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Abstract: Robust and centimeter-level Real-time Kinematic (RTK)-based Global Navigation Satellite
System (GNSS) positioning is of paramount importance for emerging GNSS applications, such as
drones and automobile systems. However, the performance of conventional single-rover RTK degrades
greatly in urban environments due to signal blockage and strong multipath. The increasing use of
multiple-antenna/rover configurations for attitude determination in the above precise positioning
applications, just as well, allows more information involved to improve RTK positioning performance
in urban areas. This paper proposes a dual-antenna constraint RTK algorithm, which combines
GNSS measurements of both antennas by making use of the geometric constraint between them.
By doing this, the reception diversity between two antennas can be taken advantage of to improve
the availability and geometric distribution of GNSS satellites, and what is more, the redundant
measurements from a second antenna help to weaken the multipath effect on the first antenna.
Particularly, an Ambiguity Dilution of Precision (ADOP)-based analysis is carried out to explore the
intrinsic model strength for ambiguity resolution (AR) with different kinds of constraints. Based
on the results, a Dual-Antenna with baseline VEctor Constraint algorithm (RTK) is developed. The
primary advantages of the reported method include: (1) Improved availability and success rate of
RTK, even if neither of the two single-antenna receivers can successfully solve the AR problem; and
(2) reduced computational burden by adopting the concept of measurement projection. Simulated
and real data experiments are performed to demonstrate robustness and precision of the algorithm in
GNSS-challenged environments.
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1. Introduction

The recent interest in emerging Global Navigation Satellite System (GNSS) applications such as
unmanned aerial vehicles (UAVs) and automatic driving systems has necessitated the development of
robust and centimeter-level precise GNSS positioning.

Real-time Kinematic (RTK) has been proven to be a reliable and efficient method for precise
localization of outdoor vehicles in open areas [1]. In principle, integer ambiguity resolution (AR) is the
key to RTK relative positioning. Traditional AR technique comprises two steps: Firstly, estimate the
float ambiguities by solving the equations of GNSS measurements; and then, search for the correct
integer ambiguities in ambiguity space with the center of the float ambiguities [2]. Therefore, precise
estimation of float ambiguities, which are significantly influenced by satellite geometric distribution
and the qualities of GNSS measurements, especially the ones of pseudoranges [3], is crucial for
successful AR.

However, the performance of RTK deteriorates significantly in urban environments, since the
number of visible satellites slumps because of frequent signal blockages in dynamic situations [1], and
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pseudorange measurements are contaminated with large multipath errors from trees and high-rises.
As a result, the AR success rate declines dramatically and, therefore, RTK fails to provide accurate
positioning results.

Intensive research efforts have been expanded to enhance GNSS precise positioning in harsh
environments. The two mostly investigated directions are multi-sensor fusion [4–6] and robust GNSS
positioning algorithms [7,8], respectively. Firstly, by integrating GNSS with self-contained sensors
such as inertial navigation systems (INS), unmanned vehicles are able to maintain accurate navigation
through GNSS signal outages for a short time, which is normally one minute or more [9]. Nevertheless,
the challenge in GNSS/INS integrated positioning comes with its disability for long-term precise
navigation during GNSS blockages due to the significant bias drift in consumer-grade INS modules,
which are usually applied in commercial unmanned vehicles. Secondly, existing algorithms to improve
the robustness of GNSS positioning against degraded environments mainly focus on the elimination of
noisy GNSS measurements and anomalies, such as multipath detection algorithms [7] and Carrier
phase-based Receiver Autonomous Integrity Monitoring (CRAIM) [8]. That is, the robustness and
precision gains come at the cost of reduced availability. Therefore, in order to fulfil robust and low-cost
precise positioning, a solution to enhance RTK availability and precision is still needed.

Fortunately, a new research direction appears, along with the use of multiple-antenna configuration
in above-mentioned GNSS applications. The initial purpose of such configuration is to determine the
attitude of the moving platform, which is denoted by orientation of the baselines between several
onboard RTK antennas [4]. Nevertheless, raw GNSS observations from an auxiliary rover and the
relationship between master and auxiliary rovers, in fact, could also be used to improve AR performance
of the positioning system [10–13]. As according to Taro [14], pronounced measurement discrepancy
between two antennas appears when vehicles maneuver through urban areas, since each GNSS antenna
involves different GNSS signal propagation paths. Specifically, due to tree and building blockages,
there is a high probability that rover antennas have different numbers of satellites in view, and even for
common-viewed satellites, their measurement noise characteristics may differ from antenna to antenna.

Previous studies on multi-antenna configured AR have focused on several recognized directions.
One of the most popular research fields is high-reliability attitude determination [15]. Since the
two antennas are closely placed, the common-mode errors can be removed almost completely by
differencing their GNSS measurements, and therefore, orientation of the baseline is much easier to
obtain. In dual-antenna attitude determination, a more efficient ambiguity-searching algorithm is
the Multivariate Constraint Least-squares AMBiguity Decorrelation Adjustment (MC-LAMBDA) by
Nadarajah [15,16]; while for low-cost GNSS receivers with ultrashort baseline, a Mean Square Residual
(MSR) method was developed in [17]. Another research direction of multi-antenna reception is to
improve the robustness of RTK-GNSS precise positioning. Firstly, at the fix solution level, where correct
integer ambiguities have been obtained, Farhad [10] combined redundant GNSS fix solutions from
three antennas with a weighted estimation method to increase precision of the positioning result. In
addition, Taro [14] improved availability of the multi-antenna positioning outputs by transforming
redundant antenna positions to the UAV master antenna position, using the previously solved vehicle
attitude. Secondly, to improve the accuracy of the float ambiguity estimation, Paziewski [13] developed
a Multiple Rover Constraints (MRC) algorithm to re-parameterize ambiguities of common-viewed
satellites from auxiliary rover to phase center of the master rover. The MRC method reduced the
positioning error of open-sky GNSS receivers from 2.9–2.7 cm, with a medium length baseline up
to 70 km. However, in urban areas, applications of this method are significantly limited because of
the reduced number of satellites visible from both antennas, as well as the enlarged noise in GNSS
measurements. In summary, although these methods indeed increase precision and availability of
RTK positioning by making use of the multi-antenna configuration under given environments, the
AR success rate improvement at the float solution level is limited and therefore, there is still room
for improvement.
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The approach presented here aims at developing a method that takes full advantage of the
measurement redundancy and diversity, along with the geometric constraints, between two closely
placed rover antennas to improve accuracy of the float ambiguity estimation and, consequently, the AR
success rate. In particular, to explore the instinct model strength for AR with different dual-antenna
constraints, an innovative Ambiguity Dilution of Precision (ADOP)-based analysis is performed in
this paper.

The contribution is organized as follows. In Section 2, a brief introduction of the fundamental
model of dual-antenna constraint AR is firstly given, then gains from different constraint formulae are
analyzed and compared, and thereafter, according to the results, a Dual-Antenna with baseline VEctor
Constraint (DAVEC) algorithm is proposed. Section 3 demonstrates the robustness and availability
of the proposed algorithm with both simulation and real GNSS data experimental results. At last,
conclusions are drawn in Section 4.

2. Methodology

2.1. Functional Model

Figure 1 schematically illustrates a dual-antenna configured RTK system. The base station is fixed
in an open sky area and two GNSS rovers, termed as the master rover (r1) and the auxiliary rover
(r2), respectively, are rigidly mounted on the surface of a vehicle. Positioning results of the system
correspond to the phase center of the master rover.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 22 

 

The approach presented here aims at developing a method that takes full advantage of the 

measurement redundancy and diversity, along with the geometric constraints, between two closely 

placed rover antennas to improve accuracy of the float ambiguity estimation and, consequently, the 

AR success rate. In particular, to explore the instinct model strength for AR with different dual-

antenna constraints, an innovative Ambiguity Dilution of Precision (ADOP)-based analysis is 

performed in this paper. 

The contribution is organized as follows. In Section 2, a brief introduction of the fundamental 

model of dual-antenna constraint AR is firstly given, then gains from different constraint formulae 

are analyzed and compared, and thereafter, according to the results, a Dual-Antenna with baseline 

VEctor Constraint (DAVEC) algorithm is proposed. Section 3 demonstrates the robustness and 

availability of the proposed algorithm with both simulation and real GNSS data experimental results. 

At last, conclusions are drawn in Section 4. 

2. Methodology 

2.1. Functional Model 

Figure 1 schematically illustrates a dual-antenna configured RTK system. The base station is 

fixed in an open sky area and two GNSS rovers, termed as the master rover (r1) and the auxiliary 

rover (r2), respectively, are rigidly mounted on the surface of a vehicle. Positioning results of the 

system correspond to the phase center of the master rover.  

 

Figure 1. Dual-antenna configuration for precise Real-time Kinematic (RTK)-based Global Navigation 

Satellite System (GNSS) positioning. 

In terms of single-rover RTK, carrier phase and pseudorange observations are firstly differenced 

between satellites to remove receiver clock errors, and then, differenced again between rover and 

base receivers to remove common-mode errors, generating the following double-differenced (DD) 

observation model [18]: 

,

,

+ ij ij

rb rb

ij ij

rb

ij

rb

ij ij

rb r r Pb b

N

P

 







  =   

 + = 

+
 (1) 

where  is the wavelength,  is the carrier phase observation in cycle, and P  is the pseudorange 

measurement in meter. ( ) ( ) ( )
ij i j

rb rb rb
  =   −    with ( ) ( ) ( )

* * *

rb r b
  =  −   is the double-differencing 

operator between base b  and rover r  with satellite i  and j ,   is the geometric range, N  is 

the unknown carrier phase integer ambiguity, and   represents all the errors that cannot be 

modeled. In this paper, satellite j  is set as the reference satellite. 

As mentioned before, traditional AR resolution of the observation model in Equation (1) uses a 

two-step procedure [11]. Firstly, estimate the float ambiguity solution by means of weighted least 

Figure 1. Dual-antenna configuration for precise Real-time Kinematic (RTK)-based Global Navigation
Satellite System (GNSS) positioning.

In terms of single-rover RTK, carrier phase and pseudorange observations are firstly differenced
between satellites to remove receiver clock errors, and then, differenced again between rover and
base receivers to remove common-mode errors, generating the following double-differenced (DD)
observation model [18]:

λ∇∆Φi j
rb = ∇∆ρi j

rb + λ∇∆Ni j
rb +∇∆εi j

rb,Φ

∇∆Pi j
rb = ∇∆ρi j

rb +∇∆εi j
rb,P

(1)

where λ is the wavelength, Φ is the carrier phase observation in cycle, and P is the pseudorange
measurement in meter. ∇∆(·)i j

rb = ∆(·)i
rb − ∆(·) j

rb with ∆(·)∗rb = (·)∗r − (·)
∗

b is the double-differencing
operator between base b and rover r with satellite i and j, ρ is the geometric range, N is the unknown
carrier phase integer ambiguity, and ε represents all the errors that cannot be modeled. In this paper,
satellite j is set as the reference satellite.

As mentioned before, traditional AR resolution of the observation model in Equation (1) uses
a two-step procedure [11]. Firstly, estimate the float ambiguity solution by means of weighted least
squares adjustment; secondly, search for the integer ambiguities with the well-known LAMBDA
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method. Once the AR problem is successfully solved, a centimeter-lever accurate baseline vector rrb
can be obtained based on the resolved integer ambiguities, which is termed as the fixed solution.

However, in GNSS-challenged environments, the number of visible satellites from single-rover
receivers may fail the minimum requirement for RTK positioning. And yet, for all that, it is worth
noticing that the entire dual-antenna system may have adequate satellites in view altogether, such as
the situation shown in Figure 1. What is more, as the two antennas are fixedly mounted on the vehicle,
formulae about the ultrashort baseline between rovers actually impose several constraints that can
be used to benefit the RTK precise positioning. Consequently, a dual-antenna constraint DD model
is constructed: λ∇∆Φi j

r1b= ∇∆ρi j
r1b + λ∇∆Ni j

r1b +∇∆εi j
r1b,Φ

∇∆Pi j
r1b= ∇∆ρi j

r1b +∇∆εi j
r1b,Pλ∇∆Φpq

r2b= ∇∆ρpq
r2b + λ∇∆Npq

r2b +∇∆εpq
r2b,Φ

∇∆Ppq
r2b= ∇∆ρpq

r2b +∇∆εpq
r2b,P

yξ = f
(
rr1b − rr2b

)
(2)

where r1 and r2 denote the master and the auxiliary rover, respectively, satellite j and q are reference
satellites for each base and rover pair, and constraint function f

(
rr1b − rr2b

)
is the known formula of the

dual-antenna geometric constraint with prior information yξ.

Particularly, function f
(
rr1b − rr2b

)
can be characterized as either a hard or a soft constraint. By

definition, a hard constraint must be satisfied by any solution, while a soft constraint specifies a
function to be optimized by choosing among the feasible solutions [19]. This paper takes yξ as a soft
constraint to allow for measurement errors. Therefore, the measurement equation of the baseline
constraint can be written as:

ŷξ = f
(
rr1b − rr2b

)
+ εξ (3)

where the “hat” symbol indicates measured quantities and εξ is the error in ŷξ.
By linearizing Equations (2) and (3), a linearized dual-antenna constraint DD functional model is

derived as follows:

λ∇∆Φr1b
∇∆Pr1b
λ∇∆Φr2b
∇∆Pr2b

^
yξ


=


An×3 0n×3 λIn×n 0n×m

An×3 0n×3 0n×n 0n×m

0m×3 Am×3 0m×n λIm×m

0m×3 Am×3 0m×n 0m×m

ΞT
ξ

−ΞT
ξ

0p×n 0p×m




rr1b
rr2b
∇∆Nr1b
∇∆Nr2b

+


∇∆ε1,Φ
∇∆ε1,P
∇∆ε2,Φ
∇∆ε2,P
εξ


(4)

where n and m are number of unknown ambiguities of r1 and r2, respectively, matrix A includes
the satellite/receiver geometry [9], n×n is an identity matrix of size n, and Ξξ is the geometric matrix
projecting vector rr1b − rr2b to the constraint domain.

Accordingly, the measurement model above becomes an Integer Least Squares (ILS) problem with
the form:

y = Hx + ε, x∇∆N∈ Z (5)

where H is the design matrix, x is the state vector, y is the measurement vector, and ε is the measurement
noise with covariance matrix R.

2.2. ADOP Analysis for Three Types of Dual-Antenna Constraints

In this section, the specific formulae of different constraint function f
(
rr1b − rr2b

)
are discussed.

As the two rover antennas are rigidly mounted on the surface of the platform, on the one hand, the
geometric distance between antennas is fixed, while on the other hand, the baseline vector is relatively
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easy to obtain through the attitude determination. Therefore, three Dual-Antenna Constraint (DAC)
strategies are evaluated in this paper, which are termed as:

Strategy #1: Dual-Antenna with NO Constraint (DANOC).
Strategy #2: Dual-Antenna with baseline LEngth Constraint (DALEC). The linearized constraint

measurement equation is as follows:

ŷξ,BL =
r̂r2b − r̂r1b

‖r̂r2b − r̂r1b‖

(
rr2b − rr1b

)
+ εξ,BL, Ξξ,BL =

r̂2 − r̂1

‖r̂2 − r̂1‖
(6)

with baseline length noise variance of Rξ,BL = σ2
ε, where ‖ · ‖ is the 2-norm operator for vectors.

Strategy #3: Dual-Antenna with baseline VEctor Constraint (DAVEC), and the corresponding
measurement equation is derived as:

ŷξ,BV =
(
rr2b − rr1b

)
+ εξ,BV, Ξξ,BV = I3×3 (7)

with three-dimension baseline noise variance matrix of Rξ,BV =
~
Rξ.

Substituting Equations (6) and (7) into (4), we get the specific expression of strategies DALEC
and DAVEC. To evaluate the performance gain of each strategy with respect to the single-antenna
condition, the following two questions should be discussed:

1. Although new information is introduced to the single-rover observation model from both baseline
constraints and GNSS measurements of the auxiliary rover, the number of states to be estimated
increases too, making it harder to precisely resolve the float ambiguities. Then, is there any benefit
from the dual-antenna combination?

2. As extra computation load is required to solve the expanded ILS measurement equations in the
dual-antenna model, as well as to obtain the constraint observations in DALEC and DAVEC,
we need to figure out which strategy should be chosen, and is there any method to reduce
computational complexity of the algorithm?

In this paper, we take the AR success rate as an evaluating indicator, and specifically, introduce
the Ambiguity Dilution of Precision (ADOP) to analyze the corresponding theoretical success rate.

2.2.1. Ambiguity Dilution of Precision

The ADOP concept was introduced by Teunissen [20] as an easy-to-compute scalar diagnostic to
evaluate the GNSS model strength for the AR problem. Despite its wide applications in analyzing
single-rover baseline models [21], the ADOP has rarely been used in multi-antenna constraint AR
analysis. The definition of ADOP is given as [20]:

ADOP =
√∣∣∣Q

∇∆N̂

∣∣∣ 1
ν

(8)

where ν is the number of unknown DD ambiguities, | · | is the determinant operator, and Q
∇∆N̂ is the

covariance matrix of float ambiguities. The structure of Q
∇∆N̂ includes design and noise matrixes of

the measurement model in Equation (4):

Q =
(
HTR−1H

)−1
=

 Qb̂ Qb̂∇∆N̂
QT

b̂∇∆N̂
Q
∇∆N̂

 (9)

Accordingly, the AR success rate Pc is bounded with:

Pc ≤

[
2Φ

( 1
2ADOP

)
− 1

]ν
(10)
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where Φ(x) denotes the cumulative distribution function of the standard normal distribution.
According to Equations (8) and (9), no additional measurements are required to compute the

ADOP value. Furthermore, the geometric distribution of the satellites and measurement noise of GNSS
observables—which as mentioned before, are the two key factors of successful AR—are denoted by the
design matrix H and the noise matrix R, respectively.

2.2.2. ADOP of the Dual-Antenna Constraint System

This section firstly deduces the general expression of Dual-Antenna Constraint ADOP, which is
denoted by ADOPDAC, and then discusses the specific forms of ADOPDAC under different strategies.

According to the ILS problem of (4), the observation model can be divided into two parts, one of
which involves the joint DD measurements from r1 and r2, with related design matrix G, measurement
noise covariance matrixRGand measurement vector yG; the other involves the constraint with related
design matrix Hξ, constraint noise covariance matrix Rξ, and constraint vector yξ. Therefore, linearized
measurement equations in (4) can be rewritten as:[

ŷG
ŷξ

]
=

[
G
Hξ

]
x +

 ∇∆ε
εξ

 (11)

where ŷG =
[
λ∇∆ΦT

r1b ∇∆PT
r1b λ∇∆ΦT

r2b ∇∆PT
r2b

]T
and Hξ =

[
ΞT
ξ −ΞT

ξ 0
]
.

According to Equation (A1) in Appendix A, the dual-antenna ambiguity covariance matrix
~
Q
∇∆N̂

in Equation (8) is given as:

~
Q
∇∆N̂ =

(
Q−1

G + HT
ξR−1

ξ Hξ

)−1
∇∆N̂

=
(
QG −QGHT

ξ

(
HξQGHT

ξ + Rξ
)−1

HξQG

)
∇∆N̂

(12)

where QG =
(
GTR-1

GG
)−1

is the covariance matrix of the constraint-free situation.
The relationship between QG and state covariance matrixes of r1 and r2 under single-antenna

RTK conditions, which are represented by Q1 and Q2, respectively, satisfies:

QG =


I3

I3

In

Im




Qb1
Qb1∇∆N1

QT
b1∇∆N1

Q∇∆N1

Qb2
Qb2∇∆N2

QT
b2∇∆N2

Q∇∆N2




I3

In

I3

Im

 (13)

with

Q1 =

 Qb1
Qb1∇∆N1

QT
b1∇∆N1

Q∇∆N1

 , Q2 =

 Qb2
Qb2∇∆N2

QT
b2∇∆N2

Q∇∆N2

 (14)

Substituting Hξ and Equation (13) into (12), we can get the joint covariance matrix
~
Q
∇∆N̂ and the

corresponding ADOPDAC:

ADOPDAC =

√√∣∣∣∣∣∣
 Q∇∆N1

−QT
b1∇∆N1

WεQb1∇∆N1
QT

b1∇∆N1
WεQb2∇∆N2

QT
b2∇∆N2

WεQb1∇∆N1
Q∇∆N2

−QT
b2∇∆N2

WεQb2∇∆N2

∣∣∣∣∣∣
1

n+m

(15)

where the weight matrix Wε can be expressed as:

Wε = Ξε

(
ΞT
εQb1

Ξε + ΞT
εQb2

Ξε + Rε
)−1

ΞT
ε . (16)



Sensors 2019, 19, 3586 7 of 23

According to the equation above, Wε is essentially the inverse product of the joint positioning state
error matrix with effects of the baseline measurement noise, as well as the single-antenna positioning
state errors of r1 and r2 taken into consideration. To be specific, geometric covariance matrixes Qb1

,
Qb2

, and Rε are firstly superposed in the constraint domain and then transferred to the positioning
domain by the geometry matrix Ξ.

Next, by substituting Equations (6), (7), and (16) into (15), the specific expressions of ADOP for
the above three constraint strategies can be derived as follows:

ADOPDANOC =

√∣∣∣∣∣∣
[

Q∇∆N1

Q∇∆N2

]∣∣∣∣∣∣
1

n+m

=

√∣∣∣Q∇∆N1

∣∣∣ 1
n


n
n+m

√∣∣∣Q∇∆N2

∣∣∣ 1
m


m
n+m

(17)

ADOPDALEC =

√√∣∣∣∣∣∣
[

Q∇∆N1

Q∇∆N2

]
−

 QT
b1∇∆N1

QT
b2∇∆N2

Wε,BL
[

Qb1∇∆N1
Qb2∇∆N2

]∣∣∣∣∣∣
1

n+m

(18)

ADOPDAVEC =

√√∣∣∣∣∣∣
[

Q∇∆N1

Q∇∆N2

]
−

 QT
b1∇∆N1

QT
b2∇∆N2

Wε,BV
[

Qb1∇∆N1
Qb2∇∆N2

]∣∣∣∣∣∣
1

n+m

(19)

where Wε,BV =
(
Qb1

+ Qb2
+ Rε,BV

)−1
and Wε,BL = 1

ξΞξ,BLΞT
ξ,BL, with ξ = Ξξ,BLQb1

ΞT
ξ,BL +

Ξξ,BLQb2
ΞT
ξ,BL + Rξ,BL.

As can be seen, Equation (17) clearly shows that the ADOPDANOC is basically a weighted average
of the single-antenna ADOP of r1 and r2. The weighting factor is assigned according to the number of
unknown DD ambiguities; while in Equations (18) and (19), a correction term is added to the ambiguity
covariance matrix of strategy DANOC. To be specific, the modification is theoretically a projection of
the combined state errors of r1 and r2, which are represented by weighting matrix Wε, from position
domain to ambiguity domain.

Moreover, noting that Wε,BV is reversible, according to Appendix A, the formula of ADOPDAVEC

can be transformed as follows:

ADOPDAVEC= ADOPDANOC

√√ ∣∣∣∣∣(Qb1
−Qb1∇∆N1

Q−1
∇∆N1

QT
b1∇∆N1

)
+

(
Qb2
−Qb2∇∆N2

Q−1
∇∆N2

QT
b2∇∆N2

)
+Rε,BV

∣∣∣∣∣∣∣∣∣Qb1
+Qb2

+Rε,BV

∣∣∣∣
1

n+m

(20)

Apparently, compared with ADOPDANOC, an extra combination gain in DAVEC from prior
knowledge of the baseline vector turns up, which is represented by the second term on the right
in Equation (20). In terms of physical meaning, in the numerator of the correction term above, the
positioning state errors of both r1 and r2 are reduced, resulting in a smaller value than the dominator.
However, since the weighting matrix Wε,BL is irreversible, an explicit expression of the relationship
between ADOPDANOC and ADOPDAVEC cannot be provided.

2.2.3. ADOP-Based Performance Gain Evaluation

In order to examine the performance gain of above dual-antenna combination strategies, the
ADOP-based instantaneous AR success rates are simulated and compared in the following scenarios:

Scenario #0: Single-antenna (SANT) RTK as a reference;
Scenario #1: DANOC while each rover has one exclusive satellite that can only be observed by

each antenna itself, and thus, the whole system has one more satellite in view than r1/r2;
Scenario #2-1: DALEC while two antennas share a common view of satellites;
Scenario #2-2: DALEC while each rover has one exclusive satellite;
Scenario #3-1: DAVEC while two antennas share a common view of satellites; and
Scenario #3-2: DAVEC while each rover has one exclusive satellite.
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In all scenarios, receiver r1 and r2 observe an equal number of satellites ranging from 5 to 10 with
a cut-off elevation angle of 15 degrees. Standard deviations (STDs) of the additive white Gaussian
noise in r1 and r2 carrier phase and pseudorange measurements are 0.005 m and 0.5 m, respectively.
STDs of the baseline length measurement in Scenarios 2-1 and 2-2 is 0.010 m, and STDs of the baseline
vector measurements in Scenario 3-1 and 3-2 are 0.040 m and 0.080 m in horizontal and vertical
directions, respectively.

Figure 2 shows the simulated AR success rate of above six scenarios.
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Dual-Antenna with NO Constraint (DANOC), Dual-Antenna with baseline LEngth Constraint
(DALEC), and Dual-Antenna with baseline VEctor Constraint (DAVEC) compared with referencing
single-antenna method.

As depicted in the figure, the success rate increases as the number of visible satellites rises.
However, compared with Scenario 0, a slump appears when two antennas are directly combined in
Scenario 1. The reason is that, for DANOC, AR resolutions of r1 and r2 are mutually independent
and the ADOP value for the master rover is equal to that in Scenario 0; however, the total number of
unknown DD ambiguities of the dual-antenna system (Na) is doubled, thus the success rate drops to
one-half of the root of the single-antenna AR. For DALEC, the AR estimation upper bound is increased
by 10–20%; meanwhile, the emergence of exclusive satellites in Scenario 2-2 also brings some extra
gain. The largest combination gain comes from DAVEC, whose AR success rate is greater than 90% for
all simulated number of visible satellites.

According to the results above, no combination gain could be seen from DANOC, which means
that the cost of increasing system unknowns is greater than the benefit of adding the information of
rover r2. Nevertheless, with the help of prior constraint information of the baseline vector, DALEC and
DAVEC can bring positive combination gains to the dual-antenna system. The best AR performance
comes with the DAVEC method, and should be adopted in the dual-antenna algorithm design.

2.3. Precise Positioning with DAVEC

2.3.1. Mechanism

In this section, a DAVEC-based RTK algorithm is developed. The basic idea of the algorithm is to
generate a set of equivalent GNSS measurements of the master rover by projecting observations of the
auxiliary rover to the phase center of the master rover with the use of the known baseline vector.
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The reason for the projection process is as follows. On the one hand, in terms of the ILS problem
in Equation (4), the rover r2-related state parameters are of no concern to our system, but increase both
computational burden and AR difficulty of the algorithm. On the other hand, with the early-solved
baseline vector, no Degree of Freedom (DOF) remains between r1 and r2, meaning that the position
and DD ambiguities of r2 can be determined uniquely by that of r1, along with the baseline vector.
Therefore, with the procedure of projecting, a new dimension-reduced observation model can be
obtained in the form of:

~
y = f

 rr1b

∇∆
^
Nr1b

+^
ε (21)

where ∇∆
^
Nr1b is the equivalent DD ambiguities of all satellites in view of the dual-antenna system.

Specifically, ∇∆
^
Nr1b comprises of two parts: DD ambiguities of satellites observed by r1 and DD

ambiguities of satellites observed by r2 only, denoted by ∇∆Nr1b and ∇∆
~
Nr2b, respectively.

Below, a four-step projection process for DAVEC-based RTK is introduced.
Step i: Select the reference satellites for rovers r1 and r2.
Line-of-Sight (LOS) satellites of the dual-antenna system can actually fall into three classes:

Common-viewed ones observed by both r1 and r2, ones observed by r1 only, and ones observed by r2
only, which are named as classes ComSAT, ExcSAT1, and ExcSAT2 in Figure 3, respectively.
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Figure 3. Classification of Line-of-Sight (LOS) satellites of the dual-antenna system according to each
antenna’s visibility situation.

Reference satellites for differencing between satellites are selected among the common visible
satellites in class ComSAT. Specifically, if two or more satellites are observed by both r1 and r2, the
one with the highest elevation angle (such as the Sat 2 in Figure 3) should be chosen as the reference
satellite for both antennas. Otherwise, if the number of satellites in ComSAT is less than two, which
means there are no common DD ambiguities between r1 and r2, the reference satellites are selected
independently as the same as the single-antenna situation.

Step ii: Project pseudorange observations of the auxiliary antenna to the phase center of the
master rover.

The DD pseudorange measurement of rover r2 can be transferred to the phase center of r1 by
adding a geometric range correction to it:

∇∆P̃pq
r1b = ∇∆Ppq

r2b −∇∆ρ̂pq
r2r1

(22)
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where q is the reference satellite of r2, p represents any other satellite except q, and ∇∆ρ̂pq
r2r1

is the
geometric range correction term, which can be approximated as:

∇∆ρ̂pq
r2r1
≈ −

(
1p

r2
− 1q

r2

)
· r̂r2r1 (23)

where ‘·’ denotes the dot operator, 1p is the LOS unit vector from the phase center of r2 to satellite p,
and r̂r2r1 is the estimated baseline vector between r1 and r2.

Step iii: Project carrier phase observations of the auxiliary antenna to the phase center of the
master rover.

In addition to geometric range corrections, the DD ambiguities between the DD carrier phases of
r1 and r2 also need to be eliminated from the projection of DD carrier phase measurements of r2, since
what we will estimate are the DD ambiguities of r1, not the ones of r2. Thus, the projection can be
expressed as:

λ∇∆Φ̃
pq
rb1

= λ∇∆Φpq
r2b −∇∆ρ̂pq

r2r1
− λ∇∆Npq

r2r1
(24)

where ∇∆Npq
r2r1

is the DD ambiguity of the baseline vector rr2r1 . Specifically, since the measurement
error in ∇∆Φpq

r1r2
is small, even in GNSS-challenged environments (within 0.25 cycle), and ∇∆ρ̂pq

r2r1

is derived from the accurate baseline vector, the DD ambiguity ∇∆Npq
r2r1

can be determined as the
rounding result of their difference, as shown in (25). One exception is that the involved satellite p or q
is observed by r2 only and the DD ambiguities between r1 and r2 are inexistent; in this case, we set the
corresponding DD ambiguities zero, which means we will solve the DD ambiguities of r2, instead.

∇∆Npq
r2r1

=


[
∇∆Φpq

r2r1
−
∇∆ρ̂pq

r2r1
λ

]
, if (p, q) are common in view

0, otherwise
(25)

where [·] is the rounding operator.
After the projection, DD ambiguities of r2 satellite pairs in class ComSAT are removed from the

state vector in Equation (4). In other words, only DD ambiguities related to satellites in class ExcSAT2
are added to the original single-antenna state vector, thus greatly reducing the computational burden,
as well as the difficulty of solving the AR problem.

Step iv: Calculate covariance matrix of projected GNSS measurement noises of the
auxiliary antenna.

To estimate noise characteristics of the projected measurements, we should take the baseline
vector measurement noises into consideration. Namely, the projected measurement noise covariance
matrix can be derived by superimposing the ranging noise in ∇∆ε2,Φ,P with that in ∇∆ρ̂pq

r2r1
.

~
R1,Φ,P = R2,Φ,P + DΨ ·Ce

nRn
r2r1

(Ce
n)

T
ΨTDT (26)

where R2,Φ,P is the noise covariance matrix of r2, Rn
r2r1

is the baseline vector noise matrix in the
East-North-Up (ENU) coordinate, Ce

n is the rotation matrix from ENU to the Earth-Center-Earth-Fixed

(ECEF) coordinate, Ψ =
[

11
r2

12
r2
· · · 1n

r2

]T
is the geometric projection matrix, and D is the

single-differencing matrix.
In this paper, the ENU errors of r̂r2r1 , which are denoted by σ2

e , σ2
n , and σ2

u are mutually independent,
thus Rn

r2r1
can be formulated as a diagonal matrix with Rn

r2r1
= diag

(
σ2

e σ2
n σ2

u

)
. In practice, the

baseline vector noise matrix can also be obtained during the attitude determination of the baseline
vector. A detailed derivation of Equations (22)–(26) is provided in Appendix B.

Consequently, the joint covariance matrix of measurements ∇∆P̃pq
r1b and λ∇∆Φ̃

pq
rb1

is expressed as:

~
R1 =


~
R1,Φ 0

0
~
R1,P

 (27)
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2.3.2. Functional Model of DAVEC-Based RTK

Based on Equations (22)–(27), a dimension-reduced DAVEC measurement model is re-constructed
as follows:

λ∇∆Φi j
r1b = ∇∆ρi j

r1b + λ∇∆Ni j
r1b +∇∆εi j

r1b,Φ

∇∆Pi j
r1b = ∇∆ρi j

r1b +∇∆εi j
r1b,P

λ∇∆Φ̃
iq
r1b = ∇∆ρiq

r1b + λ∇∆Niq
r1b +∇∆ε̃iq

r1b,Φ

∇∆P̃iq
r1b = ∇∆ρiq

r1b +∇∆ε̃iq
r1b,P

λ∇∆Φ̃
pq
r1b = ∇∆ρpq

r1b + λ∇∆Npq
r2b +∇∆ε̃pq

r1b,Φ
∇∆P̃pq

r1b = ∇∆ρpq
r1b +∇∆ε̃pq

r1b,P

(28)

where the third and fourth equations in (28) correspond to r2-visible satellites in class ComSAT, and the
fifth and sixth ones correspond to those in class ExcSAT2.

After linearizing the original and projected DD measurements with respect to the state vector in
Equation (21), a new linearized DAVEC model reads as:

λ∇∆Φrn1b
λ∇∆Φrn2b
∇∆Prn1b
∇∆Prn2b

λ∇∆
~
Φrm1b

λ∇∆
~
Φrm2b

∇∆
~
Prm1b

∇∆
~
Prm2b

︸            ︷︷            ︸
y

=



An1×3 λIn1×n1 0n1×n2 0n1×m2

An2×3 0n2×n1 λIn2×n2 0n2×m2

An1×3 0n1×n1 0n1×n2 0n1×m2

An2×3 0n2×n1 0n2×n2 0n2×m2

Am1×3 0m1×n1 λIm1×n2 0m1×m2

Am2×3 0m2×n1 0m2×n2 λIm2×m2

Am1×3 0m1×n1 0m1×n2 0m1×m2

Am2×3 0m2×n1 0m2×n2 0m2×m2

︸                                               ︷︷                                               ︸
H


rr1b

∇∆Nrn1b
∇∆Nrn2b
∇∆Nrm2b

︸         ︷︷         ︸
~
x

+



∇∆εrn1b,Φ
∇∆εrn2b,Φ
∇∆εrn1b,P
∇∆εrn2b,P

λ∇∆
~
εrm1b,Φ

λ∇∆
~
εrm2b,Φ

∇∆
~
εrm1b,P

∇∆
~
εrm2b,P

︸             ︷︷             ︸
ε

(29)

where n2 = m1 is the number of satellites in class ComSAT, n1 and m2 are satellites visible only in r1 and
r2, respectively. As can be seen, positioning state parameters rr2b and the unknown DD ambiguities
of r2, which can be calculated from those of r1, are eliminated from the original functional model in
Equation (4), so are the constraint measurement equations.

Finally, after solving the ILS problem in Equation (29), a more accurate float solution can be
obtained, thus facilitating the subsequent AR search.

Here, a simple discussion is given below to provide a qualitative explanation for the performance
gain from DAVEC. For simplicity, considering a single GNSS system and single-frequency dual-antenna
system, we denote s and t as the number of visible satellites in r1 and r2, respectively, l as the number
of total DD measurements, ω as the number of system states, and k as the number of satellites observed
by the auxiliary antenna only. The formulae of l and ω are given as:

l = 2(s− 1) + 2(t− 1)
ωDANOC = 6 + (s− 1) + (t− 1)
ωDAVEC = 3 + (s− 1) + k

(30)

Taking s = t = 4, 6, 8 and k = 0, 1 for example, the number of measurements and unknowns of
DANOC and DAVEC are compared in Table 1.

As can be seen, compared with DANOC, the number of unknowns is reduced by half in DAVEC
with k = 0 and is as the same as the one in the single-rover situation. In this sense, the performance
gain is obtained from redundant observations of the same satellite. Moreover, in the condition of k = 1,
although one more DD ambiguity is introduced, an improved satellite distribution is provided, which
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becomes another source of the DAVEC performance gain. Therefore, the float solution is enhanced by
two factors: Redundancy in GNSS observations and improvement of the satellite geometric distribution.

Table 1. Number of GNSS measurements and unknowns of DANOC and DAVEC.

s/t l
ω

DANOC DAVEC, k = 0 DAVEC, k = 1

4 12 12 6 7
6 20 16 8 9
8 28 20 10 11

3. Experiments

In this section, simulation experiments are firstly conducted to analyze the effects of measurement
noises on AR performance of DAVEC, then road tests in urban areas are carried out for performance
validation of the algorithm.

3.1. ADOP-Based AR Success Rate Simulation

To illustrate the effects of different factors on the DAVEC algorithm, an ADOP-based success rate
simulation is conducted, as shown in Figure 4b, with normal/large measurement noises of r1 and r2,
and different baseline vector estimation noises. Code pseudorange and carrier phase noise STDs of the
large noise situation are 1.0 m and 0.052 cycle, respectively, and the ones of the normal noise situation
are 0.5 m and 0.026 cycle, respectively. Simulation experiments are designed with both antennas that
suffer from large measurement noises (L, L), both have normal noises (N, N), and the noise STDs of r2
are significantly greater than that of r1 (N, L). Baseline vector noise STDs in horizontal range from
0.001 to 0.05 m, and in vertical the values are doubled, under the assumption that the DD ambiguities
between r1 and r2 are resolved correctly. The AR success rate of single-antenna RTK with r1 is used as
a reference. The satellite distribution is plotted in Figure 4a, with six visible satellites in a shared view
of r1 and r2.
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Success rate of DAVEC and Single Antenna (SANT) algorithms under (a).

As can be seen, the success rate drops as the baseline noise rises, and when the noise exceeds
a certain threshold, the AR success rate of DAVEC becomes lower than that of SANT. For noise
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combinations (L, L) and (N, N), the thresholds of noise STDs in horizontal are greater than 0.05 m,
which is approximately the upper bound value for correct AR estimations between r1 and r2. While for
the combination with r2 GNSS measurements much more deteriorated than those of r1, a dual-antenna
combination gain still exists when the horizontal noise STD is smaller than 0.016 m.

In addition, a similar simulation under a poor satellite distribution is conducted with all the
six visible satellites distributed in the northern sky. The success rate and the satellite geometry
distribution are plotted in Figure 5. With such satellite geometry distribution, the success rate drops
greatly in comparison with the situation under normal geometry distribution. For all measurement
noise combinations (L,L), (N,N), and (N,L), the proposed DAVEC method always has performance
advantages over SANT over the range of simulated baseline noises. Here, comparing with the
simulation experiment above, under normal satellite distributions, a larger baseline noise STD range is
seen due to the significantly decreased referencing single antenna AR success rate.
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algorithms under (a).

In fact, the ENU error STDs of baseline vectors in urban environments are usually at the level of
0.005 m in horizontal and of 0.010 m in vertical. Meanwhile, in most GNSS dual-antenna applications,
the distance between the two antennas is less than 1.5 m [22].

3.2. Road Test

3.2.1. Data Collection

Figure 6 shows the dual-antenna experiment platform and the road test routine, respectively. Two
Harxon GPS500 GNSS antennas were installed on the top of a vehicle with a distance of 40 cm, and the
Trimble MB-Two dual-frequency GNSS receiver was employed for GPS L1CA raw measurements. The
base station for RTK was located on the rooftop of the Weiqing building. Test scenarios include dense
foliage, urban canyons, and open areas, with a driving speed of around 20 km/h.
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3.2. Road Test  

Figure 6. (a) Experimental platform configured with two GNSS antennas for raw observation data
collection. (b) Road test routine in Tsinghua University, Beijing, China, including three dynamic
scenarios through dense foliage, urban canyons, and open areas, represented by characters A, B, and R,
respectively. The RTK base station was located at the position marked with a star.

Figure 7 depicts the number of satellites visible in the master and auxiliary antennas during the
whole routine, along with the Position Dilution of Precision (PDOP) parameter, which is a common
indicator of the effect of satellite geometric distributions on positioning. Theoretically, the smaller the
PDOP is, the more precise the positioning results will be.
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scenarios for the master rover r1 (top) and the auxiliary rover r2 (bottom).

As can be seen, in the open area, up to seven satellites were visible, and the PDOPs were 1.5 and
1.9 for r1 and r2, respectively. While in GNSS-challenged environments, the number of satellites in
view fluctuated significantly from zero to seven, and the PDOPs reached at as much as 8.0. Strong
PDOP values (>5.0) appeared occasionally in test scenarios A and B because of a quite small number
of visible satellites (only four at most times) and the poor satellite geometric distribution. However, it
is worth noting that, although individual rovers suffered from insufficient satellites, a complementary
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behavior appeared between two rovers with different numbers of visible satellites and different
satellites distributions. This reception diversity could bring benefits for RTK precise positioning in
urban environments by dual-antenna combination.

3.2.2. Dual-Antenna ADOPs

Figure 8 compares the average ADOPs of the master rover (SANT1), the auxiliary rover (SANT2),
and the DAVEC configuration with both antennas. It can be seen that, on the one hand, for both single
and dual-antenna RTK algorithms, the open area environment gave the smallest ADOPs, while driving
through dense foliage (Scenario #A) provided the largest ADOPs. On the other hand, compared with
the master rover, a decline of ADOP appeared in DAVEC, with a percentage of 44.2% and 47.0% in
Scenarios #A and #B, respectively. As mentioned before, this ADOP gain comes from the geometric
distribution improvement and measurement redundancy.
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3.2.3. Positioning Results

In this paper, single-epoch RTK positioning results are calculated to facilitate performance
demonstration of the proposed DAVEC algorithm.

Figure 9 depicts precise positioning results of the single rover and DAVEC–based RTK, as well as
a partial enlargement near the skywalk between buildings. As can be seen, the proposed algorithm
recovered more quickly from GNSS blockages and provided more robust RTK positioning solutions.
According to statistic results, the RTK success rate is improved from 48.4% to 85.3% for the entire test
routine. The success rate is defined as the proportion of fixed AR results to all the float results.

Moreover, at each epoch, the auxiliary antenna r2 either observes the same satellites as r1, or
has one or more different satellites from r1, which are termed as the “Identical View” situation and
“Non-identical View” situation, respectively. Namely, in the first case, improvement of AR performance
of the DAVEC algorithm only comes from the GNSS measurement redundancy, while in the second
case, satellite geometric distribution is also improved.

To explore the contribution of the above two factors in the performance gain of DAVEC-based
RTK, the number of AR fixed positioning results under different satellite visibility conditions of r1 are
counted in Table 2. For each number of r1-observed satellites, statistics on the number of Identical View
and Non-identical View situations are given, as well as the percentage of availability improvement for
DAVEC compared with SANT1.

It can be seen from Table 2 that, when the master antenna fails to observe sufficient GNSS
satellites (Nsat ≤ 3), the proposed algorithm may successfully solve the ambiguities by the procedure of
dual-antenna combination. When the number of r1-visible satellites ranges from four to six, significant
AR performance gain is obtained for both Identical View and Non-identical View situations. As last,
when the Nsat reaches seven, the DAVEC algorithm can still improve the AR success rate moderately,
even though the single antenna RTK can already achieve a relative high AR success rate.



Sensors 2019, 19, 3586 16 of 23

Sensors 2019, 19, x FOR PEER REVIEW 15 of 22 

Figure 8. The average ADOPs of the master rover (SANT1), auxiliary rover (SANT2), and DAVEC in 

open areas and GNSS-obstructed observing environments. 

3.3.3. Positioning Results 

In this paper, single-epoch RTK positioning results are calculated to facilitate performance 

demonstration of the proposed DAVEC algorithm. 

(a)

(b)

Figure 9. Single-epoch precise positioning results of: (a) SANT1 and (b) DAVEC.

Table 2. Number of AR fixed epochs with different satellite visibility with respect to non-identical and
identical viewed satellite conditions.

Nsat (r1)
SANT1 DAVEC

IMPR
Non Iden Total Non Iden Total

≤3 - - - 355 - 355 -

4 335 329 664 543 481 1024 54.2%

5 294 748 1042 1216 1876 3092 196.7%

6 121 1568 1689 498 4461 4959 193.6%

7 - 987 987 - 1111 1111 12.6%

Total 750 3632 4382 2612 7929 10,541 140.6%

In addition, even though the relative improvement percentage is high, the absolute number of AR
fixed epochs enhancement was from 4382/16,683 (26.3%) to 10,541/16,683 (63.2%), meaning that there is



Sensors 2019, 19, 3586 17 of 23

still room for improvement in future applications of the DAVEC algorithm. Particularly, if an Inertial
Measurement Unit module can be introduced in for attitude determination of the on-board baseline
vector, a higher AR success rate can be expected.

Hereafter, precision and availability of the DAVEC-based RTK positioning results in different
GNSS signal environments will be discussed.

i. Open Sky Environment Test

Figure 10 illustrates the positioning errors of single-rover and DAVEC-based RTK in the ENU
coordinate, respectively. The reference trajectory is obtained from a self-developed dual-frequency
(GPS L1C/A+L2) high-precision post processing GNSS software receiver. It is evident from the graph
that many outliers in SANT1 positioning results appear with incorrect integer ambiguities due to
limited number of visible satellites, which is six in the test environment. Nevertheless, almost no
abnormal values have been found in DAVEC-based positioning results. The three-dimension STDs
are determined on the basis of the shown errors, which for SANT1 are 0.022 m, 0.061 m, and 0.197 m,
respectively, and for DAVEC are 0.003 m, 0.005 m, and 0.020 m, respectively.
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ii. Urban Environment Test

Figure 11 shows the estimated baseline vector between r1 and r2 for dynamic experiments under
urban environments in the ENU coordinate. The MSR method in [17] was adopted, since it is suitable
for single-epoch attitude estimation of ultra-short baselines from 0.2 to 1.5 m in length. Statistic results
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show that the success rate of attitude determination for Scenarios #A and #B are 90.6% and 83.5%,
respectively. In UAVs and other GNSS dual-antenna applications, an INS module is usually configured
and can be used to enhance attitude determination of the platform.
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Figure 11. Dual-antenna baseline measurements for dynamic experiments under urban environments.
(Scenario #A: From GPS time 5:44:30 to 5:49:00; Scenario #B: From GPS time 5:50:00 to 5:57:00.)

Figure 12 gives the RTK positioning results under different satellite availability conditions of the
master antenna during test Scenarios #A and #B. In Figure 12a, the total number of AR fixed epochs
is 500 for SANT1 and 1108 for the DAVEC algorithm with an increase of 123.6%. For most epochs,
the number of satellites observed by r1 is four or five, and the identical view satellite condition is
more likely to appear than the non-identical view one. While in Figure 12b, the total number of AR
fixed epochs is 607 for SANT1 and 1221 for the DAVEC algorithm with an increase of 101.2%. Since
in building-blocked environments, the satellite is only obstructed occasionally and from different
antennas, the non-identical view condition has a relatively higher probability to occur. To sum up,
in test environments with dense foliage and urban canyons, the characteristics of satellite reception
diversity between two antennas are different, but in both situations, a great AR performance gain from
the proposed algorithm can be seen.
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4. Conclusions

To realize robust and precise RTK-GNSS positioning with a dual-antenna-configured system in
GNSS-challenged environments, this paper proposed a Dual-Antenna RTK algorithm with baseline
VEctor Constraint, namely the DAVEC. By comparing the model strength of DAVEC with DANOC
and DALEC through an innovative dual-antenna ADOP method, performance gain of DAVEC was
illustrated. A less computational DAVEC-RTK algorithm was proposed based on the concept of
measurement projection, in which the reception diversity between two antennas are taken advantage
of to improve satellite distribution of the master rover. Experiment results show that in the given
test environment, the system AR success rate has been improved from 48.4% to 85.3%, and the
three-dimension precision of the relative positioning under open sky condition is within 0.02 m.
Therefore, the algorithm is able to provide more precise positioning results with higher RTK success rate.

This paper discussed the algorithm with two antennas, but it can easily be expanded to situations
with more antennas. The integration of DAVEC-based RTK with self-contained sensors, such as the
INS, will be further researched in our future works.
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Appendix A

Appendix A.1 Mathematical Formulae Used in the Dual-Antenna ADOP Derivation

The following formulae are used in the derivation of the dual-antenna constraint ADOPs.
If matrixes A and C are reversible,

(A+BCD)−1
=A−1

−A−1B
(
DA−1B+C−1

)−1
DA−1 (A1)

If A =
[

A11 A12

A21 A22

]
, we have:

A−1 =


(
A11 −A12A−1

22 A21
)−1

−

(
A11 −A12A−1

22 A21
)−1

A12A−1
22

−

(
A22 −A21A−1

11 A12
)−1

A21A−1
11

(
A22 −A21A−1

11 A12
)−1

 (A2)

and,
det(A) = det(A22)det

(
A11 −A12A−1

22 A21
)

= det(A11)det
(
A22 −A21A−1

11 A12
) (A3)

If matrixes A and B are reversible:∣∣∣A−DB−1C
∣∣∣|B| = |A|∣∣∣B−CA−1D

∣∣∣ (A4)

Appendix A.2 Derivation of the ADOP with Baseline Vector Constraint

Hereafter, the derivation of Equation (20) is described.
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For a DANOC-based dual-antenna combination, the covariance matrix
~
Q
∇∆N̂ is given as:

~
Q
∇∆N̂ =

[
Q1

Q2

]
−


Qb̂1

QT
b̂1∇∆N̂1

−Qb̂2

−QT
b̂2∇∆N̂2


[

Qb̂1
Q

b̂1∇∆N̂1
−Qb̂2

−QT
b̂2∇∆N̂2

]
(A5)

Substituting the above equation into (15), we have:

ADOPDAC =

√√∣∣∣∣∣∣
[

Q∇∆N1

Q∇∆N2

]
−

 QT
b1∇∆N1

QT
b2∇∆N2

Wε

[
Qb1∇∆N1

Qb2∇∆N2

]∣∣∣∣∣∣
1

n+m

(A6)

If |Wε| , 0, according to Equation (A4),

ADOPDAC= ADOPDANOC

√∣∣∣∣∣∣W−1
ε −

[
Qb1∇∆N1

Qb2∇∆N2

] Q−1
∇∆N1

Q−1
∇∆N2

 QT
b1∇∆N1

QT
b2∇∆N2

∣∣∣∣∣∣
1

n+m

(A7)

For DAVEC-based dual-antenna combination, since Wε,BV =
(
Qb1

+ Qb2
+ Rε,BV

)−1
is reversible,

the ADOP can be rewritten as:

ADOPDAVEC =

ADOPDANOC

√√ ∣∣∣∣∣(Qb1
−Qb1∇∆N1

Q−1
∇∆N1

QT
b1∇∆N1

)
+

(
Qb2
−Qb2∇∆N2

Q−1
∇∆N2

QT
b2∇∆N2

)
+Rε

∣∣∣∣∣∣∣∣∣Qb1
+Qb2

+Rε
∣∣∣∣

1
n+m (A8)

Appendix B

The derivation of the DAVEC algorithm is given below.

Appendix B.1 Measurement Projection Based on the Known Baseline Vector:

Proof:

λ∇∆Φ̃
i j
rb1

= λ∇∆Φi j
r2b −∇∆ρi j

r2r1
− λ∇∆Ni j

r2r1
= ∇∆ρi j

r1b + λ∇∆Ni j
r1b +∇∆εi j

r2b,Φ

∇∆P̃i j
r1b = ∇∆Pi j

r2b −∇∆ρi j
r2r1

= ∇∆ρi j
r1b +∇∆εi j

r2b,P

(A9)

According to ([23], p. 170):

∇∆ρi j
r1b = −

(
1(i)b − 1( j)

b

)
· br1b

∇∆ρi j
r2b = −

(
1(i)b − 1( j)

b

)
· br2b

(A10)

Then by subtracting ∇∆ρi j
r1b from ∇∆ρi j

r2b, we have:

∇∆ρi j
r2b −∇∆ρi j

r1b = −
(
1(i)b − 1( j)

b

)
· (br2b − br1b)

= −
(
1(i)b − 1( j)

b

)
· br2r1

= ∇∆ρi j
r2r1

(A11)

Therefore,

∇∆Pi j
r2b −∇∆ρi j

r2r1
= ∇∆Pi j

r2b +∇∆ρi j
r1b −∇∆ρi j

r2b = ∇∆ρi j
r1b +∇∆εi j

r2b,P (A12)
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For the second equation in (A9), subtract ∇∆Φi j
r1b from ∇∆Φi j

r2r1
:

λ∇∆Φi j
r2b = λ∇∆Φi j

r2r1
− λ∇∆Φi j

r1b

= ∇∆ρi j
r2r1

+ λ∇∆Ni j
r2r1
−∇∆ρi j

r1b − λ∇∆Ni j
r1b +∇∆εi j

r2b,Φ

(A13)

We have:
λ∇∆Φi j

r2b −∇∆ρi j
r2r1
− λ∇∆Ni j

r2r1
= ∇∆ρi j

r1b + λ∇∆Ni j
r1b +∇∆εi j

r2b,Φ (A14)

End of proof.

Appendix B.2 Noise Projection Based on the Known Baseline Vector:

According to ([23], p. 168), the SD geometric distance between r1 and r2 can be expressed as:

∆ρi
r2r1

= −1(i)r1
·Ce

n · b
n
r2r1
≈ −1(i)b ·C

e
n · b

n
r2r1

= 1(i)b ·C
e
n ·


e
n
u

 (A15)

where Ce
n is the rotation matrix from ECEF to ENU.

The SD geometric distance ∆ρr2r1
is derived as:

∆ρr2r1
=


∆ρ1

r2r1

∆ρ2
r2r1
...

∆ρN
r2r1

 =


−

(
1(1)b

)T

−

(
1(2)b

)T

...

−

(
1(N)

b

)T


·Ce

n · b
n
r2r1

= ΘTCe
n · b

n
r2r1

(A16)

The measurement noise in ∆ρr2r1
is expressed by:

δ∆ρr2r1
= ΘT

·Ce
n


δe
δn
δu

 (A17)

Thus, the STD of δ∆ρr2r1
can be estimated with:

var
(
δ∆ρr2r1

)
= E

((
δ∆ρr2r1

− E
(
δ∆ρr2r1

))
·

(
δ∆ρr2r1

− E
(
δ∆ρr2r1

))T
)

(A18)

Therefore, the covariance matrix of SD baseline vector measurement is:

Rρ = ΘT
·Ce

n · E



δe
δn
δu

 · [ δe δn δu
] · (Ce

n)
T

Θ

= ΘT
·Ce

n


σ2

e 0 0
0 σ2

n 0
0 0 σ2

u

(Ce
n)

T
Θ

(A19)

Accordingly, for SD measurements of r2:

λ∆Φ̃
i j
rb1

= λ∆Φi j
r2b − ∆ρi j

r2r1
− λ∆Ni j

r2r1

∆P̃i j
r1b = ∆Pi j

r2b − ∆ρi j
r2r1

(A20)
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The projected carrier phase SD measurement error is obtained through:

Σ2 = Σ1 + Rρ (A21)

The projected pseudorange SD measurement error after projection:

Σ2 = Σ1 × LPratio2 + Rρ (A22)
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