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Abstract: Intelligent automation and trusted autonomy are being introduced in aerospace cyber-
physical systems to support diverse tasks including data processing, decision-making, information 
sharing and mission execution. Due to the increasing level of integration/collaboration between 
humans and automation in these tasks, the operational performance of closed-loop human-machine 
systems can be enhanced when the machine monitors the operator’s cognitive states and adapts to 
them in order to maximise the effectiveness of the Human-Machine Interfaces and Interactions 
(HMI2). Technological developments have led to neurophysiological observations becoming a 
reliable methodology to evaluate the human operator’s states using a variety of wearable and 
remote sensors. The adoption of sensor networks can be seen as an evolution of this approach, as 
there are notable advantages if these sensors collect and exchange data in real-time, while their 
operation is controlled remotely and synchronised. This paper discusses recent advances in sensor 
networks for aerospace cyber-physical systems, focusing on Cognitive HMI2 (CHMI2) 
implementations. The key neurophysiological measurements used in this context and their 
relationship with the operator’s cognitive states are discussed. Suitable data analysis techniques 
based on machine learning and statistical inference are also presented, as these techniques allow 
processing both neurophysiological and operational data to obtain accurate cognitive state 
estimations. Lastly, to support the development of sensor networks for CHMI2 applications, the 
paper addresses the performance characterisation of various state-of-the-art sensors and the 
propagation of measurement uncertainties through a machine learning-based inference engine. 
Results show that a proper sensor selection and integration can support the implementation of 
effective human-machine systems for various challenging aerospace applications, including Air 
Traffic Management (ATM), commercial airliner Single-Pilot Operations (SIPO), one-to-many 
Unmanned Aircraft Systems (UAS), and space operations management. 

Keywords: human-machine system; cognitive cybernetics; cognitive states; mental workload; 
neurophysiology; physiological response 

 

1. Introduction 

Advances in aerospace Cyber-Physical Systems (CPS) are supporting a progressive evolution of 
conventional platforms to feature higher levels of automation and information sharing. Major 
benefits of these two capabilities include a progressive de-crewing of flight decks and ground control 
centers, as well as the safe and efficient operations of very diverse platforms in a shared, unsegregated 
environment. Important efforts are, for instance, addressing the integration of Unmanned Aircraft 
Systems (UAS) in all classes of airspace, eliciting the introduction of a UAS Traffic Management 
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(UTM) service which seamlessly integrates within the Air Traffic Management (ATM) framework [1], 
especially in lower airspace. Similarly, the operation of space launch and re-entry platforms currently 
requires considerable airspace segregation provisions, which if continued will become increasingly 
disruptive to civil air traffic. Moreover, the currently limited space situational awareness is posing 
significant challenges to the safety and sustainability of spaceflight due to the rapidly growing 
amount of resident space objects and particularly orbital debris. The deployment of network-centric 
Communication, Navigation, Surveillance and Avionics (CNS+A) systems and their functional 
integration with ground-based ATM in a Space Traffic Management (STM) framework will support 
a much more flexible and efficient use of the airspace with higher levels of safety [2]. In terms ofair 
traffic, advanced CNS+A systems will support the transition from the two-pilot flight crews to a 
single pilot in commercial transport aircraft, with the co-pilot potentially replaced by a remote pilot 
on the ground. A single remote pilot on the ground, on the other hand, will no longer be restricted to 
controlling a single UAS and instead will be allowed to control multiple vehicles, following the so-
called One-to-Many (OTM) approach [3]. Figure 1 schematically illustrates these important evolution 
paths. 

 
Figure 1. Evolution and progressive integration of conventional and autonomous air and space 
platforms in a cohesive UAS, Air and Space Traffic Management (UTM/ATM/STM). 

Increases in automation complexity and in the amount of handled information are eliciting a 
need for further research in Human-Machine Interfaces and Interactions (HMI2) for better human-
machine teaming to improve the overall system performance [4]. Important research and 
development efforts are focusing on monitoring and supporting the appropriate cognitive workload 
of human operators in complex and time-critical tasks through real-time measurement of 
neurophysiological variables [5,6]. In doing so, the adoption of sensor networks is both a natural and 
necessary evolution to effectively exchange, synchronise and process measurement data within a 
customisable operational network architecture. As conceptually illustrated in Figure 2, a sensor 
network implements three fundamental components: a control element to effectively regulate its 
functioning and particularly to ensure successful monitoring and recording of data from the 
environment through a suite of disparate sensors, a computation element to process and fuse collected 
data and thus generate the desired information; a communication element networking all sensors, 
databases and end users to the server to collect raw measurement data and disseminate the processed 
information. 
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Figure 2. Fundamental elements of a sensor network. 

Collectively, these three essential elements (control, computation and communication) form the 
definition of a Cyber-Physical System (CPS). CPS are engineered systems built from, and dependent 
upon, the seamless integration of computational algorithms, physical components, and at the highest 
level, the integration of the human-machine feedback. Practical CPS combine sensors and embedded 
computing to monitor and control physical processes, with feedback loops that allow these processes 
to affect computations and vice-versa. The Cognitive HMI2 (CHMI2) concept depicted in Figure 3 
provides a notable example of an advanced CPS by implementing system automation support 
modulated as a function of cognitive states of both the human operator as well as relevant 
operational/environmental observables. Initially described in [5,6], the foundation of the CHMI2 
framework is the real-time neurophysiological sensing of the human operator to infer cognitive states 
and in turn drive system adaptation. This requires the adoption of three fundamental modules: 
sensing, estimation and adaptation. Various advanced wearable and remote sensors are exploited in 
the CHMI2 sensing module to track operators’ neurophysiological parameters in real time. The 
collected data is then passed to the estimation module to be processed to infer the operators’ cognitive 
states. Prior to operational use, the estimated cognitive states are validated in the initial calibration 
phase by correlating these cognitive states with objective measures of the designed scenario, such as 
mission performance and task complexity. Lastly, the inferred cognitive states are used by the CHMI2 
adaptation module to dynamically adapt the HMI2 and automation behaviour. 

One important consideration when designing CHMI2 and similar systems is that each 
neurophysiological parameter is sensitive to different biological processes and circumstances, and is 
affected by very different disturbances. For instance, heart rate variability is sensitively influenced 
by time of day, whereas blink rate and pupillometry are sensitive to ambient light stimuli. Due to the 
complex nature of neurophysiological phenomena, the monitoring of multiple parameters is required 
to accurately and reliably estimate the cognitive workload or other states of the human operator 
[7].Moreover, there are additional difficulties associated when using multiple sensors: notably, each 
sensor has different measurement performance (e.g., accuracy, resolution etc.) and sampling 
frequencies. Hence, a well-designed sensor network optimisation scheme is key when designing 
reliable human-machine systems, not only to ensure optimal use of multiple sensors within the 
sensing module but also to devise a data fusion approach for increased overall inference accuracy of 
the estimation module. 
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Figure 3. CHMI2 framework. 

The rest of the article is structured as follows: Section 2 presents the cyber-physical sensor 
networks in the CHMI2 framework. Section 3 describes the main neurophysiological measurements 
and sensors in detail, together with their performance parameters and relevance for aerospace 
human-machine systems. In particular, eye tracking sensors are discussed in Section 3.1, and 
cardiorespiratory, central nervous sensors, face and voice recognition in Section 3.2–3.5 respectively. 
Machine learning methods used in cognitive state estimation are discussed in Section 4. Section 5 
details the methodology to experimentally characterise the performance of selected sensors and the 
propagation of measurement uncertainty through machine-learning inference systems. Section 6 
describes the use of neurophysiological sensors in various aerospace applications with a focus on 
contemporary ones. Lastly, conclusions are drawn in Section 7. 

2. Sensor Networks in CHMI2 Framework 

A core component of the CHMI2 sensor network introduced in Section 1 is the Human Factor 
Engineering (HFE) Lab software at RMIT University, which supports the networking and data 
management for all the CHMI2 sensors and data streams. The HFE Lab software supports several 
aerospace cyber-physical system applications: ATM, Air Traffic Flow Management (ATFM), UTM, 
pilot/remote pilot stations, spacecraft operations control centers and STM applications. As illustrated 
in Figure 4, the HFE Lab software also caters for complex scenarios to be simulated and allows for 
multiple participants. Neurophysiological data together with operational data (simulated mission 
and scenario information) are collected and analysed offline to improve the accuracy and reliability 
of cognitive state estimation models. 
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Figure 4. HFE Lab architecture [4]. 

A sensor network is effectively realised by the HFE Lab software that fuses neurophysiological 
sensor data and other environment/mission data. The information flows and data server components 
are detailed in Figure 5. 

 
Figure 5. Fundamental role and components of the CHMI2 server as part of the HFE Lab [8]. 

The neurophysiological sensors firstly obtain various physiological measurements which consist 
of cardiorespiratory, eye, brain, face and voice features. These sensors interact with dedicated physio 
clients which perform pre-processing functions such as data filtering and feature extraction prior to 
sending the data to the CHMI2 server. The CHMI2 server is the sensor network’s central element of 
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data storage and distribution. This server synchronises incoming data from the various physio 
clients. Apart from neurophysiological measurements, scenario and mission data are also logged by 
the server. The server threads parse the data into separate buffers that are read by other threads, 
which are then logged into different databases. The threads include recurrent data management 
function as loggerThread and threadManager. In order to run different functions simultaneously in the 
server, a suitable thread management facilitates effective communication with the HMI clients. 
Furthermore, the different aerospace simulators present in Figure 4 may not always allow all 
neurophysiological sensors in HFE Lab to be exploited. For example, the lab’s remote eye tracking 
sensor is limited to use on desktop PCs and is not applicable in the 210° flight simulator. Hence, the 
sensor network architecture of HFE Lab provides substantial flexibility in the integration of different 
types of neurophysiological sensors as the software is modular and modifications to individual 
sensor threads can be made to cater for custom sensor data. 

3. Neurophysiological Sensors 

This section describes in detail the state-of-the-art in neurophysiological sensing technologies 
that are most commonly used in aerospace applications, including: eye-tracking, cardiorespiratory 
and central nervous system monitoring devices. The key neurophysiological measurements used in 
this context and their relationship with the operator’s cognitive states are discussed. Emotional state 
estimation based on face expression and voice pattern analysis are also discussed. 

3.1. Eye Tracking Sensors 

Eye tracking is capable of providing both passive and active control, supporting closed-loop 
human-machine interactions. Passive control supports adaptive HMI2 formats and functions by 
assessing the behaviour and functional state of the operator through software running in the 
background, whereas active control allows human operators to interact directly with the machine by 
providing gaze-based control inputs. While passive control requires eye tracking data to be further 
processed and fed into an inference engine to determine the operator’s functional state, active control 
directly uses the raw data and is therefore more straightforward in terms of system implementation. 
A number of issues affect both types of control and are associated to the performance of eye tracking 
systems. These issues should be carefully considered before utilising eye tracking technology in 
aerospace applications. For instance, these issues could include the inadvertent activation of gaze-
based control, as well as low reliability, accuracy and repeatability of eye tracking measurements. 
There are two types of eye tracking technologies; wearable and remote sensors (Figure 6). 

  
(a) (b) 

Figure 6. Eye tracking technologies used in HFE Lab. (a) remote sensor, (b) wearable sensor. 

Wearable sensors are not limited by a Field of View (FOV) and this characteristic is very 
advantageous for eye tracking in open environments, such as flight decks, where the user may be 
looking at displays as well as physical controls and out of the window. On the other hand, the use of 
remote sensors might require limiting the movement of the operator’s head and/or gaze, and while 
this can result in increased accuracy, it is typically operationally restrictive. Additionally, some 
remote sensors can also detect the distance between the operator and the screen, which can be useful 
for HMI design optimisation and neuro-ergonomics studies. In a recent work, we targeted the full 
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performance characterisation of both types of sensors. The study showed that the HFE Lab’s remote 
sensor performs better in term of accuracy and precision [9]. The findings of this study are reviewed 
and discussed in Section 4.1. We also note that remote sensors may enjoy greater operator acceptance 
in deployed systems. 

Eye tracking features are sub-divided into gaze features and pupillometry. Gaze features 
comprise of fixation, saccade, dwell, transition and scan path. Fixation is a gaze state that fixed or 
focussed on an object (x, y) at time (𝑡௙௡). The rapid and small eye movements between fixations are 
saccades (𝑠௡) which can be defined by saccade velocity (𝑣 ௦೙) and saccade time (𝑡௦೙). In the domain of 
pupillometry, the three most important features are eye closure, blink rate and pupil radius. With 
respect to gaze features, the gaze position allows to derive additional features such as fixation and 
saccades, from which more complex features can be extracted, such as visual entropy. The visual 
entropy (H) can be determined from gaze transitions between different Region-of-interest (ROI), 
which are typically represented by a matrix. For instance, 𝑝൫𝑌௜௝ห𝑋௜൯ is the probability of a transition 
between ROIi to ROIj given a previous fixation on ROIi and 𝑝(𝑋௜) is the probability of a fixation being 
on ROIi [10]. The Nearest Neighbour Index (NNI), quantifies the randomness based on fixations, 
while the explore/exploit ratio [11] computes the randomness based on a combination of saccades, 
long and short fixations. For a given fixation distribution, the NNI is given by the ratio of the mean 
nearest neighbour distances (𝑟̅஺) and the mean random distances (𝑟̅ா) [12]. Table 1 summarises the 
parameters used to evaluate eye activity [10,13–16]. 

Table 1. Eye activity metrics adapted from [3] includes Equation 1 to 13. 
Parameter Description Derived Metrics Equation 

Fixation 
The state of a gaze that is focused 

(fixated) on an object. 

Fixation (duration, 
frequency, count) 

𝑓௡ ∶ ඥ(𝑥௠௔௫ − 𝑥௠௜௡)ଶ + (𝑦௠௔௫ − 𝑦௠௜௡)ଶ<  𝐷௠௔௫ ∀ 𝑡 ∈ ൣ𝑡଴, 𝑡௙௡൧ 
Time to first fixation 𝑇ி௜௥௦௧ி௜௫௔௧௜௢௡ = 𝑡(𝑓ଵ) − 𝑡଴ 

Saccade 
Small, rapid, involuntary eye 

movements between fixations, usually 
lasting 30 to 80 ms. 

Saccadic 
length/amplitude, 

frequency 

𝑠௡ ∶    𝑣൫𝑡௦೙ ∈ ൣ𝑡௜, 𝑡௝൧൯  ≥ 30 °/𝑠 
with 𝑡௜ + 30 𝑚𝑠 ≤ 𝑡௝ ≤ 𝑡௜ + 80 𝑚𝑠 

and 𝑣 =  ටቀௗ௫ௗ௧ቁଶ + ቀௗ௬ௗ௧ቁଶ
 

Saccade velocity 
(mean/peak) 

𝑣̅௦೙ =  𝑣൫𝑡௦೙൯ 𝑣௠௔௫,௦೙ = max ቀ 𝑣൫𝑡௦೙൯ቁ 
Explore/exploit ratio 

(R୉୉) 
R୉୉ = ௦௔௖௖௔ௗ௘ ௖௢௨௡௧ ା ௙௜௫௔௧௜௢௡ ௖௢௨௡௧௟௢௡௚ ௙௜௫௔௧௜௢௡ ௖௢௨௡௧   

Dwell 

Eye movements comprising a series of 
fixation-saccade-fixation movements, 
usually with reference to (or within) a 

given area of interest. 

Dwell count 
𝑑௡ ∶    (𝑥, 𝑦) ∈ (ሾ𝑥ெ௜௡, 𝑥ெ௔௫ሿ, ሾ𝑦ெ௜௡, 𝑦ெ௔௫ሿ) ∀ 𝑡 ∈ ൣ𝑡௜, 𝑡௝൧ 𝑤𝑖𝑡ℎ 𝑡௝ ≥ 𝑡௜ + 30 𝑚𝑠 

Dispersion [17] D = ඥ(𝑥௠௔௫ − 𝑥௠௜௡)ଶ + (𝑦௠௔௫ − 𝑦௠௜௡)ଶ 

Transition 
The change of dwell from one area of 

interest to another and is usually 
represented in the form of a matrix. 

One-/two-way 
transition probability 
Transition frequency 

e.g., 𝑇𝑀ைௐ = 𝑅𝑂𝐼 1     2     3123 ൥ − 𝑝ଵ,ଶ 𝑝ଵ,ଷ𝑝ଶ,ଵ − 𝑝ଶ,ଷ𝑝ଷ,ଵ 𝑝ଷ,ଶ − ൩ 

Scan path 

The series of eye movements in 
accomplishing a specified task. A scan 
path can include elements of fixations, 

saccades, dwells and transitions. 

Visual entropy [10] 

H=  − ෍ 𝑝(𝑋௜) ෍ 𝑝൫𝑌௜௝ห𝑋௜൯ logଶ 𝑝൫𝑌௜௝ห𝑋௜൯௠
௝ୀଵ

௡
௜ୀଵ  

Nearest Neighbour 
Index (NNI) [12] 

NNI = ௥̅ಲ௥̅ಶ, where  𝑟̅஺ = ∑ 𝑟𝑁  𝑟̅ா = 𝐾஽2ඥ𝑁 𝐴⁄  

Pupillo-metry Measures of pupil size and reactivity. 
Pupil dilation spectral 

power 
𝑃ௗ௜௟ = න 𝑟(𝜆) 𝑑𝜆଺ு௭

ଶு௭  

Blink Measures of partial or full eye closure. 
Blink rate (BLR) 𝐵𝐿𝑅 =  𝑛௕௟௜௡௞௦𝑡௜ା௡್೗೔೙ೖೞ − 𝑡௜ × 60 

Percentage closure 
[18–21] 

%௖௟௢௦௨௥௘ = ∑ 𝑡௖௟௢௦௨௥௘,௜𝑡்௢௧௔௟  

Sampling frequency, accuracy, latency and precision are the most important properties for 
characterising eye tracking systems [22]. As illustrated in Figure 7, the minimum sensor performance 
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requirements are different for each measured parameter. Saccade is the most difficult feature to 
measure since it requires the sensor to have both high sampling frequency and high precision, 
whereas blink rate can be captured even at lower frequencies and at very low precision. 
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Figure 7. Detectability of main eye activity features as a function of sensor precision and sampling 
frequency. 

Passive control methods can exploit various eye activity variables such as fixations, blink rate, 
saccades, pupil diameter, visual entropy and dwell time, which are related to the operator’s cognitive 
state [22,23] as shown in Table 2. Arrows represent the changes of the variables when there is an 
augmentation of the cognitive states; an increase (↑) or decrease (↓), and dashes (-) present an 
uncertain/negligible effect. 

Table 2. Qualitative relationships between eye activity variables and selected cognitive states. 

Variable Mental Workload Attention Fatigue 
Fixation ↑ ↑ ↑ 

Blink rate ↑ ↓ ↑ 
Saccades ↓ ↓ - 

Pupil diameter ↑ ↑ ↓ 
Visual entropy ↓ ↑ - 

Dwell time ↓ ↑ - 

3.2. Cardiorespiratory Sensors 

A cardiorespiratory sensor is a biological telemetering system which can be operated in either 
real-time data transmitting or data logging mode. The usage of the sensor is primarily to monitor 
heart and respiratory activity. The cardiac monitoring is typically based on electrocardiography 
(ECG), which exploits electrodes in contact with the skin. Heart muscle depolarisations and 
polarisations generates electrical waves that propagates towards the skin and can be measured by 
the electrodes. Other cardiac monitoring techniques include hemodynamic sensors, which look at 
blood flow characteristics such as pressure and flow rate. Conventional ECG-based cardiac sensors 
use electrode pads, which have to be applied carefully and may be detached by sweat, while the latest 
wearable sensors are based on conductive fabric to measure ECG. The heart impulses are represented 
by waves of P-QRS-T deflection as illustrated in Figure 8. Atrial depolarisation is represented by the 
P wave while the QRS wave complex obscures atrial repolarisation. Ventricular repolarisation is 
represented by the T wave and ventricular depolarisation is represented by QRS wave complex [24]. 
The R wave is the largest wave which allows to accurately extrapolate the time interval (in seconds) 
between two consecutive heart beats, hence called R-to-R (RR) interval. 
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The HR is given in beats per second as: 𝐻𝑅 = 60𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (14) 

Another important cardiac activity metric is the HRV which tracks variations between two 
consecutive beats. HRV can be analysed in time, frequency and geometric domains. Time-domain 
measures quantify the variability in the interbeat interval (IBI), given in milliseconds (ms), which is 
the time period between successive heartbeats. IBI is similar to RR and Normal-to-Normal (NN). The 
difference between RR and NN is that NN refers to the RR interval of normal beats only, with the 
abnormal beats removed. Table 3 details the various HRV metrics in time-domain measurements 
with associated equations. 

Table 3. Heart rate variability time-domain variables adapted from [25], Equation 15 to 18 are 
included. 

Parameter 
(Unit) Description Equation 

SDRR (ms) Standard deviation of RR intervals 𝑆𝐷𝑅𝑅 = ඨ 1𝑛 − 1 ෍ (𝑅𝑅௜ − 𝑅𝑅തതതത)ଶ௡௜ୀଵ  

SDNN (ms) Standard deviation of NN intervals 𝑆𝐷𝑁𝑁 = ඨ 1𝑛 − 1 ෍ (𝑁𝑁௜ − 𝑁𝑁തതതതത)ଶ௡௜ୀଵ  

pNN50 (%) 
Percentage of successive NN intervals that 

differ by more than 50 ms 

𝑝𝑁𝑁ହ଴= count௡ିଵ(|𝑁𝑁௜ାଵ − 𝑁𝑁௜| > 50 ms)𝑛 − 1  

RMSSD (ms) 
Root mean square of successive RR interval 

differences 𝑅𝑀𝑆𝑆𝐷 = ඨ 1𝑛 − 1 ෍ (𝑅𝑅௜ାଵ − 𝑅𝑅௜)ଶ௡ିଵ௜ୀଵ  

Frequency domain metrics are extracted through spectral analysis of the RR interval data to 
obtain the power spectrum density (PSD) estimate of a given time series. The PSD is divided into four 
frequency bands [26] as shown in Table 4: the Ultra-Low Frequency (ULF), the Very-Low Frequency 
(VLF), the Low Frequency (LF) and the High Frequency (HF). In particular, the HF and LF bands 
occur due to the heart’s control of the sympathetic and parasympathetic branches of the autonomic 
nervous system. The HF band represents the activity of the sympathetic branch, which regulates the 
relaxation (‘rest and digest’) functions of the body, while the Low Frequency (LF) component 
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represents the activity of the parasympathetic branch, which regulates the action (‘fight or flight’) 
functions in the body. During activity (both physical and mental), the power in the LF band has been 
observed to increase in proportion to the HF band, with the LF/HF ratio being an important indicator 
of the relative powers between the two bands. VLF is sometimes used for recordings over five 
minutes, when considering longer-term, ULF is also added in certain calculations. 

Table 4. Heart rate variability frequency-domain variables adapted from [25]. Equation 19 to 25 are 
included. 

Parameter 
(Unit) 

Description Equation 

ULF power 
(ms2) 

Absolute power of the ultra-low-frequency band (≤0.003 Hz) 𝑈𝐿𝐹 = න 𝑓(𝜆)𝑑𝜆଴.଴଴ଷ௛௭
଴௛௭  

VLF power 
(ms2) 

Absolute power of the very-low-frequency band (0.003–0.04 Hz) 𝑉𝐿𝐹 = න 𝑓(𝜆)𝑑𝜆଴.଴ସ௛௭
଴.଴଴ଷ௛௭  

LF power 
(ms2) 

Absolute power of the low-frequency band (0.04–0.15 Hz) 𝐿𝐹 = න 𝑓(𝜆)𝑑𝜆଴.ଵହ௛௭
଴.଴ସ௛௭  

LF power 
(%) 

Relative power of the low-frequency band  𝐿𝐹% = ׬  𝑓(𝜆)𝑑𝜆଴.ଵହ௛௭଴.଴ସ௛௭׬ 𝑓(𝜆)𝑑𝜆଴.ସ௛௭଴௛௭ × 100 

HF power 
(ms2) 

Absolute power of the high-frequency band (0.15–0.4 Hz) 𝐻𝐹 = න 𝑓(𝜆)𝑑𝜆଴.ସ଴௛௭
଴.ଵହ௛௭  

HF power 
(%) 

Relative power of the high-frequency band  𝐻𝐹% = ׬  𝑓(𝜆)𝑑𝜆଴.ସ௛௭଴.ଵହ௛௭׬ 𝑓(𝜆)𝑑𝜆଴.ସ௛௭଴௛௭ × 100 

LF/HF 
(%) 

Ratio of LF-to-HF power 𝐿𝐹/𝐻𝐹 = ׬  𝑓(𝜆)𝑑𝜆଴.ଵହ௛௭଴.଴ସ௛௭׬ 𝑓(𝜆)𝑑𝜆଴.ସ௛௭଴.ଵହ௛௭ × 100 

Geometric metrics analyse the HRV by converting RR intervals into geometric plots. Poincaré 
plots display the correlation between consecutive RR intervals, with RR(i) plotted on the x-axis and 
RR(i+1) plotted on the y-axis. The points are distributed in an elliptical manner along the plot with 
SD1 and SD2 respectively defined as the minor and major axes of the ellipse. SD1 reflects the short-
term characteristics of HRV (i.e., the variability over successive beats) while SD2 reflects the long-
term characteristics of HRV (i.e., the variability over multiple beats). SD1 and SD2 are given by [27]: 𝑆𝐷1 = ඥ0.5 ∙ 𝑉𝑎𝑟௡(𝑅𝑅௜ − 𝑅𝑅௜ାଵ) (26) 𝑆𝐷2 = ඥ0.5 ∙ 𝑉𝑎𝑟௡(𝑅𝑅௜ + 𝑅𝑅௜ାଵ) (27) 

where n is the sample window and is usually set to 30 s. The x and y coordinates of the ellipse are 
given by the parametric equation: ቂ𝑥𝑦ቃ = √2 ∙ ൤cos(𝜋 4⁄ ) − sin(𝜋 4⁄ )sin(𝜋 4⁄ ) cos(𝜋 4⁄ ) ൨ ∙ ൤𝑆𝐷2 ∙ cos(𝜃)𝑆𝐷1 ∙ sin(𝜃)൨ + ൤ 𝑅𝑅തതതത௜𝑅𝑅തതതത௜ାଵ൨ , 0 < 𝜃 < 2𝜋 (28) 

Concerning respiratory activity monitoring, there are two main types of devices: strain gauges 
and airflow sensors, illustrated in Figure 9. The most common one is strain gauges because this 
system is less expensive, unobtrusive and easier to use. The mechanical strain from the strap is 
converted into voltage. An airflow technique requires participant to wear a mask or tube while 
breathing. It measures the oxygen consumption and carbon dioxide production. 
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(a) (b) 

Figure 9. Respiratory technologies. (a) airflow, (b) strain gauge. 

As illustrated in Figure 10 (Left), the advantage of strain gauge equipment is that it has low 
intrusiveness than the airflow. However, airflow-based devices have better latency. Moreover, the 
minimum sensor performance requirements are different for each parameter. The main performance 
factors to be considered include resolution and sampling frequency. Compared to cardiovascular 
measures, respiratory measures require lower sampling frequency since cardiovascular parameters 
such as HRV require millisecond resolution. Due to their lower intrusiveness, strain gauge wearable 
sensors are mainly discussed here. 
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Figure 10. Left: performance comparison of the different respiratory monitoring technologies. Right: 
detectability of cardiorespiratory features as a function of sensor resolution and sampling frequency. 

The most common respiratory variable is BR, also referred to as the breathing or respiratory rate, 
which is typically expressed in breaths per minute. Other variables include the respiratory amplitude, 
expressed in terms of Tidal Volume (TV) and Minute Ventilation (MV). These three variables are 
detailed in Table 5. 

A number of studies focused on the characterisation of cardiorespiratory sensor performance 
[28–32]. Some of the key results of an experimental characterisation activity targeting both physical 
and mental workload are presented in Section 4.2. Several studies revealed that heart and respiratory 
parameters are reliable measures of the operator’s cognitive states. Table 6 summarises the various 
cardiorespiratory variables that used to estimate cognitive states [3,33–36]. Arrows represent the 
changes of the variables when there is an augmentation of the cognitive states; an increase (↑) or 
decrease (↓), and dashes (-) present an uncertain/negligible effect. For instance, when the level of 
Mental Workload (MWL) increases, HR increases (↑). However, some parameters were found to be 
moderated by training and experience. For instance, compared to the baseline, a substantial 
suppression in the HF band in a medium task load condition could be observed. However, an ATC 
task of equivalent difficulty that was undertaken by inexperienced and experienced participants 
demonstrated that the HR of inexperienced participants was not noticeably affected by changes in 
level of complexity in ATC tasks [37], and this might stem from lack of attention and understanding 
in situational awareness. 
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Table 5. Fundamental respiratory variables which Equation 29 to 31 are includes. 

Variables (Unit) Description Equation 

BR (1/min) Number of breaths per minute. 𝐵𝑅 =  𝑛௕௥௘௔௧௛௦𝑡௜ା௡್ೝ೐ೌ೟೓ೞ − 𝑡௜ × 60 

TV (mL) Amount of air inspired in one respiratory cycle 𝑇𝑉௜ = 𝑉௣௘௔௞,௜ − 𝑉௧௥௢௨௚௛,௜ 
MV (L/min) Amount of air inhaled within one minute 𝑀𝑉 = BR × TVതതതത 

Table 6. Qualitative relationships between cardiorespiratory variables and selected cognitive states 
adapted from [3, 33-36]. 

Variable Mental Workload Attention Fatigue 
HR ↑ ↑ ↑ 

SDNN ↓ ↑ ↑ 
SDRR ↓ ↑ ↑ 

RMSSD ↑ ↑ ↓ 
pNN50 ↓ - ↓ 

LF ↑ - - 
HF ↓ - - 

LF/HF ↑ - ↓ 
Poincare axes ↓ - - 

BR ↓ ↓ ↓ 
TV - - ↓ 
MV - - ↓ 

Additionally, the disadvantage of using cardiorespiratory variables is their slow response to the 
rapid changes in cognitive states compares to other variables [38]. 

3.3. Neuroimaging Sensors 

Neuroimaging technologies are used to monitor and better understand the brain workings. The 
recent technological developments in this domain are opening new avenues for aerospace human 
factors engineering research and development. The increasing commercial availability of 
mobile/wearable brain sensing devices (Figure 11) has resulted in many opportunities for 
neuroergonomic studies. This paper however only focusses on two techniques [39]: EEG including 
its spectral analysis and Functional near-infrared spectroscopy (fNIRS). 

  
(a) (b) 

Figure 11. Medical-/research-grade neuroimaging systems: (a) EEG; (b) fNIRS. 

These techniques can be divided into two main categories for achieving neuroimaging, namely 
the direct observation of neural activity in a response to stimuli, and the indirect metabolic indicators 
of neural activity [39]. The former technique includes sensors such as EEG that record the electrical 
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activity in the brain generated by firing neurons [40]. The latter technique includes sensors such as 
fNIR which uses a spectroscopic method to determine levels of blood oxygenation in the cortex of the 
brain [41]. Neuroergonomics differs from traditional neuroscience in the way that it investigates the 
brains function in response to work. Hence, the neuroergonomic method implemented is required to 
be flexible so that it can adapt to the specific application [39]. Table 7 details further categorisations 
of the two techniques based on their temporal and spatial resolution. 

Table 7. Comparison of temporal and spatial specifications on electrical and neuroimaging 
monitoring methods [3]. 

Category Electrical Response Hemodynamic Response 
Temporal 
resolution 

High (limited by sampling frequency) 
[42,43] 

Limited (limited by sampling 
frequency) [44,45] 

Temporal 
sensitivity 

High (limited by sampling frequency) 
[42,43] 

Limited (limited by the 
hemodynamic response of the 

brain) [46,47] 
Spatial 

sensitivity 
Limited (depends on no. of electrodes) 

[42,48] 
High (fNIRS) [45] 

Sensitive to 
movement 

Sensitive to eye, head, body and etc. 
movement. Noise filtering algorithms 

are required. 

Might need to filter out heart 
activity from the raw 

measurements. 
Intrusiveness More intrusive [42] Low 

Table 8 summarises brain-related estimation techniques related to cognitive states. Conventional 
EEG techniques utilise spectral analysis, decomposing the raw signal into different frequency bands 
and comparing the relative strength between different bands. For instance, attention can be 
determined when the beta spectrum is high and alpha spectrum is low in the pre-frontal (Fp1) 
position [49,50]. More advanced techniques such as regression and neural networks were later 
introduced for large data analysis. 

Table 8. Summary of neuroimaging techniques as indicators of cognitive states [3]. 

 Mental Workload Engagement/Attention/ 
Vigilance  

Working 
Memory 

Fatigue 

EEG 

Spectral ratio [51–53] 
Spectral bands [54–60] 

Regression [61] 
Bayesian modelling [53] 
Neural networks [62–67] 

Multivariate analysis [68–70] 
Discriminant analysis [66,71–76] 

Spectral ratio [77–79] 
Spectral bands 

[52,56,80,81] 
Committee machines [82–

84] 
Discriminant analysis 

[75,85] 

- 

Multivariate 
analysis [69] 
Discriminant 
analysis [75] 

fNIRS 
oxy-hemoglobin (HbO), deoxy-

hemoglobin (HbR) 
[86–94] 

Oxygenation wave size 
[91,95,96] 

HbO, HbR  
[97–99] 

HbO, HbR [100] 

Additional challenges associated with the EEG specifically includes the artifacts and 
Electromagnetic Interference (EMI). The EEG signals of interest have a frequency ranging from 0.01 
to approximately 100 Hz with a voltage changing from a few microvolts to around 100 µV [101]. As 
the amplitude is very small, the EEG signal is especially prone to EMI. The noise attributed to the 
EEG signal can come from a variety of different artifacts and can either be electromagnetic noise 
caused by neurophysiological or non-neurophysiological sources [102]. The neurophysiological 
artifacts most frequently originate from ocular, muscular or cardiac contaminants [101]. Non-
neurophysiological sources stem from external artifacts that are prominently caused by power line 
interference, this can be observed at 50/60 Hz in the spectral analysis [102,103]. As schematically 
illustrated by the electric circuit diagram in Figure 12 the result of this is a parasitic capacitance 
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between the power line and subject/measurement equipment. The EMI thus interacts with the human 
body and the measurement cables which function as an antenna for the electromagnetic 
contamination [103]. Some of the more prominent causes for power line interference stems from 
fluorescent lamps 1–2 m away from the EEG device [102,104]. Additional non-neurophysiological 
artifacts include instrumentation artifacts. These are artifacts that stem from within the electronics, 
and are observed as thermal noise, shot noise or 1/f (pink) noise [103]. As the EEG equipment is highly 
susceptible to artifacts, proper procedures to prevent these effects need to be considered to obtain 
accurate EEG recordings. 

 
Figure 12. EMI induced by mains power. Adapted from [102]. 

3.4. Voice Patterns 

In most aerospace applications, voice communications have a key role in various operational 
tasks. It is therefore desirable to implement speech recognition and pattern analysis due to its various 
advantages; chiefly the fact that specific equipment is not required and it is an inherently unobtrusive 
process. Early studies mainly focused on speech emotion recognition [105–109]. A prototypical 
speech analysis system based on pitch and energy is presented in Figure 13. Other prosodic and 
linguistic features can also be exploited for voice pattern analysis. 

 
Figure 13. Top level architecture of speech analysis systems based on pitch and energy. Adapted from 
[105]. 

The most common speech analysis methodology is to firstly convert input sound signals into 
power spectrum by different filter banks such as Mel-Frequency Cepstrum Coefficients (MFCCs), 
log-frequency power coefficients (LFPCs) and Two-Layered Cascaded Subband Cepstral Coefficients 
(TLCS). The MFCCs exploits Fast Fourier Transform (FFT) to get a power spectrum, which then maps 
the power to the mel-scale. Hence, the MFCCs represents the amplitude of the spectrum by taking 
discrete cosine transform to the log power of mel frequencies [110]. LFPCs are similar to MFCCs but 
consider all frequency ranges equally unlike MFCCs [111]. By comparing three of these filters, TLCS 
outperform MFCCs and LFPC because it cover wider ranges of frequency and consider both inter-
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subband and intra-subband energy [112]. The largest emotion diversity occurs at 0–250 Hz in low 
frequency and 2.5 kHz–4 kHz in high frequency [113]. Moreover, the spectrogram representation can 
also assist in determining the range of frequencies representing in red high amplitude, in green mid 
amplitude and in blue low amplitude signals [113]. After completing feature extraction, a machine 
learning algorithm is employed to infer emotions from spectrograms. Deep neural networks have 
been used rather successfully for this particular process. The most common architectures are 
recurrent neural networks and feed-forward neural networks. For feed-forward architectures, the 
Convolution Neural Network (CNN) is increasingly used [105]. 

However, emotional states are potentially related to cognitive states and a recent study 
presented the estimated cognitive load from voice pattern [114], though the methodology used was 
different from emotion recognition, and involved a Support-Vector Machine (SVM). SVM is a 
machine learning algorithm which requires labelled trained data. In order to define cognitive load, 
self-assessed workload was involved in the scenario to label the training data. The participant can 
rate the level of workload in real time. This can determine when the operator is overloaded which is 
a very important feature in human-machine systems. 

3.5. Face Expressions 

Face expression analysis is another common method to evaluate human emotional states. 
Similarly to voice patterns, face expression analysis does not require specialised equipment beyond 
an optical camera (e.g., RGB) and it is unobtrusive. Face expression mainly relies on a deep neural 
network, and the most popular model is the CNN. In such approach, the input image is convolved 
in the convolution layers to generate a feature map through a filter collection. Fully connected 
networks are then combined into feature maps. The last layer before the output layer is softmax 
algorithm which recognises face expressions by their class-based layers [115]. 

The primary step of face expressions recognition is face detection by detecting eyes, mouth and 
nose as reference points [116]. Action Units (AU) are commonly used to classify the changes in facial 
features [117]. AU-based recognition is a group of basic face muscles actions, with each action 
represented by a number. For instance, AU01 is inner brows raise and AU07 is lower eyelids raise 
[118]. The neural network is used for detection, tracking and further analys of emotional or cognitive 
states [119]. One frequently used open source software is OpenFace which supports various advanced 
functionalities such as real-time analysis and does not require calibration [120]. Figure 14 presents 
the facial behaviour analysis architecture of OpenFace. 

 
Figure 14. OpenFace architecture based on [120]. 
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For face detection and facial landmark detection, Conditional Local Neural Fields (CLNF) are 
used in this software. CLNF exploit advanced patch experts that capture the variations of local 
appearance. This model works well on webcam and allows real-time processing. Gaze estimation is 
additional feature that makes OpenFace different from other software [120]. The results from 
OpenFace are AUs which needs a further analysis for emotional or cognitive states. Different 
combinations of AUs are associated to specific emotional states. Basic emotions comprise of 
happiness, anger, sadness, fear, surprise, neutral and disgust. In addition, compound emotions 
include a combination of two basic emotions [121]. 

4. Machine Learning in Estimation Modules 

The uses of each sensor and the performance characterisation were described in previous 
sections. This section discusses the techniques to make use of the collected data from the sensors to 
estimate cognitive states, as in the estimation module in CHMI2 framework. Particular importance 
lies in the fusion of the data from multiple sensors because, as discussed in Section 1, the various 
neurophysiological variables are indicative of different cognitive states and are characterised by 
different uncertainties and characteristic times. The fusion of data from multiple neurophysiological 
sensors to estimate cognitive states can follow three fundamental approaches: (A) independently 
estimating cognitive states from each sensor then fusing these estimates; (B) cognitive state estimation 
based on a fused pool of extracted features from each sensors, and (C) using data from one or more 
sensors to extract more/different information from another sensor and/or for sanity checks. Approach 
(A) supports the use of simpler legacy statistical methods and data analytics techniques for the data 
fusion, but is less robust as individual observed extracted features can be caused by multiple 
combinations of cognitive states. Approach (B) is more reliable than (A) as the simultaneous 
observation of different features mitigates the ambiguity in cognitive state estimation, however it 
requires more complex data fusion techniques to account for a high number of frequently nonlinear 
relationships. Approach C is potentially the most reliable and robust, however requires a much 
deeper understanding of neurophysiological processes, partly not yet achieved at this stage. A well-
designed multi-sensor system yields a minimal uncertainty in the cognitive state estimation, hence 
supports a more reliable and robust inference of cognitive states to drive system reconfiguration. The 
CHMI2 estimation module emulates the mathematical correlations between the sensed 
neurophysiological variables and the cognitive state variables that are passed to the adaptation layer. 
However, in addition to the limited consent in the literature on the nature of the mathematical 
correlation between neurophysiological measurements and cognitive states, differences in individual 
characteristics can be very significant in terms of neurophysiological response and maximum 
endurable workload and fatigue levels. These important factors prompted researchers in this domain 
to explore suitable classification techniques from statistics or computer science (machine learning), 
which can support both the determination of the overall correlation and also their fine-tuning to the 
particular conditions of the individual. The most commonly adopted methods to estimate human 
cognitive states from psycho-physiological data include: artificial neural networks [64,67], fuzzy 
systems [122,123], discriminant analysis [71,124], Bayesian models [53,125,126], SVM [127,128], and 
committee machines [82,129]. 

Artificial neural networks attempt to emulate the workings of the human neurons, each acting 
as a node performing simple functions, but which can be combined in a very large number of 
neurons. The connections between nodes are governed by weights, which are to be tuned during a 
preliminary training phase, allowing the machine to ‘learn’. Fuzzy logics attempt to mimic the human 
brain in software, employing logical reasoning to make inferences from observed states based on how 
close to the expectation is a recorded value. Expert knowledge is stored in an “if-then” rules database 
which maps a fuzzy set of input data to a fuzzy set of output data. The linguistic structure of the rule 
base offers a primitive explanation of the system’s reasoning from both the researcher and end-user 
perspectives; however, the usability and significance of this explanation is quickly lost when 
increasing the number of inputs and outputs and the complexity of the fuzzy membership functions. 
Neural-Fuzzy Systems (NFS) [130,131], are conceived to combine the advantages of both artificial 
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neural networks and fuzzy inference systems. NFS are an effective method of determining the 
unknown correlations in presence of high measurement uncertainties and show much better 
repeatability and technological maturity compared to other techniques. 

 

4.1. Neuro-Fuzzy Inference Concept 

The estimation module of the CHMI2 infers the cognitive states (e.g., workload, fatigue, 
attention, etc.) based on a combination of neurophysiological, environmental and task-specific input 
data streams following approach (B) described in the previous paragraph. A neuro-fuzzy 
implementation allows these input-output relationships to be described through fuzzy IF-ELSE rules, 
which provides greater diagnosticity and transparency than other machine learning methods. Fuzzy 
systems provides some flexibility in adapting the system parameters to individual users so that the 
correlations exploited by the CHMI2 are unique to different individuals and their daily 
neurophysiological/mental state. Fuzzy logic provides a simple structure to the classifier and support 
a greater degree of result interpretability when compared to other machine learning approaches such 
as deep learning. The fuzzy logic is encoded in a simple neural network, allowing the fuzzy system 
to be fine-tuned using offline or online learning. The offline calibration of CHMI2 inference system is 
presented in Figure 15. 

 
Figure 15. Offline calibration of CHMI2 inference system. 

Fuzzy logic captures well some aspects of the ambiguity and subjectiveness of human thinking, 
and is used to model specific aspects of uncertainty. Unlike probability, which expresses the 
likelihood of an event’s occurrence, fuzzy logic expresses the degree of truth of that event occurring. 
As an example, the MWL of an operator can be expressed in the following manner: 

• MWL has a probability of 0.15 to be high and 0.85 to be medium. 
• MWL is high to a degree of 0.15 and medium to a degree of 0.85. 

The categories of high, medium and low can be expressed by fuzzy sets. The degree to which an 
observed event belongs to each category is described by the membership value of each fuzzy set. 
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4.2. Fuzzy Sets 

In the context of the CHMI2 research, fuzzy sets are used to describe specific characteristics of 
the human user, such as their neurophysiological or cognitive features. Fuzzy rules are then used to 
describe the relationship between the user’s neurophysiological and cognitive states, such as in the 
case of HR, BLR, Dwell Time (DT), MFA in: 

R1: IF [(HR is Low) AND (BLR is High) AND (DT is High)] THEN [(MFA is High)] 
R2: IF [(HR is High) AND (BLR is Low) AND (DT is High)] THEN [(MWL is High)] 

and so on. The parameters of the fuzzy sets (such as a set’s centres and spreads) are assumed to differ 
across individuals. For example, a novice operator might have a workload tolerance as characterised 
by the fuzzy set shown in Figure 16a while an experienced operator might have a workload tolerance 
as characterised by the fuzzy set shown in Figure 16b. 

Workload

Membership

1
Low Medium High

Workload

Membership

1
Low Medium High

(a) (b)  
Figure 16. Fuzzy sets associated to different workload tolerance of individuals. Compared to (a), (b) 
shows an individual with a higher tolerance for high workload conditions. 

A suitable fuzzy inference system for CHMI2 then needs to specify (1) the number for fuzzy sets 
used to represent each input feature, (2) the type and parameters of the membership function used 
to describe each fuzzy set, (3) the rules which characterise the relationship between the input features 
and output cognitive states, as well as (4) the inference method employed. Figure 16 illustrates typical 
Trapezoidal membership functions – “fuzziness” derives from the overlaps in the membership 
functions. 

4.3. Neuro-Fuzzy Networks 

Neural fuzzy systems allow the structure of fuzzy inference systems to be expressed as a neural 
network. Neural-fuzzy systems networks afford a high degree of flexibility in optimising the 
parameters of the fuzzy inference system, given suitable training data. The architecture of a basic 
neural-fuzzy network typically contains the following layers: 

• Input layer: each node passes the input values to the next layer. 
• Antecedent layer: each node fuzzifies the inputs using a membership function. The node output 

is the fuzzy set membership for a given input parameter. 
• Rule layer: each node combines the fuzzified inputs using a fuzzy AND operator. The node 

output is the rule firing strength. For example, K Sugeno-type rules, where the rules can be 
formulated as [9]: 

Rule k: If x1 is A1n and x2 is A2n and ... and xi is Ain then fj = pk0 + pk1×1 + pk2x2 + … + pkixi 

where Ain is the nth membership function of input xi, fj is the output node function associated 
with output j and pki denotes the coefficients of this node function for rule k and input i. 

• Consequent layer: each node combines the fired rules using a fuzzy OR operator. The node 
output is the membership value of the output parameter. 

• Output layer: each node acts as a defuzzifier for the consequent nodes to obtain a crisp output. 
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4.4. Membership Functions 

As conceptually depicted in Figure 17, the fuzzy set is characterised by its membership 
functions. These can assume various forms, which yield different advantages and disadvantages. The 
most common types include Trapezoidal, Gaussian, and Sigmoidal functions, which are described 
below. Additionally, Figure 18 only shows an example of some different membership function types 
but in the real system, these three different types cannot be used together. 

b_trapz c_trapz d_trapz c_gaus

slope: a_sigmoid/4

𝜎

c_sigmoid

Trapezoid Gaussian Sigmoid

𝜇(𝑥)

 
Figure 17. Membership function: Trapezoid, Gaussian and Sigmoid. 

 (1). Trapezoidal membership function 

The trapezoidal membership is defined by four different parameters (𝑎, 𝑏, 𝑐, 𝑑), with a < b < c < d, 
as: 

𝜇(𝑥) =
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧ 0, 𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎 , 𝑎 ≤ 𝑥 ≤ 𝑏       1, 𝑏 ≤ 𝑥 ≤ 𝑐𝑑 − 𝑥𝑑 − 𝑐 , 𝑐 ≤ 𝑥 ≤ 𝑑

0, 𝑥 ≥ 𝑑
 (32) 

(2). Gaussian membership function 

The Gaussian membership function is defined by parameters (𝑐, 𝜎) as: 𝜇(𝑥) = exp ቈ− (𝑥 − 𝑐)ଶ2𝜎ଶ ቉ (33) 

(3). Sigmoidal membership function 

The sigmoidal membership function is defined by parameters (𝑎, 𝑐) as: 𝜇(𝑥) = 11 + exp൫−𝑎(𝑥 − 𝑐)൯ (34) 
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5. Sensor Performance Characterisation 

Sufficient accuracy and reliability of neurophysiological measurements is essential to 
successfully realise the human-machine system concepts described in Section 1. The uncertainties 
from sensors are discussed in this section. Moreover, this section also presents the performance 
characterisation methodologies for two neurophysiological sensors that are being used to support 
the development of the CHMI2 concept: eye-tracking sensors and wearable cardiorespiratory sensors. 
Lastly, the propagation of uncertainty from eye activity and cardiorespiratory from inference system 
are discussed. 

5.1. Eye-Tracking Sensors 

The eye tracking performance is commonly characterised by three parameters: sampling 
frequency, accuracy and precision. Sampling frequency is number of measurements per second (Hz). 
Accuracy is the difference between true eye position and measured position (in°). Precision is the 
measured gaze consistency (in°). The precision of each cluster is calculated based on Equation (5) and 
the mean accuracy computed from Equation (6): 

𝜃ோெௌ = ඨ𝜃ଵଶ + 𝜃ଶଶ + ⋯ + 𝜃௡ଶ𝑛  (35) 

where 𝜃௜ denotes the angular distance of the i-th sample: 𝜃௔௖௖ = 𝜃̅௜ − 𝜃௜∗ (36) 

where 𝜃̅௜ is the mean location of all the points in cluster i, while 𝜃௜∗ is the cluster’s actual location. 
Additionally, the uncertainty analysis can be studied from the measured scene camera’s Field of 

View (FOV). FOV is geometric distance from the object to the camera. The propagation of uncertainty 
given by: 

𝜎ிை௏ =  ට𝜎௟ଶ +  ቀ 𝑙𝑑ቁଶ 𝜎ௗଶ − 2𝑙𝑑 𝜎௟ௗ𝑑 ቈ1 + ቀ 𝑙2𝑑ቁଶ቉  (37) 

where 𝜎௟ is uncertainty from the object measurement, 𝜎ௗ is uncertainty from distance measurement, 
l is the object known dimensions and d is the distance from the object to the camera. 𝜎௟ௗ  is the 
covariance of measured distance. In order to get a conservative 𝜎ிை௏, 𝜎௟ௗ is assumed to be zero. 

In a recent study, we investigated the experimental characterisation of remote and wearable eye-
tracking sensors in detail [9]. The study covered the mentioned three parameters and the uncertainty 
of FOV. The methodology for static performance is that subjects fixate on 16 static different points 
spacing around with larger gaze angles. The precision and accuracy of gaze angles for both type of 
sensors are presented in Figure 18. The accuracy of wearable sensor is consistent with a value of 1.7° 
across the gaze angle ranges while precision of the remote sensor is consistent with a value of 1° 
across the gaze angle ranges. 

The dynamic performance was studied by having participants track a moving object along a 
given trajectory. Human error had a significant influence on the tracking performance since the 
results revealed gaze trails that were leading or lagging the moving object, leading to poorer 
performance compared to the static case. The 2-sigma accuracy with approximately 95% of all gaze 
points (Figure 19) was calculated to 8.6° and 5.9° for the wearable and remote eye tracker, 
respectively. 
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Figure 18. Precision and accuracy of gaze angle. Left: a wearable eye tracker. Right: a remote eye 
tracker.  

  
Figure 19. Fitting curve of lognormal distribution with 95% of all gaze points including in shaded 
area. Left: wearable eye tracker. Right: remote eye tracker. 

Although not addressed by this study, blink rate performance is also an important aspect for 
human-machine systems. The true blink rate can be quantified by manual counting from the recorded 
video of the sensors. Using this, the blink rate error can then be calculated by: 𝐵𝐿𝑅௘௥௥௢௥ =  𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑏𝑙𝑖𝑛𝑘  (38) 

5.2. Cardiac Sensors 

The performance criteria for cardiorespiratory sensors are validity, reliability and sampling 
frequency. Validity is the difference between the baseline and measured data. Reliability is the 
consistency of the results within the variable. Sampling frequency is the same as described in Section 
4.1. A common methodology of characterising the performance of such sensors is to compare the 
measurements of clinically validated sensors with the sensor of interest [29,30]. The validity can be 
calculated given by Equations (9) and (10): 
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𝑅𝑀𝑆௘௥௥௢௥ = ටଵ௡ ∑ (𝑥௜௥௘௙ − 𝑥௜௠௘௔௦௨௥௘ௗ)ଶ௡௜ୀଵ   (39)

where n is the number of data and 𝑥௜௥௘௙ and 𝑥௜௠௘௔௦௨௥௘ௗ  are the reference and the measured values 
respectively. The Correlation Coefficient (CC) is given by: 𝐶𝐶 =  ௡(∑ ௫௬)ି(∑ ௫)(∑ ௬)ඥሾ௡ ∑ ௫మି(∑ ௫)మሿሾ௡ ∑ ௬ି(∑ ௬)మሿ  (40)

where n is the number of data and x and y are the reference datum and the measured values 
respectively. 

A comparative evaluation of the wearable sensor data against a clinically validated device is 
pursued in the characterisation experiment. For heart activity, a clinically validated ECG sensor is 
used as baseline while a spirometer is used for respiratory monitoring. Two types of exercises are 
conducted, involving high physical and mental workload respectively. The physical exercise can be 
subdivided into three parts: pre-exercises, exercise and post-exercise, lasting one minute, three 
minutes and one minute, respectively. In the mental exercise, three sub-sections are carried out, 
including Mental Rotation, Hampshire Tree Task and N-back Task. Consistently with the raw signal 
treatment used in a majority of cardiac monitoring devices, Butterworth low-pass filtering is applied 
to the collected data, so that signals higher than a selected cut-off frequency are lessened. This type 
of low-pass filter is the most consistent noise removal process for most neurophysiological 
measurements, as it removes any high-frequency content, which cannot be physically generated by 
biological processes. Such process increases the accuracy of the neurophysiological measurement and 
is included in the experimental characterisation as there would be little interest in characterising the 
raw data. 

Table 9 presents the comparison of HRV measurements between a commercial wearable device 
and a clinical-validated one. Overall, the RMS error is lower than 0.1 which means that there are 
minimal errors between the two devices. Concerning the CC, the result shows good correlation (i.e., 
CC ≥ 0.75). 

Table 9. Summary of validity of BioHarness in heart rate measurement. 

Subject 
Physical Testing Mental Testing 
RMS 
Error CC 

RMS 
Error CC 

1 0.0953 0.9153 0.0345 0.7878 
2 0.0276 0.8839 0.0148 0.8997 
3 0.1386 0.6312 0.1113 0.7008 

5.3. EEG Sensors 

The EEG performs measurements by using differential amplifiers, as schematically illustrated in 
Figure 20. The circuit functions by comparing two input voltages from two different electrodes and 
giving an output voltage that amplifies the difference between the two voltages and cancels out 
common voltages. This is described by the equation below. The input signals can be compared in 
various arrangements referred to as montages. A commonly adopted layout is the referential 
montage, where all channels are compared with a common reference: 𝑉௢௨௧ =  A(V௜௡ା − V௜௡ି)  (41) 
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Figure 20. Referential montage. 

The raw EEG signal measured is displayed in Figure 21. The shown measurement is performed 
using 16 data electrodes, one reference electrode and one ground electrode. The placement of 
electrodes is described following the 10–20 international system. Generally, the amplitude of the EEG 
signals is up to 100 µV [101], however the amplitude of raw signals in the figure is much larger as 
they are affected by a large interference from the mains power (240 V/50 Hz), which is discussed in 
Section 3.3. Some blink artifacts are observed on several channels and particularly Fp1, Fpz and Fp2 
but since these raw measurements underwent no filtering, they are contaminated with a high 
interference from the mains power. 
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Figure 21. Raw EEG signal with excessive noise. 

By applying suitable filters to the raw data, it is possible to extract the desired EEG signals, as 
shown in Figure 22. Both windows in the figure display the EEG signals that are passed through a 50 
Hz notch filter. However, in addition to the notch filter, the signals in the right window are also 
processed through a 0.1 Hz high pass filter and a 30 Hz low pass filter. The raw data gathered from 
the EEG electrodes are processed with software filters for the high pass, low pass and notch filters, 
where the digitized signals amplitude of the corresponding frequencies are reduced. The software 
uses a Butterworth filter, with a slope of 12 dB/octave for the high and low pass filters. While the 
amplitude of signals in both windows remains mostly within 100 µV, the signal in the left one is 
noisier compared to the right window. Most importantly, the lack of the low-frequency high pass 
filter causes signals in the left window do drift from the initial value. Henceforth, the filtered 
measurements in the right window are the closest estimation of the electrical activity originated in 
the subject’s brain. Applying the low pass and high pass filters eliminates the undesired components, 
as the signals of interest mainly lie within 0.1 Hz to 30 Hz [132]. After frequency filtering, blink and 
other movement-related artifacts are however still imbedded in the signal. These can most clearly be 
seen in the first three channels as dips in the signal. Such neurophysiological artifacts are undesirable 
as these electrical signals do not originate from within the brain [101,103]. Subsequent signal 
processing focusses on the frequency domain as different cognitive states can be determined from 
the subject by using a power spectrum analysis [132]. 
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Figure 22. Left: EEG signal with notch filter only. Right: EEG signal with notch, low pass and high 
pass filters. 

5.4. Propagation of Uncertainty 

This section describes the analysis of uncertainty propagated through the estimation module of 
CHMI2. The methodology of this analysis was introduced in [9]. Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS) [133] are considered in this analysis. The propagation of uncertainty is calculated 
through five layers. The final uncertainty from the output layer is given by: 

𝜎௬ೕ = ඨ෍൫𝑓௜ ∙ 𝜎௪ഥೖ൯ଶ + ቆ ∏ 𝜇஺ഢ̂(𝑥ప̂)௜∗∑ ∏ 𝜇஺ഢ̂(𝑥ప̂)௜∗௞∗ ቇଶ ∙ ෍൫𝑝௞ప̂ ∙ 𝜎௫ഢ̂൯ଶప̂ஷ଴௞∗  (42) 

where, i represents input, j represents output, 𝑓௜  and 𝑝௞ప̂  are known from K Sugeno-type rules 
describes in Section 4.3, k is number of rules, 𝜇஺ഢ̂  is membership function from input layer which 
Gaussian membership function (Equation (33)) is used, 𝚤̂  denotes an iterator, 𝜎௫ഢ̂  is known 
uncertainty input and 𝜎௪ഥೖ  is the uncertainty associated with normalisation layer, which was 
discussed in detail in [9]. 

In MWL case study, the participant has to accept new arrival or departure traffic from upstream 
ATM sectors by himself in this event. The ANFIS-based system was prompted to identify the 
correlation between the HR and BR in mental workload condition: 

1. If HR is high and BR is low, then MWL = 1 
2. If HR is mid and BR is mid then MWL = 0.5 
3. If HR is low and BR is high, then MWL = 0.1 

MWL is quantified by the number of aircraft in the scenario. Table 10 details the cluster centres 
for the participant. 
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Table 10. Cluster centres for heart rate and breathing rate for mental workload in ATM scenario. 

 HR 
(L/min) 

BR 
(L/min) 

Low 63.2 11.5 
Medium 64.9 14.6 

High 68.3 15.3 

The uncertainty input of HR 𝜎HR = 5.5 min−1 and BR 𝜎BR = 1.6 min−1 are applied to define the 
output uncertainty of the fuzzy system which is illustrated on Figure 23. The high uncertainty region 
occurs mostly where the rules get conflicted. 

 
Figure 23. ANFIS inference uncertainty from breathing rate and heart rate for mental workload. 

6. Aerospace Applications 

In recent years, the RMIT Cyber-Physical Systems (CPS) Group has conducted several Research 
and Development (R&D) projects supported by the Australian Government and high-calibre 
industry partners in the area of Cognitive Human-Machine Systems (CHMS) and Neuroergonomics 
for avionics, Air Traffic Management (ATM), and defence/space systems. Numerous lessons were 
learned from contemporary human factors/ergonomics and medical studies demonstrating that 
human performance in complex and demanding tasks is affected by a variety of neurophysiological 
and environmental factors, which can be readily measured and analysed using advanced cyber-
physical system architectures, including sensor networks and Artificial Intelligene (AI)/ML 
techniques. 

Neurotechnology is a promising field of research attracting increased attention and resources. 
Australia is an emerging player in this field, with several ongoing aerospace/defence and 
transportation R&D initiatives and with various new-entrant enterprises, which have been founded 
to develop neurotechnologies predominantly for precision/preventive medicine and advanced 
therapeutic applications. In parallel with evolutions driven by a deeper understanding of the human 
brain and its functions, intelligent automation and trusted autonomy are being introduced in present 
day cyber-physical systems to support diverse tasks including data processing, decision-making, 
information sharing and mission execution. 

Due to the increasing level of integration/collaboration between humans and automation in 
these tasks, the operational performance of closed-loop human-machine systems can be enhanced 
when the machine monitors human stressors and cognitive states and adapts to them in order to 
maximise the effectiveness of the Human-Machine Teaming (HMT). Recent technological 
developments have led to neurophysiological observations becoming an increasingly reliable 
methodology to evaluate human cognitive states (e.g., workload, fatigue and situational awareness) 
using a variety of wearable and remote sensors. The adoption of ad-hoc sensor networks can be seen 
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as an evolution of this approach, as there are notable advantages if these sensors collect and exchange 
data in real-time, while their operation is controlled remotely and synchronised. 

6.1. Single Pilot Operation and Unmanned Aircraft Systems 

Single Pilot Operations SPO are currently possible only in the military, general aviation and 
business jet domains, whereas a crew of at least two pilots is currently mandated for airline transport 
aircraft, i.e., the ones certified under the so-called Part 25 of the various national airworthiness 
policies. Due to the substantial growth in commercial air travel demand and an aggravating global 
shortage of qualified airline pilots [134], SPO is becoming an attractive option for airline transport 
aircraft within the next two decades [135]. However, single pilot operated transport aircraft are faced 
with great challenges, as the pilot on board may become incapacitated, thus resulting in potentially 
fatal accidents. Moreover, SPO may in certain conditions pose an excessive cognitive demand on the 
single on-board pilot, as the capacity for cognitive work is limited in humans. To address these 
challenges, SPO concepts include novel avionics systems such as a Virtual Pilot Assistant (VPA) and 
a Ground Pilot (GP) [136]. The combination of a VPA and GP provides a promising solution to 
perform the functions normally accomplished by the Pilot Not Flying (PNF) in airline transport 
aircraft. The VPA shall support advanced and highly automated surveillance, communication and 
flight management capabilities, including adaptive task allocation through CHMI2. For instance, the 
VPA interfaces with the Separation Assurance and Conflict Avoidance (SA&CA) function of the Next 
Generation Flight Management System (NG-FMS), which supports autonomous flight planning, 
deconfliction and real-time re-optimisation capabilities. Additionally, the VPA system shall promptly 
detect an incapacitation event, thus triggering a reallocation of all tasks and giving the VPA 
autonomous control while at the same instant alerting and transferring the human control authority 
to the GP. The VPA shall therefore monitor the on-board pilot using non-intrusive sensors. Early VPA 
research and experimentation will include a variety of monitoring devices for measuring central 
nervous parameters, eye movements, cardiorespiratory parameters, facial expression and voice 
patterns. 

SPO involves various modes of operation, as discussed in [137] (see Figure 24). The first and 
nominal mode includes the single on-board pilot and the VPA cooperating regarding the decision 
making and flying tasks, while the GP provides dispatch information and communication with Air 
Traffic Control (ATC). 

 
Figure 24. Integrated Air-Ground Concepts of Operation for SPO and UAS remote control. 

In nominal operation the GP will act in this role for a dynamically varying number of SPO 
aircraft determined by the adaptive CHMI2 framework. Hence, if a GP is under high or low cognitive 
workload the number of aircraft assigned will be adjusted. How the GP will maintain ongoing 
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situational awareness of, and switch context amongst, the assigned aircraft are important issues for 
the CHMI2 to address. Under a circumstance where the on-board pilot is under high workload, such 
as take-off, landing and unforeseen events, a GP will be specifically allocated to the aircraft, so that 
the GP then provides dedicated assistance. Hence the GP will act as a ground located PNF, where 
both human operators would continuously monitor the instruments, radio communication and 
perform crosschecks when notified about changes by the VPA. In the third mode the on-board pilot 
has become partially or fully incapacitated. Here the VPA has full autonomy of the aircraft until a 
team of two GP take over control authority and supervise the aircraft to a safe landing at the nearest 
airport available. 

The main components of the VPA include the flight management, communication, surveillance 
and CHMI2 modules, the corresponding system architecture can be seen in Figure 25 [136]. The 
CHMI2 is a crucial component of the VPA system, providing the necessary reductions in workload 
as well as incapacitation-detecting capabilities that will support the case for SPO certification. The 
CHMI2 assists the pilot with several intelligent functions such as information management, adaptive 
alerting, situation assessment as well as dynamic task allocation. The combination and the 
interactions between these modules to support the on-board pilot and the GP is the core VPA. The 
system has some important capabilities that includes a reliable, secure and high-speed Command 
and Control (C2) link, where the GP can take direct control of the aircraft from the Ground Control 
Station (GCS) similarly to a medium-large UAS, and an Airborne Surveillance and Separation 
Assurance Processing (ASSAP), which provides autonomous SA&CA. 

 
Figure 25. VPA system architecture from [136]. 

6.2. One-to-Many and Air Traffic Management 

The One-to-Many (OTM) concept refers to a situation in which multiple UAV are controlled and 
commanded by a single operator. As of today, OTM operations are still challenging for the human 
operator since they can induce an excessive mental workload due to cognitively demanding and 
time-critical tasks [138]. The design of HMI2 for the supervisory control of multiple UAV is therefore 
a main area of research. The HMI2 for supervisory control shall provide suitable information and 
level of automation to maintain the cognitive states of the human operator within a desirable range 
[139]. Hence, the application of the CHMI2 concept is particularly promising for OTM ground control 
stations. Applying the CHMI2 concept, the real-time adaptation in HMI2 ground control station is 
driven by the human operator’s cognitive states: Mental Fatigue (MFA), Mental Workload (MWL) 
and Situation Awareness (SA) to enhance decision making and mission performance [140,141]. 
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The concept of a single human operator coordinating multiple assets is key to ATM, which 
however deals only with a limited subset of functions: deconfliction, advisory/information/alert 
services and traffic flow optimisation. Air Traffic Control (ATC), a major component of ATM is 
deemed one of the most demanding cognitive tasks for human beings as it involves complex and 
time-critical situation assessment and decision-making related to multiple aircraft. The MWL of Air 
Traffic Controllers (ATCo) has been the main focus of several studies to improve the safety and 
efficiency of the ATM system [61,142]. In order to quantify the MWL of ATCos, early studies used 
Electrocardiograph (ECG) devices to monitor sinus arrhythmia as a measure [143]. One main 
limitation of this approach is that the ATC task requires verbal communication, which affects the 
sinus arrhythmia measurements. Thus, various other sensors were used to investigate MWL of 
ATCos. The neurophysiological sensors include ECG, eye tracking and Electroencephalography 
(EEG) devices [57]. Most of the neurophysiological parameters changed as expected during MWL 
increasing: Heart Rate (HR), Breathing Rate (BR), Heart Rate Variability (HRV), and blood pressure. 
Likewise, a suitable set of neurophysiological sensors are continuously studied with respect to MWL 
of ATCos feasibility and sensitivity. 

The complexity of the ATC task correlation with spectral power was studied by EEG [72]. 
Additionally, fNIRS, one of neuroimaging sensors, also uses to study MWL in ATC mission; certified 
professional controllers under realistic scenarios with emergent and typical condition were 
monitored. The results show the relation of fNIRS and MWL in real scenarios [92]. Apart from MWL, 
Situation Awareness is one of the key important cognitive states for ATCos. The eye tracking sensor 
was started to monitor operators’ eye activities since visual workload is the main causes of MWL for 
ATCos [144]. However, the use of a single sensor is not optimal. Hence, the deployment of 
neurophysiological sensors to operational settings could help evaluate the cognitive state of staff 
assigned to perform critical tasks and contribute to improving the safety and efficiency of human-
machine systems [145]. The CHMI2 concept was applied successfully to the ATM domain, which has 
the important advantage of involving reasonably standardised scanning patterns and phraseology, 
benefiting eye-tracking and voice pattern analysis techniques respectively. 

6.3. Space Applications 

The CHMI2 concept and the associated neurophysiological sensor network implementations 
have a clear potential in the space application domain. Since the NASA Mercury, Gemini, and Apollo 
programs, sensor systems have been used to collect astronaut neurophysiological data to identify and 
plan for support activities that counteract the effects of degraded performance on mission safety 
[146]. Likewise, during the shuttle era, an ECG system known as the Operational Bioinstrumentation 
System (OBS) was used to monitor astronaut neurophysiological health during launch and re-entry 
phases [147]. Today, the International Space Station (ISS) contains the most comprehensive 
neurophysiological sensor system known as the Crew Healthcare Systems (CHeCs) and is the 
primary means of astronaut neurophysiological monitoring [148]. The CHeCs is comprised of a suite 
of neurophysiological sensors including blood pressure (BP), electrocardiograph (ECG), and heart 
rate monitoring (HRM) systems. The measurements from the CHeCs system are solely used to infer 
the real-time physical health state of astronauts during periodic fitness and health evaluations, as 
well as to support scientific experiments on cardiovascular physiology. Similarly, neurophysiological 
sensors are incorporated into the spacesuits used during Extra-Vehicular-Activities (EVA) as well as 
other forms of advanced life support. As of today, neurophysiological observations from the CHeCS 
and EVA spacesuit systems are not used to infer astronaut cognitive state, but rather via a self-
administered neurocognitive assessment [149]. The Spaceflight Cognitive Assessment Tool for 
Windows (WinSCAT) is a time constrained cognitive battery comprised of well understood 
neurophysiological tests including verbal and visual memory, mental arithmetic, sustained attention 
and spatial imagery [150]. The test is performed approximately on a monthly basis and is assessed 
against the baseline performance of the individual determined in pre-flight conditions to provide a 
“fitness-for-duty” assessment as opposed to real time monitoring. 
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In combination with state-of-the-art research into the development of comprehensive, wearable 
and non-invasive neurophysiological sensors such as NASA Lifeguard system [151], existing space-
based neurophysiological sensor networks and cognitive assessment tools form in part the 
underlying sensor framework to address the evolution towards human-machine systems based on 
real time cognitive assessment for safety and mission critical systems. Additionally, the success 
(although limited) of previous research [149] into inferring cosmonaut and astronaut cognitive state 
through voice pattern analysis should be capitalized on, as current state-of-the-art 
neurophysiological sensor networks show promise in removing previously encountered limitations 
in the system’s ability to deterministically distinguish between stress or emotional arousal in 
recorded voice. Most importantly, and in direct alignment to the requirements set in NASA’s 
Bioastronautics roadmap [152], the employment of closed loop human machine systems and 
associated cyber-physical sensor networks will play a key part in meeting the current challenges to 
mitigate human factors risks with low earth orbit (LEO) space flight along with new and exciting 
challenges associated with lunar and long-term planetary missions. 

7. Conclusions 

This article addressed the increasingly important role of sensor networks in aerospace cyber-
physical system applications, focusing on the sensors used to enhance human-machine teaming, such  
as those enabling the implementation ofCognitive Human-Machine Interfaces and Interactions 
(CHMI2) system concepts. Many safety-critical tasks are inherent in aerospace applications such as 
Air Traffic Management (ATM) and a reliable monitoring of the human operator will be highly 
instrumental in the future due to the severe consequences of reduced performance. On the other 
hand, space applications currently mainly use sensor networks for medical monitoring purposes. 
However, human-machine interactions in space are expected to evolve considerably in the future. 
The main aspects associated with neurophysiological sensors were described: the state of art, 
neurophysiological parameters and their relationship to human cognitive states. Depending on the 
adopted neurophysiological measures, the minimum performance requirements are different. 
Moreover, some of the measures can be affected by the operator’s level of training and experience 
such as in the case of Heart Rate (HR) and Heart Rate Variability (HRV). The summary of cognitive 
states shows that the combined use of diverse sensors in a network can improve the reliability and 
accuracy of cognitive states estimation with respect to using only single measures, since the change 
in one measure is typically correlated to several cognitive states. It is essential that the suite of sensors 
records neurophysiological data reliably and accurately. This paper also briefly discusses the 
characterisation of an eye tracking and cardiorespiratory sensor being used in the CHMI2 framework. 
The results show that the sensors have an adequate performance for use in the framework. 
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