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Abstract: In the present work, ternary mixtures of Acetaminophen, Ascorbic acid and Uric acid
were resolved using the Electronic tongue (ET) principle and Cyclic voltammetry (CV) technique.
The screen-printed integrated electrode array having differentiated response for the three oxidizable
compounds was formed by Graphite, Prussian blue (PB), Cobalt (II) phthalocyanine (CoPc) and
Copper oxide (II) (CuO) ink-modified carbon electrodes. A set of samples, ranging from 0 to
500 µmol·L−1, was prepared, using a tilted (33) factorial design in order to build the quantitative
response model. Subsequently, the model performance was evaluated with an external subset of
samples defined randomly along the experimental domain. Partial Least Squares Regression (PLS)
was employed to construct the quantitative model. Finally, the model successfully predicted the
concentration of the three compounds with a normalized root mean square error (NRMSE) of 1.00
and 0.99 for the training and test subsets, respectively, and R2

≥ 0.762 for the obtained vs. expected
comparison graphs. In this way, a screen-printed integrated electrode platform can be successfully
used for voltammetric ET applications.

Keywords: electronic tongue; modifiers; acetaminophen; ascorbic acid; uric acid; partial least
squares regression

1. Introduction

Acetaminophen, Ascorbic acid and Uric acid (Figure 1) play an important role in humans’ life.
Acetaminophen (N-acetyl-p-aminophenol or paracetamol (PA)) is an antipyretic and analgesic drug
commonly used against arthritis, headache, muscle aches, menstrual cramps and fevers [1]. A high
amount of PA can cause the accumulation of toxic metabolites, leading to severe and sometimes fatal
hepatotoxicity and nephrotoxicity [2]. Ascorbic acid (AA) is a vitamin commonly present in many
biological systems and in multivitamin formulations. It is widely employed to provide an adequate
dietary intake and as an antioxidant [3]. Its excessive dose may cause headache, trouble sleeping,
gastrointestinal discomfort and flushing of the skin [4]. Uric acid (UA) is the primary product of
purine metabolism [5]. Continuous monitoring of UA in the body fluid is essential since its abnormal
concentration levels lead to several diseases, such as hyperuricemia and gout [6]. Other diseases,
such as leukemia and pneumonia are also associated with enhanced urate levels.
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have been reported in the literature such as spectrofluorometry [7,8], spectrophotometry [9,10], 
chromatography [11,12], and capillary zone electrophoresis [13,14]. The problem is that these 
methods can be expensive and need complex procedures. For these reasons, the development of 
rapid, cheap and effective determination procedures is needed. One proposal to overcome this can 
be the development of electrochemical sensors [15]. This kind of devices provide some advantages, 
such as, low detection limits, wide linear response range, good stability and reproducibility. 

However, certain difficulties arise when the simultaneous determination of these three 
compounds is attempted. The oxidation peaks of PA, AA and UA are almost overlapping on 
traditional electrodes [16], which make their simultaneous determination highly difficult. One 
solution to solve the main drawback is the use of methods based on modified electrodes, which have 
fascinated many researchers due to their simplicity, high sensitivity, and low cost. In addition, this 
strategy allows some improvement based on electrocatalysis, liberation from surface fouling and 
prevention of undesirable reactions competing kinetically with the desired electrode process [17].  

Modified electrodes [18] can be prepared by several different techniques based on adsorbing, 
attaching specific molecules (e.g., peptides [19] or complexing agents [20,21]) to the surface by self-
assembled monolayer [22], coating and entrapment, e.g., is the form of conductive ink [23]. The last 
strategy has become interesting for electrochemists in recent times, because this deliberate and 
controlled modification of the electrode surface can produce new surfaces with interesting properties 
employed for new devices and applications in electrochemistry. 

Nature has developed and optimized an impressive variety of sensing systems used for 
navigation, spatial orientation, prey detection, object inspection, peer interaction, etc. which provide 
technologist with inspiring ideas for new concepts for sensors or improvements within the field 
[24,25]. Illustrating examples in chemical sensing is the development of electronic noses (EN) and 
electronic tongues (ET), both sharing the concept of preferring a number of sensors (a sensor array) 
with broad selectivity pattern, instead of a single, highly selective sensor. The use of this number of 
receptors in a combinatorial way is what permits to the animal senses to be effective in detecting 
thousands of different compounds or situations. In the field of chemical analysis, the main 
bioinspired systems take after three mammal senses: smell, taste and sight. Therefore, there have 
been reported electronic noses (EN) [26], eyes (EE) and tongues (ET) [27]. From these principles, the 
EN, formed by an array of sensors with slightly different response to generic compounds has been 
used for analysis in the gas phase and stands out its closeness to artificial olfaction. In the case of EE, 
there are also interesting advances reported in the literature. An example is the development of a 
bioinspired electronic white cane for blind people using whiskers multiple sensor principle for short-
range navigation and exploration [28]. 

Similar to the EN is the ET that, according to IUPAC [29], is defined as is a multisensor system, 
which consists of a number of low-selective sensors and uses advanced mathematical procedures for 
signal processing based on pattern recognition and/or multivariate data analysis. This analytical 
system applied to liquid analysis allows the generation of multidimensional information in 
combination with chemometric processing, which allows extracting the maximum chemical 
information from these complex data. 

In this way, biomimetic systems, in opposition of classical approaches, use the combination of 
low selective and/or cross-responsive sensors to obtain rich and complementary analytical 
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and Uric acid).

Several analytical methods for individual or simultaneous determination of PA, AA and UA
have been reported in the literature such as spectrofluorometry [7,8], spectrophotometry [9,10],
chromatography [11,12], and capillary zone electrophoresis [13,14]. The problem is that these methods
can be expensive and need complex procedures. For these reasons, the development of rapid, cheap and
effective determination procedures is needed. One proposal to overcome this can be the development
of electrochemical sensors [15]. This kind of devices provide some advantages, such as, low detection
limits, wide linear response range, good stability and reproducibility.

However, certain difficulties arise when the simultaneous determination of these three compounds
is attempted. The oxidation peaks of PA, AA and UA are almost overlapping on traditional
electrodes [16], which make their simultaneous determination highly difficult. One solution to
solve the main drawback is the use of methods based on modified electrodes, which have fascinated
many researchers due to their simplicity, high sensitivity, and low cost. In addition, this strategy
allows some improvement based on electrocatalysis, liberation from surface fouling and prevention of
undesirable reactions competing kinetically with the desired electrode process [17].

Modified electrodes [18] can be prepared by several different techniques based on adsorbing,
attaching specific molecules (e.g., peptides [19] or complexing agents [20,21]) to the surface by
self-assembled monolayer [22], coating and entrapment, e.g., is the form of conductive ink [23].
The last strategy has become interesting for electrochemists in recent times, because this deliberate and
controlled modification of the electrode surface can produce new surfaces with interesting properties
employed for new devices and applications in electrochemistry.

Nature has developed and optimized an impressive variety of sensing systems used for navigation,
spatial orientation, prey detection, object inspection, peer interaction, etc. which provide technologist
with inspiring ideas for new concepts for sensors or improvements within the field [24,25]. Illustrating
examples in chemical sensing is the development of electronic noses (EN) and electronic tongues (ET),
both sharing the concept of preferring a number of sensors (a sensor array) with broad selectivity pattern,
instead of a single, highly selective sensor. The use of this number of receptors in a combinatorial way
is what permits to the animal senses to be effective in detecting thousands of different compounds or
situations. In the field of chemical analysis, the main bioinspired systems take after three mammal
senses: smell, taste and sight. Therefore, there have been reported electronic noses (EN) [26], eyes (EE)
and tongues (ET) [27]. From these principles, the EN, formed by an array of sensors with slightly
different response to generic compounds has been used for analysis in the gas phase and stands out
its closeness to artificial olfaction. In the case of EE, there are also interesting advances reported in
the literature. An example is the development of a bioinspired electronic white cane for blind people
using whiskers multiple sensor principle for short-range navigation and exploration [28].

Similar to the EN is the ET that, according to IUPAC [29], is defined as is a multisensor system,
which consists of a number of low-selective sensors and uses advanced mathematical procedures for
signal processing based on pattern recognition and/or multivariate data analysis. This analytical system
applied to liquid analysis allows the generation of multidimensional information in combination with
chemometric processing, which allows extracting the maximum chemical information from these
complex data.
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In this way, biomimetic systems, in opposition of classical approaches, use the combination of low
selective and/or cross-responsive sensors to obtain rich and complementary analytical information.
Next, this complex, multi-dimensional information needs to be processed with proper data treatment
tools, which is accomplished with chemometrics. This coupling has been declared one of the ways of
progress in developing new sensing schemes [30]. There are different data processing tools depending
on the final application needed. If this is a qualitative goal, PCA is a suitable linear visualization/pattern
recognition method. This tool allows the reduction of the dimensionality of a multivariate problem and
facilitates the visualization of different categories of the multivariate profiles by remarking similarities
and differences between sample clusters. When the purpose is quantitative, different tools are available,
given the numeric information is the end result. Some of these are Principal Component Regression
(PCR), which departs from a first PCA transformation to build a multivariate regression, Partial Least
Squares Regression (PLS), or Artificial Neural Networks (ANNs) [31].

In the present work, an eight sensor integrated array of screen-printed electrodes has been
developed in base of a multiple screen-printed carbon electrode (SPCE) platform. The voltammetric
array, consisting of Graphite/SPCE-Ink, Prussian blue/SPCE-Ink, Cobalt (II) phthalocyanine/SPCE-Ink
and Copper oxide (II)/SPCE-Ink was employed for the simultaneous determination of the three
aforementioned compounds (PA, AA and UA) by using the Cyclic voltammetry (CV) technique.
This represents an example of resolving a mixture where heavily interfering signals are generated and
resolving its components is difficulted. In other words, it is shown how to detect simultaneously the
different analytes in presence of their interferents, which redox signals overlap. For showing these
aspects, firstly, the behavior of the sensors was evaluated separately for each compound; secondly,
peak current responses showed that all sensors had differentiated response for the three oxidizable
compounds of clinical interest. Finally, a response model was developed to determine mixtures of PA,
AA and UA at the µmol·L−1 level.

2. Materials and Methods

2.1. Chemicals and Reagents

All solutions were made up using sterilized Milli-Q water (Millipore, Billerica, MA, USA).
Cobalt (II) phthalocyanine (CoPc), Copper (II) oxide (CuO) nanopowder (<50 nm), Polypyrrole
doped (PP) and Palladium, powder submicron 99.9+% (Pd), which were used as modifiers, were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Prussian blue was from Acros Organics (Geel,
Belgium). The preparation of the ink composite was done using mesitylene and polystyrene, obtained
from Sigma-Aldrich (St. Louis, MO, USA). Graphite powder (particle size < 50 µm) was received
from BDH (BDH Laboratory Supplies, Poole, UK). Potassium chloride was purchased from Merck
(Darmstadt, Germany).

Acetaminophen (PA), Ascorbic acid (AA), Uric acid (UA) and hydrogen peroxide (H2O2) solution
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

All the measurements were carried out using 50 mM phosphate buffer (PBS) solution and 0.1 M
KCl solution at pH 7.

2.2. Electronic Tongue

The voltammetric ET was formed by an integrated array of eight screen-printed electrodes as
working electrodes (8W110 Electrodes, ceramic substrate: 50 × 27 × 1 mm. and electric contacts
composed of silver) from DropSens (Oviedo, Spain). The electrochemical cell consisted on: 8 working
electrode (carbon, 2.95 mm diameter), auxiliary electrode (carbon) and pseudo reference electrode
(Silver) [32].

Electrochemical measurements were performed at room temperature (25 ◦C), using a portable
Multi Potentiostat/GalvanostatµStat 8000 from DropSens controlled through its Dropview Multichannel
5.5 software package. A complete Cyclic voltammogram was recorded for each sample and for each
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electrode by cyclic the potential between −1.5 and +1.5 V with a step potential of 9 mV and a scan rate
of 50 mV·s−1.

2.3. Modification of the Electrode Surface

The nanomaterial SPCE/modifier was produced in the form of a conductive ink-like composite.
The corresponding modifier, graphite and polystyrene were thoroughly mixed with mesitylene for 2 h
(Figure 2) using a magnetic stirrer. After that, 2 min of sonication was performed in order to obtain a
medium thick solution. The ink-like composite was dropped 5 µL onto the surface of a screen-printed
carbon electrodes (SPCE) and dried at 40 ◦C for at least 1 h in order to remove the solvent. Once the
sensor was prepared, the next step is an activation [33,34] in order to enhance sensing performances of
modified ink (Figure 3 displays the typical gain achieved after activation). Electrochemical activation
consisted of 10 repetitive voltammetric cycles at 50 mV·s−1 between 1.5 and −1.5 V using 10 mM H2O2

in phosphate buffer (pH 7). After activation, electrodes were rinsed with deionized water and dried
in air.
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the activation. Electrochemical activation consists of 10 repetitive voltammetric cycles at 50 mV·s−1

between 1.5 and −1.5 V using 10 mM H2O2 in phosphate buffer (pH 7). After activation, electrodes
were rinsed with deionized water and dried in air.
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2.4. Characterization by Scanning Electron Microscopy

The morphological characterization of the modified screen-printed electrode was performed
by Scanning Electron Microscopy (SEM). A scanning electron microscope with field emission gun
(FEG-SEM) of Zeiss, model MERLIN SM0087 was used.

2.5. Sample Preparation

According to the European Pharmacopoeia [35] the size of the data set needed for building the
calibration is dependent on interfering properties and the number of analytes that needs to be handled
in the model. In the majority of the cases, the size of the learning data set for calibration needs to be
large when the interfering variations are acquired randomly. However, when the major interferences
can be controlled they can be varied according to a statistical experimental design.

In this case, the second option was accomplished using a tilted factorial experimental design [36]
33 (27 samples) for the train subset. This tilted model consisted of a factorial design with a 45◦ rotation
in each axis. With this approach it is possible to avoid the repetition of numeric values. Meanwhile,
the validation of the constructed model was done with an external test set (12 samples), these were
distributed randomly within the experimental domain (0 to 500µmol·L−1) for each compound (Figure 4).

Sensors 2019, 19, x FOR PEER REVIEW 5 of 13 

 

2.4. Characterization by Scanning Electron Microscopy 

The morphological characterization of the modified screen-printed electrode was performed by 
Scanning Electron Microscopy (SEM). A scanning electron microscope with field emission gun 
(FEG-SEM) of Zeiss, model MERLIN SM0087 was used. 

2.5. Sample Preparation 

According to the European Pharmacopoeia [35] the size of the data set needed for building the 
calibration is dependent on interfering properties and the number of analytes that needs to be 
handled in the model. In the majority of the cases, the size of the learning data set for calibration 
needs to be large when the interfering variations are acquired randomly. However, when the major 
interferences can be controlled they can be varied according to a statistical experimental design. 

In this case, the second option was accomplished using a tilted factorial experimental design [36] 
33 (27 samples) for the train subset. This tilted model consisted of a factorial design with a 45° rotation 
in each axis. With this approach it is possible to avoid the repetition of numeric values. Meanwhile, 
the validation of the constructed model was done with an external test set (12 samples), these were 
distributed randomly within the experimental domain (0 to 500 µmol·L−1) for each compound (Figure 4). 

Samples were prepared in buffer solution (50 mM phosphate buffer solution at pH 7 containing 
0.1 M KCl). Fresh stock solutions of pharmaceutical compounds were prepared the same day of the 
measurements, in order to avoid/reduce the day-to-day variability. 

 
Figure 4. Representation of the tilted factorial experimental design employed (33) where it can be 
observed how the test samples (in white) are distributed covering all the space of the training samples 
(in black). 

2.6. Data Processing 

The statistical treatment and data analysis were performed using routines developed by the 
authors using MATLAB R2017a (MathWorks, Natick, MA, USA); in particular, the functionalities 
“plsregress” from the Statistics and Machine Learning Toolbox, was the one employed for the 
response model; the web page Clustvis [37] was the one used for PCA calculation; Sigmaplot (Systat 
Software Inc., San Jose, CA, USA) was used to graphically represent and analyze the results. 

  

Figure 4. Representation of the tilted factorial experimental design employed (33) where it can be
observed how the test samples (in white) are distributed covering all the space of the training samples
(in black).

Samples were prepared in buffer solution (50 mM phosphate buffer solution at pH 7 containing
0.1 M KCl). Fresh stock solutions of pharmaceutical compounds were prepared the same day of the
measurements, in order to avoid/reduce the day-to-day variability.

2.6. Data Processing

The statistical treatment and data analysis were performed using routines developed by the
authors using MATLAB R2017a (MathWorks, Natick, MA, USA); in particular, the functionalities
“plsregress” from the Statistics and Machine Learning Toolbox, was the one employed for the response
model; the web page Clustvis [37] was the one used for PCA calculation; Sigmaplot (Systat Software
Inc., San Jose, CA, USA) was used to graphically represent and analyze the results.
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3. Results and Discussion

3.1. Characterization of the Surface

A SEM characterization was performed in order to investigate the spatial distribution of the
ink-nanoparticles and to verify if the particles were all on the external surface or in the inner layers.
As can be observed in Figure 5, the different modifiers are distributed quasi-homogeneous between the
graphite layers. The size of the nanoparticles is below 1 µm.
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3.2. Voltammetric Array Response

The four aforementioned modifications used to perform this work, were selected among six
modifications candidates (Graphite, Cobalt(II) phthalocyanine, Copper oxide (II), Prussian blue,
Polypyrrole doped and Palladium) to construct the sensor array. This selection facilitates the
modification in form of an ink. In addition, these nanomaterials are the ones with extended
experience in the laboratory (although used in a different electrode format, the epoxy-graphite
composites [38]). The behaviors of these sensors for each compound were evaluated individually.
Once the voltammograms were collected, a preliminary qualitative analysis was performed in order to
evaluate the complementary of the sensors. The chemometric tool used was PCA. The information
collected in this case to perform the PCA calculation was the unfolded data. If electrodes are redundant
they would appear superimposed in the PCA graph, while a different response will manifest in their
separation. As can be seen in Figure 6, each sensor showed performance in different regions. This fact
accomplishes a relevant role in the execution of the electronic tongue, justifying the good contribution
of the four prepared electrodes in the sensor array. In addition, this analysis made us discard from the
sensor array system the Palladium and Polypyrrole sensors, because they were not able to provide
distinction between the different substances (Figure 6). According to these criteria, the other modifiers
could be classified as good candidates because they provided a wide range of variability between
the substances. In addition, the vast majority of the signals were far away from zero, meaning they
provide useful information to the system.
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After this pre-selection step, voltammograms for each of the selected electrodes towards individual
compounds were secondly evaluated. Two scans were performed choosing the second one to represent
the voltammetric response.

Therefore, following the conditions described in Section 2.1, a stock solution of 300 µmol·L−1

of these compounds was evaluated. As can be observed in Figure 7, slightly different signals were
obtained for the different compounds of interest, a necessary requirement for the performance of the
electronic tongue.
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Figure 7. Voltammetric response for Acetaminophen (PA), Ascorbic acid (AA) and Uric acid (UA) using
the four finally selected inks. (A) Cobalt (II) phthalocyanine/SPCE-Ink; (B) Prussian blue/SPCE-Ink;
(C) Graphite/SPCE-Ink; (D) Copper oxide (II)/SPCE-Ink. The range of potential was from −1.5 to 1.5 V.
The scan rate was 50 mV·s−1 and step rate of 9 mV. A 300 µmol·L−1 individual solution was employed
for the four modified screen-printed electrodes.
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3.3. Characterization of the Modified Integrated Screen-Printed Electrodes

3.3.1. Calibration Curves

To evaluate the behavior of each sensor for each compound separately, some calibrations curves
were performed using Cyclic voltammetry (CV) technique representing the peak height which
corresponds to the maximum of the oxidation signal. This kind of experiment is important to
determine the linear range and the maximum concentration of each compound for the final experiment
(electronic tongue).

As can be observed in Figure 8, the studied ranges were linear for all the compounds. Therefore,
for the ET development the concentration working range was from 0 to 500µmol·L−1 for Acetaminophen,
Ascorbic acid and Uric acid. The linear relationship and the calibration equations for each sensor are
represented in Table 1.
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Table 1. Calibration data (y vs. x) for the separate determination of Acetaminophen, Ascorbic acid and
Uric acid employing the integrated sensor array chosen.

Compounds Graphite Cobalt (II)
Phthalocyanine Copper Oxide (II) Prussian Blue

Acetaminophen y = 0.1234x +
2.6656 R2 = 0.993

y = 0.1057x + 2.7753
R2 = 0.991

y = 0.1749x −
4.0453 R2 = 0.997

y = 0.1696x +
7.5897 R2 = 0.984

Ascorbic Acid y = 0.0398x +
6.5307 R2 = 0.997

y = 0.0311x + 8.5678
R2 = 0.993

y = 0.0372x +
3.8868 R2 = 0.992

y = 0.0214x +
9.0457 R2 = 0.992

Uric Acid y = 0.1298x +
4.6275 R2 = 0.999

y = 0.0534x + 9.3828
R2 = 0.996

y = 0.1569x +
15.231 R2 = 0.988

y = 0.1074x +
7.6534 R2 = 0.995

3.3.2. Stability and Reproducibility Studies

After the calibration characterization, a stability and reproducibility study was done in order to
verify that the sensors were capable of supporting the number of measurements necessary for the
Electronic tongue (ET) development. The procedure used to analyze the durability/stability of the
sensors consisted on measuring a stock solution of Acetaminophen (165 µmol·L−1) 30 times. A blank,
in PBS solution, was inserted between each measurement to evaluate if the system was presenting
fouling effect.

In all cases, the four sensors showed stable responses with Relative Standard Deviation (%RSD) of
3.9%, 6.3%, 5.5% and 8.2% for Graphite, Copper oxide (II), Prussian blue and Cobalt (II) phthalocyanine
electrodes, respectively. No fouling effect was either observed in this study, when examining any trend
among the blanks.
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The next step was to study the reproducibility of construction of the ink-modified SPCE sensor.
The experiment was done preparing four sensors by triplicate (n = 3) and measuring consecutively
with an acetaminophen stock solution. The results for each sensor present a good reproducibility,
showing the best for the Prussian blue with a relative standard deviation (RSD) of 0.8% (Table 2).

Table 2. Reproducibility of construction of each sensor with the results of the relative standard
deviation (RSD).

Sensor RSD%

Graphite/SPCE-Ink 2.9
Cobalt (II) phthalocyanine/SPCE-Ink 7.5

Copper oxide (II)/SPCE-Ink 1.3
Prussian blue/SPCE-Ink 0.8

3.4. Qualitative Analysis: Principal Component Analysis (PCA)

Once the characterization was accomplished, a PCA was performed in order to evaluate the
discrimination power of the sensors (Figure 9). The information collected in this case to perform the
PCA calculation was the sensitivity of the calibration curves. Once it was confirmed that the different
electrodes presented a differentiated electrochemical behavior towards the different compounds under
study, allowing the detection for the three compounds, the next step was the characterization of the
sensor array chosen.
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3.5. Quantitative Analysis: Partial Least Squares (PLS) Regression

Once the qualitative analysis was completed, the data was processed in order to build a model
able to quantify each compound individually. As results of the high complexity of the data, it was
mandatory to use pretreatments that leads to less noisy and more homogeneous data interpretation.
Eventually, the Standard Normal Variate (SNV) [39] method was used as a pretreatment tool and the
Partial Least Squares (PLS) technique for the model building. SNV method allowed to reduce the
scatter effect of the measurements applying an easy mathematical process; it consists on the subtraction
of the measurement mean to the measure and followed by dividing the data by its standard deviation,
obtaining in this way a normalized base line for all the samples. A PLS1 approach was next employed,
in which one model with single output was built for each compound. The number of the latent
variables (LVs) [40] for each model were also optimized to achieve the lowest error possible and to
avoid the overfitting. The final PLS models were defined for eight components or latent variables (LVs)
for Acetaminophen and 7 LVs for the other two.
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In Figure 10 it can be observed the comparison of the obtained vs. expected results for training
sample set (dark dots), for each compound. In the same graph for each compound the testing sample
set (white dots) were projected, allowing the visualization of the feasibility of each model.
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The comparison general trend was expressed as the linear regression of the comparison line. As it
can be observed in Table 3, for all the studied compounds, the y-intercept and slope of the training
and testing test regressions include 0 and 1 respectively, taking into account their confidence interval
(95%). Regarding the correlation coefficients for all the regressions, they are close to 1. Therefore,
this satisfactory trend confirms the potential of the proposed approach.

Table 3. Results of the fitted regression curves for obtained vs. expected values, for the training
and testing subsets of samples and the three considered compounds (intervals calculated at the 95%
confidence level). NRMSE: normalized root mean square error.

Set Analyte R2 Slope Intercept
(µmol·L−1)

NRMSE

Acetaminophen 0.962 1.00 ± 0.09 0 ± 25 0.90
Training Set Ascorbic acid 0.955 1.00 ± 0.09 0 ± 25 0.97

(n = 27) Uric acid 0.940 1.00 ± 0.11 0 ± 31 1.12

Acetaminophen 0.915 1.02 ± 0.22 −13 ± 28 0.7
Testing Set Ascorbic acid 0.762 1.07 ± 0.42 −3 ± 54 1.41

(n = 12) Uric acid 0.829 1.04 ± 0.33 −32 ± 36 0.85

To evaluate also the fitting degree of the models the NRMSE parameter, Normalized Root Mean
Square Error, was calculated according to Equation (1).

NRMSE =

√∑
i(xexpected−xpredicted)

2

j·N−1

cmax − cmin
(1)

where xexpected is the theoretical concentration of the sample, xpredicted is the predicted concentration, j is
the number of analytes considered, N the number of samples, cmax is the maximum concentration and
cmin is the minimum concentration. All the information about the models are summarized in Table 3.

As can be observed, in practice, the test sample subset had the lowest NRMSE for the
Acetaminophen and Uric acid compound, so the predictive capabilities of the models performed in
satisfactory way. However, for the Ascorbic acid compound slightly larger values were obtained.
Regarding to the correlation coefficients, the better values were observed for the training sample set.
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Comparing these results with previous work [41] done in our group employing the same modifiers
but with different technology, in this case, the bulk modification of a graphite-epoxy composite electrode
(Table 4), we can highlight as a main conclusion that the results obtained are similar, showing a slight
improvement in the present report in terms of slope and intercept of the comparison lines. Accordingly,
the combination of the screen-printed integrated voltammetry array sensors and chemometric tools
allows the possibility to determine and quantify simultaneously a substance in the presence of other
ones with overlapping redox potential.

Table 4. Results of the fitted regression curves for obtained vs. expected values, for the training
and testing subsets of samples and the three considered compounds (intervals calculated at the 95%
confidence level) for the previous works [41].

Set Analyte R2 Slope Intercept
(µmol·L−1)

Acetaminophen 0.968 0.942 ± 0.031 32 ± 21
Training Set Ascorbic acid 0.947 0.933 ± 0.040 36 ± 25

(n = 33) Uric acid 0.923 0.873 ± 0.046 58 ± 25

Acetaminophen 0.848 0.895 ± 0.105 82 ± 71
Testing Set Ascorbic acid 0.908 0.919 ± 0.081 65 ± 41

(n = 15) Uric acid 0.753 0.871 ± 0.138 −8 ± 86

4. Conclusions

The presented work reported for a first time in our group the simultaneous voltammetric detection
of Acetaminophen, Ascorbic acid and Uric acid combining a multi screen-printed electrode integrated
array with advanced chemometrics. This study clearly illustrates one of the capabilities of the
biomimetc systems, concretely, ET. The ET strategy allowed the possibility, first to differentiate the
compounds, next, to determine and quantify simultaneously a substance in the presence of other ones
with overlapping redox potentials.

The samples were analyzed by combining the Cyclic voltammetry (CV) technique for extracting
the fingerprint of the individual substances and mixtures, coupled with chemometrics strategies, which
permitted the resolution of the overlapping signal and its identification.

The use of Principal Component Analysis (PCA) as qualitative tool was useful to determine
the capability of the sensors to distinguish the different compounds under study, while in a further
purpose resolution and quantification of ternary mixtures was achieved employing Partial Least
Squares Regression (PLS) model.

Therefore, this work demonstrates the advantages of screen-printed integrated electrochemical
sensors for on-field analysis results in a promising methodology that could substitute the classical
time-consuming, methods. Future works will try to detect these analytes in real pharmaceutical
study case.
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