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Abstract: NarrowBand IoT (NB-IoT) is emerging as a promising communication technology offering
a reliable wireless connection to a large number of devices employed in pervasive monitoring
scenarios, such as Smart City, Precision Agriculture, and Industry 4.0. Since most of the NB-IoT
transmissions occur in the uplink, the random access channel (that is the primary interface
between devices and the base station) may usually become the main bottleneck of the entire
system. For this reason, analytical models and simulation tools able to investigate its behavior
in different scenarios are of the utmost importance for driving current and future research activities.
Unfortunately, scientific literature partially addresses the current open issues by means of simplified
and, in many cases, not standard-compliant approaches. To provide a significant step forward
in this direction, the contribution of this paper is three-folded. First, it presents a flexible,
open-source, and 3GPP-compliant implementation of the NB-IoT random access procedure. Second, it
formulates an analytical model capturing both collision and success probabilities associated with the
aforementioned procedure. Third, it presents the cross-validation of both the analytical model and the
simulation tool, by taking into account reference applications scenarios of sensor networks enabling
periodic reporting in monitoring infrastructures. Obtained results prove the remarkable accuracy,
demonstrating a well-calibrated instrument, which will be also useful for future research activities.

Keywords: monitoring system; sensor network; NB-IoT; random access channel; simulation tool;
analytical model

1. Introduction

The Internet of Things (IoT) phenomenon is broadening at an astoundingly fast rate [1],
which promoted the birth of several novel services in different application domains, including,
but not limited to, Industry 4.0 [2], Smart Cities [3], Intelligent Transportation Systems [4], Precision
Agriculture [5], healthcare [6] and environmental monitoring [7]. Hence, an increasing number of
constrained smart devices are currently joining the worldwide Internet, asking for suitable wireless
communication technology, capable of offering both extremely low power consumption and support
for densely populated deployments. In general, these low-powered devices individually require low
data transfer rates as well, even though a densely populated Machine Type Communication (MTC)
deployment might become incredibly bandwidth-hungry. At the same time, devices generally require
extremely low power, remaining idle for prolonged periods. Furthermore, reasonably numerous IoT
applications involve the reporting of various events and data streaming to a central server in an efficient
and robust way (e.g., video surveillance and emergency health services). Besides, either the physical
location of devices in such scenarios may not be reached by fixed networks (e.g., basements) or the
apparatuses have to be arbitrarily deployed or moved anywhere [8]. Low Power Wide Area networks
(LPWANs) are an innovative communication pattern addressing the aforementioned requirements of
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emerging IoT applications [9]. Essentially, they complement legacy cellular and short-range wireless
technologies, offering exclusive features for low complexity devices. At the time of this writing, there
are a number of LPWANs, each employing different techniques to meet the Machine-to-Machine (M2M)
requirements. In the unlicensed spectrums, LoRa [10] and SigFox [11] are the most common. However,
the licensed spectrum is widely known to supply a higher degree of reliability and Quality of Service.
Among the licensed LPWANs, NarrowBand IoT (NB-IoT) has been recognized as a promising and
effective technology offering wireless connectivity to smart devices. Standardized by the Third
Generation Partnership Project (3GPP) starting from Release 13 [12,13], it natively supports the
transmission of marginal amounts of data, while requiring low-energy consumption and limited
bandwidth usage [14]. Moreover, the adoption of NB-IoT is able to satisfy most of the requirements of
all the possible application scenarios, by dynamically adapting to different use cases. Therefore, the
application based on the potentially enormous amount and variety of data generated by monitoring
sensors is of particular interest. Such monitoring systems provide new services to citizens, companies,
and public administrations as well.

In a typical NB-IoT monitoring system, uplink transmissions prevail among the rest of exchanged
messages. Here, the random access procedure is the primary relation established between devices and
the base station. Built on top of a contention-based mechanism, it brings to performance degradation
when a multitude of simultaneous transmissions takes place [15]. In fact, in high traffic conditions,
only few devices can successfully complete the procedure. Consequently, analytical models and
system-level simulation tools able to investigate the behavior of the aforementioned random access
procedure are extremely important for driving current research activities related to the adoption of the
NB-IoT technology in smart monitoring infrastructures.

Nevertheless, at the time of this writing, scientific literature only provides splintered answers
to these challenging open issues. For instance, analytical models for estimating the random access
success probability are presented in [16–22], but they either do not fit the 3GPP guidelines or overlook
several aspects (see Section 2.4 for further details). In addition, to make matters worse, available
simulation tools do not completely support the random access procedure evaluation [23,24] and the
NB-IoT open-source simulation presented in [25] does not offer a satisfactory implementation of the
procedure itself.

Based on these premises, this contribution provides a significant step forward in the current state
of the art, by overcoming the evident limitations characterizing the scientific literature and presenting
key instruments for the evaluation of the NB-IoT random access procedure. For the first time, to the
best of the authors’ knowledge, the NB-IoT random access procedure is jointly investigated through
analytical models and system-level simulations, paving the way for future standard improvements.
Specifically, the contribution of this paper is three-fold.

1. Starting from the platform presented in [25], it puts forward an open-source and 3GPP-compliant
implementation of the NB-IoT random access procedure, which handles different coverage classes,
global and local transmission attempts counters, backoff times, and transitions from a class to
another, as well as other key simulations.

2. It formulates an analytical model describing both collision and success probabilities, given the
number of users willing to perform the random access procedure.

3. It deeply cross-validates the analytical model and the simulation tool, by considering realistic
NB-IoT deployments enabling periodic reporting in monitoring infrastructures, with different
resource configurations.

The rest of this work is organized as follows. Section 2 illustrates the NB-IoT technology,
describing in details the Random Access Procedure, and the currently available analytical models
and network simulators, as well as several real NB-IoT monitoring systems. Section 3 presents the
implemented simulation tool and the conceived analytical model. Section 4 discusses the results
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obtained through the cross-validation process. Section 5 concludes the paper and draws future
research activities.

2. State of the Art

2.1. NarrowBand—Internet of Things

NB-IoT is a cellular radio access technology that requires a smaller bandwidth than Long Term
Evolution (LTE), that is, 180 kHz for both downlink and uplink [13]. A single carrier can be configured
according to the chosen operation mode, whereas multiple carriers can also be used to supply a higher
bandwidth. The three possible operation modes include:

• Stand-Alone operation: An operator can replace one GSM carrier of 200 kHz with NB-IoT,
leaving a guard interval of 10 kHz on both sides of the spectrum.

• In-Band operation: One or more NB-IoT carriers are deployed inside a larger LTE channel.
• Guard-Band operation: One or more carriers are allocated within the guard-band of LTE

bandwidth to NB-IoT.

All three deployment scenarios are transparent to non-NB-IoT devices. Consequently, LTE devices
that do not implement NB-IoT functionality simply do not see the NB-IoT channel inside the main LTE
bandwidth or in the guard band. At the same time, legacy GSM devices will not see an NB-IoT carrier
if used alongside 180 kHz GSM carriers. Such devices will only see noise where NB-IoT is active [26].

At the physical layer, NB-IoT fully inherits from LTE in the downlink. The transmission scheme is
based on conventional Orthogonal Frequency Division Multiplexing (OFDM) using normal Cyclic
Prefix (CP). An end user operates in the downlink using seven consecutive symbols on 12 subcarriers
(also referred to as tones) grouped into a Resource Block (RB), with a subcarrier spacing of 15 kHz [13].
The duration of a slot, subframe, and frame is analogous to LTE, as well. Therefore, in a single NB-IoT
carrier, there is only one RB and only one user can receive data at a time using all 12 subcarriers for
each subframe. As regards modulation, only Quadrature Phase-Shift Keying (QPSK) is supported.

Instead, the uplink supports not only the standard LTE subcarrier spacing of 15 kHz but also
a subcarrier spacing of 3.75 kHz. The elementary NB-IoT radio resource, termed Resource Unit (RU),
is the smallest unit to map a transport block [27]. It is assigned to a single user only. Unlike the
well-known resource block of LTE, an RU is dynamically defined as shown in Table 1 [28].

Table 1. Uplink RUs in NB-IoT.

Transmission Mode Subcarriers Subcarrier Spacing [kHz] RU Duration [ms]

Single-Tone 1 3.75 32
1 15 8

Multi-Tone
3 15 4
6 15 2
12 15 1

Specifically, the uplink supports two different configurations: Single-Tone and Multi-Tone.
Single-Tone uses either 3.75 or 15 kHz subcarrier spacing and each subcarrier represents an RU.
Consequently, a 180 kHz carrier is divided into either 48 or 12 RUs, respectively, thus resulting
in two different RU length values: 32 and 8 ms. In the case of Multi-Tone configuration, the subcarrier
spacing is set to 15 kHz only. Nevertheless, 3, 6 or 12 adjacent subcarriers may shape a single RU.
Again, depending on the number of tones per RU, its length changes accordingly (as illustrated in
Table 1).

The modulation schemes available in the uplink are restricted to Binary Phase-Shift Keying (BPSK)
and QPSK.
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One of the main objectives defined in NB-IoT study item description [29] is to achieve 20 dB
coverage extension compared with legacy General Packet Radio Service (GPRS) while limiting the
device maximum transmit power to 23 dBm (200 mW), which is a factor of ten lower than the
maximum output power of GPRS devices. Coverage extension is achieved by increasing the number
of repetitions at the expense of higher data rates. Moreover, NB-IoT supports up to three coverage
classes, namely Normal, Extended, and Extreme, to serve devices experiencing different ranges of path
loss. The Extreme class corresponds to incredibly low received power levels. The Normal class refers
to considerably higher received power levels. Specifically, the end device is considered in a specific
enhanced coverage level if its measured Reference Signal Received Power (RSRP) is less than the RSRP
threshold configured for that enhanced coverage class. According to the 3GPP specification [30],
the number of coverage classes is configurable by system information. Let n be the number of available
coverage classes so that 1 ≤ n ≤ 3. Different coverage classes correspond to operation with different
modulation orders, coding rates, repetition factors, and subcarrier spacings, in order to match the
data rate for each user to its available link budget. This allows devices having good coverage to
operate at higher data rates and with lower latency than devices that have poor coverage. Therefore,
the system is designed to meet the throughput and latency requirements for devices in Extreme
coverage, while devices in Normal or Extended coverage achieve improved performance.

NB-IoT generally takes advantage of the existing LTE physical channels, revised properly to fit
into the narrower bandwidth [31]. In the downlink direction, there are three channels:

• Narrowband Physical Downlink Control Channel (NPDCCH) carries scheduling assignments,
as well as Hybrid Automatic Repeat reQuest (HARQ) acknowledgments, paging indication,
and system information update. It is considered as the core element of the scheduling procedure
as it carries Downlink Control Indicators (DCIs), which contain uplink scheduling grants,
downlink scheduling assignments, and the type of modulation.

• Narrowband Physical Downlink Shared Channel (NPDSCH) carries data from the higher layers
as well as paging message, system information messages, and the Random Access Response
(RAR) message. It is scheduled by the NPDCCH but is transmitted after a certain time delay
(indicated in the NPDCCH too) to allow the low-complexity NB-IoT devices enough time to
decode the NPDCCH.

• Narrowband Physical Broadcast Channel (NPBCH) is transmitted in the first subframe and
carries the Master Information Block - NarrowBand (MIB-NB) over eight consecutive radio
frames, repeated 8 times to cope with extreme coverage conditions; the MIB-NB content remains,
therefore, unchanged for 640 ms.

On the other hand, for the uplink direction, there are two different channels, specifically:

• Narrowband Physical Uplink Shared Channel (NPUSCH) has two formats. Format 1 is used for
carrying uplink data and uses the same LTE error correction code. Format 2 is used for signaling
HARQ acknowledgment for NPDSCH and uses a repetition code for error correction.

• Narrowband Physical Random Access Channel (NPRACH) enables the random access procedure.
Thus, it is described in details in the following section.

Figure 1 shows a representative time–frequency structure of NB-IoT uplink channels when the
subcarrier spacing of the NPUSCH is set to 15 kHz.
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Figure 1. Time–frequency structure of NB-IoT uplink channels.

As regards synchronization signals, Narrowband Primary Synchronization Signal (NPSS) and
Narrowband Secondary Synchronization Signal (NSSS) are used by an NB-IoT device to perform cell
search, which includes time and frequency synchronization and cell identity detection.

2.2. NPRACH and Random Access Procedure

The NPRACH has been completely redesigned [20]. In fact, the traditional LTE PRACH alone
occupies a much greater bandwidth than the entire NB-IoT carrier (e.g., 1.05 MHz vs. 180 kHz).
Moreover, since the LTE PRACH symbols are based on Zadoff–Chu sequences, the related signal
has a non-zero peak-to-average power ratio, that reduces coverage while increasing the energy
footprint. Differently, NPRACH only uses the Single-Tone configuration and 3.75 kHz subcarrier
spacing, hence occupying between 45 kHz and 180 kHz, according to the number of subcarriers.

The NB-IoT random access preamble is shown in Figure 2. It is mainly characterized by four
symbol groups, each of them comprising five OFDM symbols plus the cyclic prefix. In particular, the
network configures the preamble format (i.e., the duration of the cyclic prefix), depending on the cell
size. A single NPRACH preamble lasts either 5.6 ms or 6.4 ms, when Format 0 or Format 1 is applied,
respectively. A pseudo-random frequency hopping algorithm offers as different preambles the number
of subcarriers allocated to the NPRACH. Consequently, selecting different subcarriers at the beginning
of the transmission ensures hopping schemes which never overlap. In addition, different NPRACH
resource configurations can be deployed in a cell, each corresponding to a different coverage class.
Each one is described through periodicity, the number of repetitions, starting time, frequency location,
and the number of subcarriers, as depicted in Figure 3. Generally, an NPRACH resource is called
Random Access Opportunity (RAO).

CP

3.75	kHz

Preamble	1

Preamble	2 Symbol	Group

OFDM	symbol
Frequency	Hopping

Figure 2. NPRACH preambles.
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Figure 3. RAOs timing diagram.

In contrast, LTE PRACH structure is defined by predefined configuration indexes, which are
broadcasted by System Information as well. In the time domain, the LTE PRACH occupies one, two or
three subframes (i.e., 1, 2 or 3 ms, respectively) and it is periodically scheduled by the base station,
while in the frequency domain it needs exactly six LTE RBs. The PRACH always consists of a set
of 64 orthogonal sequences. Typically, the PRACH is scheduled every 5 ms and 54 preambles are
dedicated to the contention-based access, while the other 10 are reserved for contention-free access.

On the other hand, NB-IoT random access procedure is per se contention based [30] and entails
the exchange of four messages, as depicted in Figure 4:

1. The device finds the first available RAO and then transmits a random preamble, chosen among
the available ones. Let s be the number of the available subcarriers. Then, the end device starts
the RAR window, W.

2. Upon preamble reception, the base station transmits an RAR that explicitly instructs the user
on which uplink resources have to be utilized for the transmission of the next message. If this
message is not received, the user keeps waiting for it until the expiration of W.

3. Exploiting the scheduled resources, the user transmits its identity and other important information;
this message is also known as Msg3. Subsequently, the terminal starts the Contention Resolution Timer.

4. The base station performs the contention resolution and sends back to the devices the identity of
the winning users through the Contention Resolution Message. If this message is not received,
users keep waiting for it up to the Contention Resolution Timer expiration.

The procedure fails when either the RAR or the Contention Resolution Message is not correctly
received by mobile terminals in the proper windows. Henceforward, a worst-case scenario is assumed.
Particularly, overlapping preambles always destructively interfere, therefore the base station never
detects them. In other words, if two or more devices send the same preamble in a single RAO, each user
fails the procedure.

Each collided user may retransmit a preamble after a backoff time b, chosen uniformly and at
random within the interval [0, B]. The maximum number of preamble transmission that a single mobile
terminal can attempt in a general coverage class c is set to ac. If a user fails the acth attempt, it considers
being in the next higher coverage class, if exists. This behavior is repeated until the maximum number
of transmissions that can be tried globally in all classes, i.e., α, is reached.

As a case in point, Figure 5 reports three different users, i.e., A, B and C, starting the first
transmission attempt in the Normal, Extended and Extreme class, respectively, based on the assumption
that they always collide with other users. Since a0 = 2, as soon as User A fails the second attempt,
it retries the subsequent transmission in the Extended coverage class. Here, both A and B can try up
to a1 = 1 preamble transmission, hence jumping to the Extreme class in the immediately following
attempt. On the other hand, User C, whose class is Extreme, is forced to persist in its class. Anyway,
even though a2 = 3, a total amount of α = 4 attempts are foreseen for User C as well.
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Figure 4. Random access procedure sequence diagram.
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Figure 5. Coverage class hopping of three distinct users during random access procedure with α = 4.

2.3. NB-IoT in Smart Monitoring Infrastructures

NB-IoT appeared as a key technology for offering wireless connectivity to constrained smart
devices, while supporting a massive deployment of sensors. By dynamically adapting its features,
NB-IoT is able to satisfy most of the requirements of application scenarios distinguished by a high
density of terminals, e.g., Smart City, Industry 4.0, and Precision Agriculture. As a matter of fact,
several applications based on smart NB-IoT monitoring infrastructures have already been conceived.

Zhang et al. [32] proposed a general information monitoring approach combining NB-IoT
and LoRa communication and a solar power supply system. In particular, the LoRa subnode
collects sensor information and conducts point-to-point communications with the main node. Then,
it processes the received data and sends information to the server through the NB-IoT communication
module. Furthermore, the uthors suggested applying their system for grassland and lake information
monitoring infrastructures.

The Smart City is the main theme in [33–39]. Specifically, the study in [33] considers some of the
key challenges related to smart cities to study the energy consumption, the latency, and scalability
for NB-IoT and eMTC technologies. In addition, it formulates the data transmission delay and the
maximum number of devices per cell based on different network configurations, by introducing
a network simulator tool based on NS-3. Malarski et al. [34] placed a grid of ultrasonic or infrared
sensors at different harbor spots in order to monitor their occupancy. Collected sensor data are then
sent to the administration, becoming able to smartly manage spot reservation and release. Based on
the measurements taken in a Danish harbor, the authors indeed demonstrated the suitability of the
NB-IoT technology as a signal carrier for maritime applications as well, even though water and boat
masts partially affect the transmission. A smart parking system is proposed in [35] in order to reduce
the deployment cost and improve the user payment experience. In the proposed system, data of sensor
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nodes installed in parking spaces is transmitted by NB-IoT, whereas charge management, sensor
node surveillance, task management, and business intelligence modules are implemented on a cloud
server. The system was then actually deployed in two Chinese cities for improving the utilization of
existing parking facilities effectively. Chen et al. [36] presented an indoor environment-temperature
monitoring system based on NB-IoT sensors and then validated it by means of real experimental results.
Pan et al. [37] addressed the issue of urban garbage management by designing a smart garbage bin
based on NB-IoT technology. In particular, they employed infrared and odor sensors to provide garbage
detection and classification. As a result, the proposed system changes the existing urban sanitation
work mode and improves the efficiency of sanitation workers, at the same time promoting the reuse
of recyclable resources. Instead, [38] designs an intelligent LED street light control system aiming at
saving energy and reducing the maintenance cost and difficulty of the urban street lighting. It consists
of a cloud server, a remote monitoring interface, and street light control terminals communicating
through NB-IoT. This solution realizes local intelligent control and remote supervision of street lights
and, thanks to an energy-saving algorithm, the energy consumption of the street lighting is greatly
reduced. Finally, in [39], the authors tried to address the problem of air pollution in a Smart City
context. In particular, they developed five types of air pollution detection sensors based on the NB-IoT
network in Thailand. Experimental results demonstrate the feasibility of inspecting real-time air
quality as a service.

On the other hand, in [40], NB-IoT has been identified as one of the most suitable wireless
communication technologies for Smart Agriculture applications because of its key features (low
power consumption, long communication range, and relatively easy network implementation).
Specifically, NB-IoT sensors collect environmental and soil data, which include ambient temperature,
atmospheric humidity, luminance, and soil moisture and temperature, every half an hour and transmit
them to the application server. Data are then analyzed by artificial intelligence systems, which impart
the corresponding methodologies to actuators to satisfy the specific conditions for crop growths.
Similarly, Chang et al. [41] presented a system for monitoring greenhouses of high-cost crop in the
suburb. Temperature and humidity data, as well as lighting parameters, are regularly collected from
the remote field and then synchronized with servers using NB-IoT. Experimental results further
demonstrate the feasibility and stability of data collecting using such a system.

Industry 4.0. was targeted by Rohit et al. [42], who proposed a smart solution for identification,
assessment, and tracking of industrial assets. After a comprehensive comparative study between
the existing communication technologies, NB-IoT is recognized as a key technology for achieving
the requirements of the 4.0 paradigm. In the context of the intelligent fishery, the authors of [43]
designed a fully-automatic and intelligent monitoring system for dissolved Oxygen of aquaculture
water, in order to reduce the mortality of bred animals. NB-IoT modules, along with optical and
polarographic sensors, and controllers are used to maintain the oxygen level of the aquaculture water
in the typical range.

As for the Smart Grid, Li et al. [44] demonstrated that NB-IoT work well in four typical
communication scenarios, after performing a comprehensive investigation on their requirements.
The authors claimed that the needs for field trips of personnel for meter reading, manual outage
reporting, and most restoration operations, especially for harsh environments that are difficult for
people to access, can be easily eliminated through the employment of NB-IoT.

Zhang et al. [45] formalized an architecture using NB-IoT to connect all intelligent things in
smart hospitals and introduce edge computing to deal with the requirement of latency in medical
processes. Furthermore, the authors designed an infusion monitoring system based on infrared sensors
to monitor the real-time drop rate and remaining drug volume during the intravenous infusion.

Popli et al. [46] delivered a comprehensive study of NB-IoT, extensively elaborating resource
allocation and energy efficiency techniques. Moreover, the proposed two novel application specific
energy efficient approaches for Smart Agriculture and Smart Health. Specifically, in the first scenario,
NB-IoT soil moisture sensors deployed in a farm field send data that are then processed using
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deep learning to meticulously divide the field into different zones. As for Smart Health scenario,
a novel approach for adaptively distributing the transmission power required to monitor the patient is
proposed, in order to perform power optimization and greatly improve the lifetime and performance
of the monitoring systems.

2.4. Current Evaluations of the Random Access Procedure

In a typical NB-IoT monitoring system, uplink transmissions prevail among the rest of exchanged
messages. Consequently, the random access procedure represents a key relationship between devices
and the base station. However, severe performance degradation occurs in the network when
a multitude of simultaneous transmissions takes place since the random access procedure is built on top
of a contention-based mechanism. Therefore, analytical models and system-level simulation tools able
to investigate the behavior of the aforementioned random access procedure are extremely important for
smart monitoring infrastructures. Current scientific literature offers some interesting analytical models
for estimating the random access success probability. Nevertheless, depending on both the significant
effort to provide a tractable analysis framework and the specific focus of each work, available studies
still lack various features. In particular, Sun et al. [16] applied a Markov chain to model retransmission
number in a steady-state system with a Poisson arrival process. Instead, the authors of [17] derived
the success probability under time correlated interference by considering different outage conditions.
Nonetheless, both these systems are considerably distant from 3GPP specifications, hence resulting
in inadequacy for veridical performance assessment. In [18], the main 3GPP parameters associated
with the random access procedure are investigated to determine how they influence the design of
network capacity, the average delay, and normalized flow rate. However, the authors wholly neglected
multiple coverage classes. The same happens in [19], where the authors tried to optimally trade
repetitions and retransmission values to achieve a target successful probability. Besides, Lin et al. [20]
and Hwang et al. [21] focused on the preamble transmission to investigate the performance in terms of
detection probability, taking into account either the standard preamble design or a new detection and
synchronization algorithm, respectively. However, the random access procedure is not considered as
a whole, since only the first message is analyzed. Finally, Harwahyu et al. [22] presented a detailed
model for the random access procedure, thereafter employed to perform a joint optimization technique
to maximize the access success probability. Nevertheless, it still exposes different flaws. Differently
from the standard [47], it only considers RAOs of different classes with the same starting time,
hence constraining the total number of subcarriers. Besides, it only considers users requests generated
according to the Poisson statistics and it has not been validated through reference tools of recognized
importance. In addition, the authors extended a multiband multichannel slotted ALOHA framework,
where the collision probability is only approximated through the bins and balls problem.

The discussion above demonstrates clearly that simulation tools could be beneficial for addressing
several open issues and driving future research activities. Such a simulation platform would be useful
to validate the available analytical frameworks and to conduct performance assessments of entirely
new studies. Nonetheless, with respect to recent simulation tools, only preliminary developments
of NB-IoT are proposed. Foni et al. [23] presented an ns-3 implementation that is largely incomplete,
encompassing solely the signaling protocol. In addition, Miao et al. [24] only proposed a link-level
simulator, which is not freely available for the research community. Moreover, the NB-IoT open-source
simulation presented in [25] does not offer a complete and standard-compliant implementation of the
random access procedure.

It is reasonable to conclude that state-of-the-art frameworks aiming to model contention-based
access in NB-IoT systems are extremely important. However, from this review, it is evident that
a 3GPP-compliant NB-IoT simulation platform is still missing in the current literature. Consequently,
this paper addresses this gap. In particular, the contribution of this paper is three-fold. First,
starting from the platform presented in [25], it puts forward an open-source and 3GPP-compliant
implementation of the NB-IoT random access procedure, which handles different coverage classes,
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global and local transmission attempts counters, backoff times, and transitions from a class to
another, as well as other key simulation. Second, it formulates an analytical model describing both
collision and success probabilities, given the number of users willing to perform the random access
procedure. Third, it deeply cross-validates the analytical model and the simulation tool, by considering
realistic NB-IoT deployments enabling periodic reporting in monitoring infrastructures, with different
resource configurations.

As outlined in Figure 6, the starting point is the implementation of a 3GPP-compliant NB-IoT
random access procedure within an open-source simulation tool [25]. In summary, it is able to provide
the number of users accessing the NPRACH and the performance of the procedure itself, expressed in
terms of collision probability and success probability, by taking into account a large number of input
parameters. Then, the analytical model receives in input the number of users accessing the NPRACH,
obtained through computer simulations for estimating both the collision and the success probabilities
of users in an RAO.

Note that the symbols adopted in this document are summarized in Table 2.

Percentage	Error	Analysis
results	in	Section	4.3

results	in	Section	4.1

Scenario
M,	traffic	model,	cell	radius,
bandwidth,	duration

Random	Access	Configuration
periodicity,	starting	time,	B,

W,	n,	a,	 ,	s�

cross-validation

described	in	Section	3.2

Analytical	Model

described	in	Section	3.1
NB-IoT	System	Level	Simulator

�

,�,� �,�,�,�

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

�,�

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

results	in	Section	4.2

Figure 6. Big picture of the main research contributions.
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Table 2. Description of adopted symbols.

Symbol Parameter

c Coverage class
n Number of coverage classes
s Number of NPRACH subcarriers

W RAR Window
α Maximum transmission attempts
ac Number of transmission attempts in class c
b Chosen backoff time
B Maximum backoff time
N Number of users accessing an RAO
M Number of users in the cell
PN,s Collision Probability
PN,s Simulated Collision Probability
SN,s Success Probability
SN,s Simulated Success Probability

3. The Proposed Analytical Model and Simulation Tool

3.1. Implemented Simulation Tool

The proposed tool extends the simulator presented in [25], which is based on the well-known
LTE-Sim [48]. The latter is an open-source event-driven simulator which provides a complete
performance verification of LTE networks. It was written in C++, using the object-oriented paradigm
in order to ensure modularity, polymorphism, flexibility, and high performance. In general,
it includes four main components, each of them modeled by a dedicated class: Simulator creates,
handles and ends events; NetworkManager creates and administrates devices; FlowsManager
manages applications; and FrameManager schedules frames and subframes. The parameters
related to the spectrum, e.g., frequency carrier, available bandwidth, etc., are handled by the
BandwidthManager class.

Furthermore, the simulator allows the creation of a specific network scenario as a static
function, enabling to model a range of different environments and situations. Every scenario
actually creates the aforementioned four basic components, as well as channels, spectrum, cells,
devices, Evolved Node-Bs (eNBs), and applications. Then, during the execution of the simulation,
the simulator displays several information in real time either on the standard output or on a structured
trace file, in order to subsequently and efficiently post-process it.

This simulation platform was later extended for supporting the majority of NB-IoT features.
Figure 7 provides an overview of the developed modules for the NB-IoT platform.

Specifically, the BandwidthManager class has been drastically changed for handling different
subcarrier spacings and Single-Tone and Multi-Tone transmissions (the latter can be configured for using
3, 6 or 12 tones). Moreover, by modifying the set of frequencies to use, the class natively supports
Stand-Alone, In-Band, and Guard-Band operating modes. Multiple carriers can also be enabled
by simply defining more channels of 180 kHz each to be used for data transmission. In addition,
the FrameManager class has been properly updated for controlling the correct length of RUs duration,
based on the actual number of tones and the subcarrier spacing chosen for the simulation. Furthermore,
a completely redesigned uplink scheduler is realized by means of the nbUplinkPacketScheduler class.
It provides crucial methods for the management of the RUs. Baseline uplink scheduling strategies, i.e.,
FIFO and Round-Robin, have been developed as well. A simplified Adaptive Modulation and Coding
module (i.e., nbAMCmodule class) is used to choose the Transport Block Size (TBS), starting from the
selected Modulation and Coding Scheme (MCS) index and number of RUs given by the scheduling
strategy, according to 3GPP specification.
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FrameManager

BandwidthManager

UE

UeNbIoTRandomAccess

eNB

nbAMCmodule

EnbNbIoTRandomAccess

NbUplinkPacketScheduler
FIFO				|							RR

Figure 7. Overview of the main building blocks of the NB-IoT simulation platform.

Nevertheless, the preliminary version of the NB-IoT simulator did not support the
standard-compliant random access procedure. At the code level, the EnbNbIoTRandomAccess and
UeNbIoTRandomAccess classes handle the random access procedure from the base station and user
point of view, respectively. Consequently, these classes have been deeply revised since they were
not capable of addressing the multi-class attempts control and transitions between coverage classes
(as discussed in Section 2.2). In particular, Figure 8 depicts an overview of the implemented code.

SetRachReservedSubChannels

CheckCollisions

SendMessage2

SendMessage4

RestartRa
Procedure

SendMessage1

SendMessage3

UeNbIoTRandomAccessEnbNbIoTRandomAccess

StartRaProcedure

yes

no attempts
leftFAIL

Figure 8. Block diagram of the implemented random access procedure.

With respect to the UeNbIoTRandomAccess class, as soon as the traffic generator creates
a packet at the application layer, the UeNbIoTRandomAccess::StartRaProcedure() method initializes
the procedure. Then, several attributes and methods enabling coverage class transitions and
attempts-checking are called. In particular, the UeNbIoTRandomAccess::SendMessage1() method
selects the appropriate NPRACH resources for transmitting preambles in the correct coverage class.



Sensors 2019, 19, 3237 13 of 25

In addition, in the UeNbIoTRandomAccess::ReStartRaProcedure() method there is an attribute that
stores the number of failed attempts for the current coverage class, in order to manage the transitions
between coverage classes.

On the other hand, the EnbNbIoTRandomAccess class handles the remaining random
access procedure features. First, the base station configures NPRACH resources for each
coverage class c, according to the chosen configuration parameters. Specifically, the base station
actually allocates resources to the NPRACH by periodically calling the EnbNbIoTRandomAccess::
SetRachReservedSubChannels() method. This means that NPRACH resources must not be used
by users for NPUSCH transmission, and, at the same time, they are the only ones where users can
send preambles. It is worth mentioning that other configuration parameters, e.g., B and W, are
handled by the base station as well. The EnbNbIoTRandomAccess::CheckCollisions() method is of
paramount importance. Indeed, for each given RAO of all the coverage class, it checks whether any
collisions happened (i.e., two or more users selected the same preamble) and it schedules new preamble
transmission after a random backoff time b. Then, as explained in Algorithm 1, both attempt counters
are incremented and subsequently checked with the chosen values of ac and α, in order to determine a
coverage class transition or the procedure failure. Specifically, if the user has any overall attempt left
but no more attempts for its class, it switches to the higher class and the number of its attempts for its
class is set to zero. If no higher class is available, i.e., the user is already in the Extreme class, the user
goes on until it has overall attempts left. Next, a new preamble transmission is solicited. If the counter
of the overall attempts hits its maximum, the procedure fails and both attempt counters are set to zero.
On the contrary, the exchange of the next messages is conducted until the end of the procedure for
the users not experiencing a collision. Specifically, the EnbNbIoTRandomAccess::SendMessage4()
method finalizes the whole random access procedure and makes the end user active and able to
transmit data.

Each simulation run provides three main output variables: the number of users accessing an RAO,
N, as well as the collision and success probabilities, denoted by PN,s and SN,s, respectively.

Algorithm 1 The implemented random access procedure.
Require: i, j = 1

1: get c, n, s, W, α, ac, B
2: randomly select one of s preambles; wait next RAO; send the preamble
3: if preamble collided then
4: i = i + 1; j = j + 1
5: draw random b from [0, B]
6: wait W
7: if j ≤ α then
8: if c = n then
9: wait b and go to ??

10: else
11: if i ≤ ac then
12: wait b and go to ??
13: else
14: i = 1; c = c + 1
15: wait b and go to ??
16: end if
17: end if
18: else
19: procedure FAIL
20: end if
21: else
22: exchange RAR
23: exchange Msg3
24: exchange Contention Resolution Message
25: end if
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3.2. Formulated Analytical Models

The collision probability and the success probability are analytically derived below, as a function of
the actual number of users accessing an RAO, N, and the number of available NPRACH subcarriers, s.
Let the Collision Probability, PN,s, be the probability that, in a given RAO, a preamble collision happens.
First, if no users access the channel, no collisions will occur. Instead, the probability Pk that k among
N users choose the same subcarrier follows a binomial distribution. Thus, Pk = (N

k )pk(1− p)N−k,
where p is the probability of choosing a specific subcarrier. According to NB-IoT specification, each
subcarrier is selected with the same probability, hence p = 1

s . If a preamble is chosen only once, that is
k = 1, the probability that only one of the N users chooses the specific subcarrier is equal to:

P1 = N
1
s

(
1− 1

s

)N−1
. (1)

Let N̂ be the number of users not colliding. It is indeed equal to the average number of preambles
chosen only once. In fact, given Equation (1), N̂ is computed as the product of P1 and the number of
different preambles, s:

N̂ = sP1 = N
(

1− 1
s

)N−1
. (2)

As a result, the average number of collided users, that is Ñ, corresponds to the total amount of
users, i.e., N, except the users whose preambles not collide, i.e., N̂, that is:

Ñ = N − N̂ = N

[
1−

(
1− 1

s

)N−1
]

. (3)

Thus, the Collision Probability can be expressed as follows:

PN,s =
Ñ
N

= 1−
(

1− 1
s

)N−1
, N > 0. (4)

Similarly, let the Success Probability be the probability that, in a given RAO, a user successfully
completes a preamble transmission. As previously stated, N̂ is the number of users not colliding.
Since N̂ = N(1 − 1/s)N−1, as Equation (2) reports, (1 − 1/s)N−1 clearly represents this success
probability. Conversely, the success probability SN,s can be intuitively modeled as:

SN,s = 1−PN,s =

(
1− 1

s

)N−1
, N > 0. (5)

Accordingly, it is worth noting that S1,s = 1, ∀s > 0, as if a single user accesses an RAO, it will
certainly not collide.

It is important to emphasize that no stringent assumption on the traffic model has been made in the
formulated analytical model. In fact, the probability of a device attempting a preamble transmission
in a given RAO depends on both its traffic arrival distribution and NPRACH structure in time.
These aspects can be easily managed by the simulation platform.

4. Performance Assessment

Cross-validation was conducted to evaluate the accuracy of the implemented simulation platform.
According to all the different monitoring systems detailed in Section 2.3, it is reasonable to assume
a periodic reporting traffic. Conducted tests consider a 3GPP reference scenario [49], which suitably
models highly dense sensor networks. Specifically, transmission requests arrival is modeled according
to the uniform distribution in the interval (0, 60) s, which is in line with the requirements of a number of
smart monitoring applications. In addition, M = 5000 or M = 10,000 motionless devices are uniformly
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distributed within a cell with a radius of 1.5 km. Consequently, every second there are, on average,
M/60 different mobile terminals that want to transmit a preamble. The base station uses a single
NB-IoT carrier of 180 kHz and the uplink is configured in Single-Tone mode with a subcarrier spacing
of 15 kHz. The chosen uplink scheduling strategy is First In First Out. The simulation environment is
summarized in Table 3.

Table 3. Summary of the simulation environment.

Parameter Value

Traffic model Uniform Distribution—(0, 60) s
Number of sensors (M) [#] 5000, 10,000
Sensors spatial distribution Uniform

Cell radius [km] 1.5
NB-IoT bandwidth [kHz] 180

Transmission mode Single-Tone
Subcarrier spacing [kHz] 15

Uplink scheduler FIFO

The details related to the considered NPRACH resource configurations are summarized in
Tables 4 and 5.

Table 4. NPRACH Configuration 1 [50].

Parameter Value

α [#] 10
n [#] 1

c Normal
zac [#] 6
α [#] 10

periodicity [ms] 80
s [#] 36

B [ms] 512
W [ms] 24

Table 5. NPRACH Configuration 2 [50].

Parameter Value

α [#] 10
n [#] 3

c Normal Extended Extreme
ac [#] 3 3 6

periodicity [ms] 80 80 80
s [#] 12 12 24

B [ms] 256 512 1024
W [ms] 12 48 256

Note that for Configuration 1 only the Normal class is considered, while Configuration 2
contemplates all three coverage classes. It is worth mentioning that, to increase the statistical
significance of reported results, each simulation was repeated 150 times with different seeds.

System performance was evaluated in terms of the number of devices involved in the random
access procedure, as well as collision and success probabilities. In addition, the analysis of the
percentage error between the estimated success probability, i.e., SN,s, and the simulated success
probability, i.e., SN,s, was conducted for each set of simulations. The end-to-end delay was
statistically analyzed for additional completeness of the performance evaluation. Finally, to
provide further performance insights, the impact of RAO periodicity was investigated with a third
resource configuration.
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4.1. Number of Devices Accessing the NPRACH

Figures 9 and 10 show the number of devices accessing RAOs, N. It is worth emphasizing that
each value is reported together with its 95% confidence interval.

As expected, greater M values lead to an overall higher number of terminals in the NPRACH.
This evidently holds for all the sets of simulations. The average number of sensors accessing RAOs
reaches the highest values in Configuration 1 since all terminals belong to the only available coverage
class, i.e., Normal. In addition, when M = 10,000, the growth of the number of users performing the
preamble transmission stems from the scarce amount of NPRACH resources.

Conversely, the average number of devices accessing RAOs is considerably lower in Configuration
2. In fact, mobile terminals are split among the three available coverage classes. It is important to
emphasize that Extended class presents a higher N. This is mainly due both to the low number of
different preambles, i.e., s = 12, and to the Normal class users attempting new transmission in this
class. For the same reason, the Extreme RAOs should be the most congested; however, the number of
different preambles is greater, i.e., s = 24.
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Figure 9. Average number of devices accessing RAOs for Configuration 1.
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(a) Normal class

Figure 10. Cont.
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(b) Extended class
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(c) Extreme class

Figure 10. Average number of devices accessing RAOs for Configuration 2.

4.2. Collision and Success Probabilities

Figures 11 and 12 show the success and collision probabilities in each RAO.
It is important to note that each plot shows both the 95% confidence intervals of the collision and

success probabilities directly derived from network simulations, and the probabilities computed using
the presented analytical models. In particular, the average number of users accessing the RAOs (which
is a value computed by the tool) is utilized as an input for Equations (4) and (5).

The most noticeable feature is that the probabilities obtained by the analytical framework are
remarkably consistent with the values given by the proposed simulation platform. Furthermore,
the results are also in line with the comments made in the previous section. In fact, when M = 10,000,
the collision probability is always higher than the M = 5000 case. All figures demonstrate that
performance is significantly reduced under high traffic load, especially for Configuration 1. In fact, in
accordance with what is mentioned above, Configuration 1 shows the least SN,s values. This depends
on the fact that the NPRACH configuration is not adequate to the average number of preamble
transmissions. As for Configuration 2, Extreme coverage class holds the greatest success probability,
since s = 24, as outlined above.
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Figure 11. Collision and Success probabilities of RAOs for Configuration 1.

(a) Normal class

(b) Extended class

Figure 12. Cont.
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(c) Extreme class

Figure 12. Collision and Success probabilities of RAOs for Configuration 2.

4.3. Percentage Error of the Success Probabilities

As regards the cross-validation of the formulated model, the discrepancies between the simulated
and the analytical success probabilities were quantified in terms of percentage error. This is reported in
Tables 6 and 7, which show its mean value, as well as the 90th and the 10th percentiles. The reported
results clearly highlight that the analytical model boasts a good overall accuracy, keeping the mean
percentage error always below 6% and the 90th percentile slightly above 10%.

In particular, Configuration 1 outperforms, demonstrating a mean percentage error lower
than 3.5%. Nonetheless, in general, the analytical model is more accurate when the first resource
configuration is adopted, as also shown in the previous figures. This is mainly due to the fact that in
Configuration 2 the average number of devices accessing RAOs is considerably lower. Further analysis
could be conducted to demonstrate that the analytical model actually holds higher accuracy when the
number of terminals accessing an RAO is relatively large.

Table 6. Percentage error between success probabilities for Configuration 1.

M [#] Mean 90th Percentile 10th Percentile

5000 1.7 3.2 0.3
10,000 3.4 6.5 0.6

Table 7. Percentage error between success probabilities for Configuration 2.

Class M [#] Mean 90th Percentile 10th Percentile

Normal 5000 6.0 10.4 1.6
Extended 5000 5.9 10.5 1.4
Extreme 5000 2.5 10.5 1.4
Normal 10,000 3.4 7.1 0.4

Extended 10,000 4.2 8.1 0.7
Extreme 10,000 2.6 8.1 0.4

4.4. End-to-End Delays

Finally, the end-to-end delay was analyzed for all sets of simulations. Figure 13 shows the ECDF of the
end-to-end delay experienced by the sensors that successfully complete the random access procedure.
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Figure 13. ECDF of the end-to-end delays obtained in all simulations.

The end-to-end delay is the time interval between the time instant when the devices application
layer generates a data packet, and the time instant when that data packet is received by the the base
station. Consequently, it includes the access delay as well as the delay introduced by scheduling
decisions and the physical transmission of the packet. The most noticeable aspect is that different
configurations have different trends. In addition, as expected, the end-to-end delay grows with the
number of sensors deployed in the cell, M.

Configuration 1 presents both the best and the worst performance in terms of delay, for M = 5000
and M = 10,000, respectively. As a matter of fact, in the first case, there are few user accessing each
RAO and a significantly high success probability, as highlighted in the previous sections. Consequently,
the end-to-end delay is notably improved, since less preamble retransmission occurs and the uplink
scheduler successfully manages the queued terminals. On the contrary, if M = 10,000, the access delay
dramatically increase due to the multiple collisions leading to several preamble retransmissions. At the
same time, the higher number of successful devices has a negative effect on the waiting time in the
scheduling queue as well, hence causing the rise of the end-to-end delay.

Differently, Configuration 2 exhibits an intermediate behavior. This is mainly because longer
Backoff times and RAR windows are counterbalanced by the difference in the NPRACH resources
structure and higher success probabilities.

4.5. Impact of the NPRACH Periodicity

The impact of periodicity is investigated with Configuration 3 since the NPRACH Configurations
1 and 2 do not differ in terms of RAO periodicities. Specifically, the periodicity is doubled compared
to the already considered values. The other parameters related to the third NPRACH resource
configuration are summarized in Table 8.
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Table 8. NPRACH Configuration 3.

Parameter Value

α [#] 10
n [#] 1

c Normal
ac [#] 6
α [#] 10

periodicity [ms] 160
s [#] 36

B [ms] 512
W [ms] 24

It is important to note that the only difference with respect to Configuration 1 lies in the periodicity,
in order to better identifying its relationship with the number of devices accessing RAOs, as well as
the success and collision probabilities. Figure 14 illustrates the number of devices accessing RAOs for
both Configuration 3 and Configuration 1.

Greater periodicities values lead to a greater number of terminals in the NPRACH since there
are fewer RAOs per unit of time. The average number of sensors accessing RAOs quickly reaches
extremely high values when M = 10,000. It is worth noting that the curves do not grow indefinitely
because each device can perform the preamble transmission a maximum number of times, i.e., α = 10.

In parallel, Figure 15 shows the success and collision probabilities.
The success probability is greatly reduced due to the higher density of terminals in each RAOs.

However, it is worth mentioning that, when M = 5000, performance is almost satisfactory, however the
amount of available resources is halved with respect to Configuration 1.

This brief analysis highlights the important trade-off between the resources available for NPRACH
and the resources available for data transmission, i.e., for the NPUSCH.

0 0.5 1 1.5 2 2.5 3

10
4

0

50

100

150

200

250

300

M=5000, Configuration 3

M=10000, Configuration 3

M=5000, Configuration 1

M=10000, Configuration 1

Figure 14. Average number of devices accessing RAOs for Configuration 3.
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Figure 15. Collision and success probabilities of RAOs for Configuration 3.

5. Conclusions

NB-IoT is emerging as a promising technology for offering wireless connectivity to
constrained smart devices deployed in several pervasive monitoring scenarios, such as Smart City,
Precision Agriculture, and Industry 4.0. The random access procedure represents a key relation
between devices and the base station, since uplink transmissions prevail among the rest of exchanged
messages in a typical NB-IoT monitoring system. Hence, it is of the utmost importance to investigate
the behavior of the aforementioned random access procedure.

This paper presents the implementation of an open-source and 3GPP-compliant NB-IoT random
access procedure simulation tool and an analytical model describing both collision and success
probabilities, given the number of users accessing the random access channel. By taking into
account reference applications scenarios based on periodic reporting in monitoring infrastructures,
computer simulations showed, as expected, that highly dense sensor networks lead to an overall
higher preamble collision probability. Furthermore, cross-validation demonstrated that the formulated
analytical model exhibited a considerably low percentage error, proving its remarkable accuracy.

Future activities could involve, on the one hand, the formulation of a complete analytical model
to estimate both the number of users performing the random access procedure and an extended
analysis of the average end-to-end delay. On the other hand, either entirely new random access
mechanisms or major enhancements to the current random access protocol could be implemented in the
proposed simulation tool, in order to assess their performance with respect to the standard procedure.
Furthermore, the proposed simulation platform could be used for conducting the performance
evaluation of different application scenarios, hence embracing the huge extent of Internet of Things
use cases.
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