppm, in order to mimic a leak from a
CO2 sequestration location or a gas well.

For CO2, the Gascard sensor had high-performance based on the detection limits and precision
reported in Table 2, but is comparatively more expensive than the other sensors investigated.
The Gascard sensor is also limited by reliance on active sampling, which requires a pump that
introduces a source of additional power consumption, a mechanical failure point, and sampling
complexity. Nevertheless, given that concentrations are typically reported in parts-per notation,
the inclusion of temperature and pressure corrections on the Gascard sensor allow it to automatically
correct the reported ppm value and eliminates the need for additional sensors. The lower cost K-30
and Telaire sensors also had good performance. The ability of the K-30 and Telaire sensors to operate
by passive diffusion rather than mechanically pumped flow also reduces the cost and complexity of a
potential monitoring system. The K-30 sensor, along with suggested corrections for improved accuracy,
was also investigated for ambient air monitoring [35]. One unique feature of the K-30 sensor is that it
has an option to autozero and correct reported output by assuming the minimum concentration of a
multi-day run is 400 ppm. If implemented, this feature has advantages for remote instrumentation.

For low-cost chemiresistive CH4 sensors, the performance as expected at concentration greater
than the measured limit of detection (Table 2) or, equivalently, greater than approximately 100 ppm.
However, these sensors do not meet the ppm or even sub-ppm sensitivity required for environmental
monitoring. The more expansive but still relatively low-cost optical NDIR CH4 sensors (the GasCard
CH4 and MSH-P/HC) also preform well at higher concentrations, but lack the required sensitivity
for monitoring environmental levels of CH4 around the global average. Although progress has
been made to produce viable sensors [36], larger, more costly devices are still required for precision
measurements at the ppm level. With an increasing focus on remote sensing technology, a new
generation of higher-sensitivity low-cost CH4 sensors will be required to produce accurate data at
expected atmospheric concentrations. The reported detection limits and precision for a range of
available low-cost sensors, all measured using the same methodology and experimental equipment,
provides a solid reference to which future improvements can be benchmarked against.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/14/3157/
s1, Table S1: Manufacturer listed properties of evaluated CO2 sensors, Table S2: Manufacturer listed properties of
evaluated CH4 sensors.
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