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Abstract: In this paper, an improved method of measuring wavefront aberration based on image
with machine learning is proposed. This method had better real-time performance and higher
estimation accuracy in free space optical communication in cases of strong atmospheric turbulence.
We demonstrated that the network we optimized could use the point spread functions (PSFs) at
a defocused plane to calculate the corresponding Zernike coefficients accurately. The computation
time of the network was about 6–7 ms and the root-mean-square (RMS) wavefront error (WFE)
between reconstruction and input was, on average, within 0.1263 waves in the situation of D/r0 = 20
in simulation, where D was the telescope diameter and r0 was the atmospheric coherent length.
Adequate simulations and experiments were carried out to indicate the effectiveness and accuracy of
the proposed method.
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1. Introduction

Wavefront aberrations generated by atmospheric turbulence affect the distribution of focus, then
deteriorate the fiber coupling efficiency and the quality of communication. Measurement of wavefront
aberration in free space optical communication differs from other scenarios in that the atmospheric
turbulence changes constantly. Correction of wavefront aberration is based on the correlation of
each frame, so real-time performance determines the performance of the correction. High-accuracy
correction of wavefront aberration requires accurate real-time measurement in free space optical
communication. The methods of measuring wavefront aberration are mainly divided into two classes.
The first method measures wavefront aberration by monitoring the wavefront slope, which needs
additional wavefront sensors, such as a Hartmann sensor or interferometer [1–3]. The other method
uses the distribution of focus as the objective function and optimizes the objective function with
continuous iteration, such as an image-based sensor [4–7]. The real-time performance of this second
method is poor and so its application range is very limited.

Owing to the high fitting ability and successful application of machine learning in other fields,
some research on measuring wavefront aberration with machine learning has been completed.
A back propagation (BP) neural network was used to measure wavefront aberration and was verified
on the Hubble telescope [8–10]. The input to the network is a one-dimensional vector which is composed
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by all pixels of the point spread functions (PSFs) in the focal and defocus planes. Through a series of
matrix operations and activation functions, the network outputs the Zernike coefficients. The BP neural
network has some disadvantages, such as poor generalization ability and getting local optimal solution.

In order to improve the generalization ability of the aforementioned network, research groups
used Tchebichef moment as the input of the network [11,12]. The addition of Tchebichef moment allows
the network to process PSFs of different sizes. Furthermore, a deep neural network was used to replace
the BP neural network because of its better fitting ability. As a result, the root-mean-square (RMS)
error between the target and output of the network in the testing set was found to be 0.0089 waves
(4th~9th Zernike coefficients corresponding to focus, astigmatism, coma and spherical aberration).
The high accuracy proved that two PSFs can provide enough information to measure low-order
wavefront aberration. However, the calculation of image moments requires significant time [13],
which was not consistent with our original intention for using machine learning.

In recent years, convolutional neural networks (CNNs) have emerged, which, when using
a convolution filter, are more suitable for processing images compared to BP neural networks and deep
neural networks [14,15]. Inception V3 [16], a convolutional neural network that performs well in image
classification, was used to measure wavefront aberration in Reference [17]. In this study, the input to
the network was the PSF in the focal plane and the output of the network was the initial estimate of the
Zernike coefficients. The output of the network was, on average, within 0.37 waves RMS wavefront
error (WFE) of the true solution. Using these initial estimations as the starting value of the nonlinear
optimization, the error was reduced to within 0.1 waves. The addition of Inception V3 shortened the
nonlinear optimization process that originally required 16 s to 0.2 s. However, the accuracy of the
network was not high enough to eliminate nonlinear optimization.

Some preconditioners, such as overexposure, defocus, and scatter, have been used to improve the
accuracy of the network [18]. Experimental results show that this method is very effective. However,
researchers have only considered the situation of weak turbulence and have not mentioned the
real-time performance.

In order to advance the real-time performance and fitting accuracy of measuring wavefront
aberration with a CNN, an improved method is proposed in this paper. We demonstrated that the
trained network could be used to calculate Zernike coefficients without nonlinear optimization for
the case of strong atmospheric turbulence. The PSF in the defocus plane replaced the PSF in the
focal plane as the input to the network, because the latter would lead to a multi-solution problem.
A new convolutional neural network we optimized was used as a training model. Some adaptations of
the network made obvious improvements to the fitting accuracy. In particular, the addition of a batch
normalization (BN) layer improved the ability of the network. The output of our network was Zernike
coefficients. Note that this output can be replaced with other parameters in a specific system, such as
the control voltage of the deformation mirror, which may have better fitting precision and take less
time. However, the generalization ability of the network will be weakened. Adequate simulations and
experiments were carried out to indicate the effectiveness and accuracy of the proposed method for the
case of strong atmospheric turbulence.

This article consists of five chapters. In Section 1, we give a brief introduction to the application
of machine learning in measuring atmospheric turbulence. In Section 2, the method is presented.
The simulation and results are presented in Sections 3 and 4. In Section 5, we summarize the article.

2. Method

2.1. Imaging System

Based on the imaging principle, the image on the focal plane CCD can be written as:

I(x, y) = o(x, y) ⊗ PSF(x, y) (1)
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where I(x, y) is the image of the focal CCD, o(x, y) is the ideal intensity distribution, and⊗ is a convolution
operation. PSF(x, y) is the point spread function of the system, which can be written as:

PSF(x, y) =
∣∣∣F (w)

∣∣∣2 (2)

w(r,θ) =
n∑

i=1

aizi(r,θ) (3)

where F is the Fourier transform, w is the wavefront, ai are Zernike coefficients and zi are Zernike
polynomials. r is the radial distance and θ is the azimuthal angle in polar coordinates. The simulated
random wavefronts follow the Kolmogorov turbulence model [19].

When the image plane is on the focal plane, the image calculation in the defocus plane can be
equivalent to adding an additional phase to wavefront, wherein the additional phase ∆ϕ can be written
as:

∆ϕ = −
k× d

2× ( f + d) × f
×

(
u2 + v2

)
(4)

where d is the focal shift, f is the focal length, and u and v are the coordinates of the pupil plane.
k = 2π/λ is wave vector.

2.2. Structure of the CNNs

The CNNs optimized by us were CNN1, CNN2 and CNN3. The CNN3 we optimized was
composed of a convolution layer filter, a max-pooling layer filter, a rectified linear unit (ReLU),
a fully-connected layer, a batch normalization layer filter and an attention layer, as shown in Figure 1.
Compared with CNN3, CNN2 excluded the attention layer, while CNN1 excluded both the BN layer
and the attention layer. The learning algorithm used was Adam [20] and the learning rate was 0.0001.
The loss function was the RMS difference between the predicted Zernike coefficients and the true
Zernike coefficients.
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2.2.1. Batch Normalization Layer Filter

The batch normalization layer filter played an important role in the network. Convolutional neural
networks often present a gradient-disappearing problem during training. The usual method to deal
with this problem is to train layer by layer. However, in this work, a batch normalization layer filter
solved this problem. Specifically, the batch normalization layer filter converted the input of this layer
into a normal distribution with a mean of 0 and a variance of 1. Most of the data was then transferred to
the central area, where the gradient was usually the largest or was present. This effectively prevented
the appearance of the vanishing gradient problem. Importantly, the batch normalization layer filter
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can also speed up training, increase accuracy, and reduce over-fitting. The batch normalization layer
filter can be written as [21]:

x̂i =
xi − E(xi)√

Var(xi)
(5)

yi = γx̂i + β (6)

where xi is the i-th input of the mini-batch (the sample processed for each iteration). x̂i is the normalized
value of xi. E(xi) = 1

m
∑m

i=1 xi is the mean of the mini-batch. Var(xi) = 1
m

∑m
i=1(xi − E(xi))

2 is the
variance of the mini-batch. yi is the output of batch normalization layer filter. γ and β are the mean
and variance of the all elements of the feature map, respectively, which make the network learn to
recover the distribution of features that the original network has to learn.

2.2.2. Attention Layer

The attention layer consisted of both channel-wise attention and spatial attention. The channel-wise
attention modulated the weight of the channels, helping the network find the feature maps which had
more information. The spatial attention modulated the attention weight of space, which meant different
pixels had different weight. The pixels which had more information had more weight. The model of
channel-wise attention can be written as [22]:

a = tanh(Wc⊗ v + bc) (7)

α = so f tmax(a) (8)

where v =[υ1, υ2, . . . , υC]
T, C is the total number of channels, and υi is the mean of the i-th channel of the

feature map. Wc ∈ Rc∗c are transformation matrices and bc are bias terms. Softmax is αi = eai /
(∑c

j=1 ea j
)

and α is the weight of channel-wise attention.
The model of spatial attention can be written as:

b = tanh(Ws⊗V + bs) (9)

β = so f tmax(b) (10)

where we reshape V = [v1, v2, . . . , vm] by flattening the width and height of feature map, V1 ∈ Rc,
m = W×H, and H is the width and height of feature map. Ws ∈ R1c are transformation matrixs and bs

is bias terms. β is the weight of spatial attention.

3. Simulation

In this section, we describe the validation of the proposed method through simulations, including
feasibility verification, sample size impact and generalization ability.

3.1. Feasibility Verification

Firstly, 22,000 samples, which were simulated combining 4th to 64th Zernike polynomials
with D/r0 = 20 and wavelength 850 nm, were used to improve the CNN’s ability to measure
aberrations. The training set consisted of 20,000 samples and the testing set was another 2000 samples.
The 1st (global piston), 2nd (tip), and 3rd (tilt) Zernike coefficients were not included because they can
be easily measured by centroiding algorithms. The RMS of the input wavefront was 0.6789λ. The true
and reconstructed wavefront are shown in Figure 2. The mean root-mean-squares (MRMSs) of the
WFEs after correction are shown in Table 1. The algorithm was run on a desktop PC with a 32 GB
DDR4 RAM and a 1080ti GPU.

The results showed that the wavefront of the reconstructions were similar to the true wavefronts
when the defocused PSF was used as the input to the network. The mean root-mean-square (MRMS)
of the wavefront error met the requirements in most cases. Inception V3 had the highest estimation
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accuracy, but it also had the longest computation time. Inception V3 had better real-time performance
compared to other networks in terms of classification, but a decrease in the output of other networks
reduced their computation time because they used a fully-connected layer. Thus, other networks
performed better in terms of time as the output of these networks consisted of only 61 parameters.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 11  
 

1 defocused PSF Alexnet 0.2183λ 6.5–7.5 ms 
2 defocused PSF VGG 0.1490λ 11–12 ms 
3 defocused PSF Inception V3 0.1187λ 24–28 ms 
4 defocused PSF CNN1 0.2371λ 5–6 ms 
5 defocused PSF CNN2 0.1344λ 6–7 ms 
6 defocused PSF CNN3 0.1263λ 6–7 ms 
7 focal PSF  CNN3 0.6510λ 6–7 ms 
8 two PSFs CNN3 0.1248 7–8.5 ms λ = 850nm. 

   

(a) (b) (c) 

(d) (e) (f) 

   
(g) (h) (i) 

Figure 2. The wavefront of 4th to 64th Zernike coefficients. (a) The simulated wavefront; (b–g) the 
wavefront of reconstructions by Alexnet, VGG, Inception V3, CNN1, CNN2, and CNN3; (h) the focal 
plane point spread functions (PSF); and (i) the defocused PSF. 

The results showed that the wavefront of the reconstructions were similar to the true wavefronts 
when the defocused PSF was used as the input to the network. The mean root-mean-square (MRMS) 
of the wavefront error met the requirements in most cases. Inception V3 had the highest estimation 
accuracy, but it also had the longest computation time. Inception V3 had better real-time performance 
compared to other networks in terms of classification, but a decrease in the output of other networks 
reduced their computation time because they used a fully-connected layer. Thus, other networks 
performed better in terms of time as the output of these networks consisted of only 61 parameters. 

Our optimized network had a good real-time performance because of the decrease in input size. 
However, this degraded the result. For this reason, a BN layer and an attention layer were added to 
the network. Upon comparing the results from CNN1 and CNN2 with CNN3, it was noted that the 
addition of a BN layer noticeably improved the accuracy, while an attention layer improved the 
accuracy even further. Compared with other networks, the CNN3 we optimized had good real-time 
performance and estimation accuracy. 

Figure 2. The wavefront of 4th to 64th Zernike coefficients. (a) The simulated wavefront; (b–g) the
wavefront of reconstructions by Alexnet, VGG, Inception V3, CNN1, CNN2, and CNN3; (h) the focal
plane point spread functions (PSF); and (i) the defocused PSF.

Table 1. The wavefront errors of the networks.

Number Training Set Network MRMS of WFE (Testing Set) Computation Time

1 defocused PSF Alexnet 0.2183λ 6.5–7.5 ms
2 defocused PSF VGG 0.1490λ 11–12 ms
3 defocused PSF Inception V3 0.1187λ 24–28 ms
4 defocused PSF CNN1 0.2371λ 5–6 ms
5 defocused PSF CNN2 0.1344λ 6–7 ms
6 defocused PSF CNN3 0.1263λ 6–7 ms
7 focal PSF CNN3 0.6510λ 6–7 ms
8 two PSFs CNN3 0.1248λ 7–8.5 ms

λ = 850 nm.

Our optimized network had a good real-time performance because of the decrease in input size.
However, this degraded the result. For this reason, a BN layer and an attention layer were added
to the network. Upon comparing the results from CNN1 and CNN2 with CNN3, it was noted that
the addition of a BN layer noticeably improved the accuracy, while an attention layer improved the
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accuracy even further. Compared with other networks, the CNN3 we optimized had good real-time
performance and estimation accuracy.

Compared to the networks which employed an input of defocused PSF, using the focal plane PSF
as the input did not decrease the wavefront error because of its multi-solution problem. Although
the use of two PSFs (the focal plane PSF and defocused PSF) as the input resulted in a similar fitting
accuracy, it took more time and required more calculations. The distribution of wavefront errors is
shown in Figure 3.
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3.2. Simulations with Different Sample Sizes

Next, in order to determine the number of PSFs that needed to be collected in the experiment,
the impact of different sample sizes on wavefront error was tested. Specifically, 5000 PSFs, 10,000 PSFs,
15,000 PSFs and 20,000 PSFs were used as the training sets and 2000 PSFs was used as the testing set.
From the 20,000 PSFs, 5000 PSFs, 10,000 PSFs and 15,000 PSFs were selected at random. The testing
set underwent the same selection, thereby minimizing the influence of the content of the sample.
The samples were simulated combining 4th to 64th Zernike polynomials with D/r0 = 20 and wavelength
850 nm. The results are shown in Table 2.
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The MRMS of the wavefront error decreased when the sample size increased. As 0.16λ is
usually used as the standard of correction, 20,000 PSFs were collected for training in the experiment.
The simulation results also indicated that the wavefront error could be decreased if more samples were
used to train.

Table 2. The results of the simulations using different sample sizes.

Number Training Set Network MRMS of WFE (Testing Set)

1 5000 PSFs CNN3 0.2255λ

2 10,000 PSFs CNN3 0.1597λ

3 15,000 PSFs CNN3 0.1360λ

4 20,000 PSFs CNN3 0.1263λ

λ = 850 nm.

3.3. Generalization Ability

The trained networks’ performance in measuring wavefront aberration when the atmospheric
coherence length (r0) was different needed to be proven. PSFs which were simulated combining 4th to
64th Zernike polynomials when D/r0 = 6, 10, and 15 were used as the testing set to test the networks
which were trained with the PSFs simulated by Zernike coefficients when D/r0 = 20. The RMS of true
WFE and the MRMS of WFE after correction are shown in Table 3.

Table 3. The simulation of generalization ability.

Networks MRMS of WFE
(D/r0 = 6)

MRMS of WFE
(D/r0 = 10)

MRMS of WFE
(D/r0 = 15)

MRMS of WFE
(D/r0 = 20)

Input 0.2463λ 0.3780λ 0.5272λ 0.6789λ
Alexnet 0.1145λ 0.1220λ 0.1732λ 0.2183λ

VGG 0.0884λ 0.0981λ 0.1122λ 0.1490λ
Inception V3 0.1360λ 0.0965λ 0.0922λ 0.1187λ

CNN1 0.1286λ 0.1273λ 0.1681λ 0.2371λ
CNN2 0.0754λ 0.0709λ 0.0962λ 0.1344λ
CNN3 0.0705λ 0.0629λ 0.0833λ 0.1263λ

λ = 850 nm.

The simulations proved that most networks had good generalization ability. The trained network
could measure wavefront aberrations corresponding to different atmospheric coherent lengths.
In addition, the MRMS of the wavefront error decreased because the atmospheric turbulence was
weaker when D/r0 decreased. This was consistent with our perception. However, Inception V3′s
generalization ability seemed to be worse.

The simulations showed that, compared with other networks, CNN3 had good real-time
performance, high estimation accuracy and generalization ability.

4. Experiment

The experimental platform is shown in Figure 4. The light source employed was a laser with
wavelength 850 nm and an LC-SLM (PLUTO-2-NIR-011, Holoeye, pixel pitch: 8 µm, pixel count:
1920 × 1080) was used as a spatial modulator to simulate atmospheric turbulence. A polarizer was
added since the LC-SLM employed acts on P-polarized light. The CCD was placed on a rail in order to
access defocused PSFs. The atmospheric turbulence situation was D/r0 = 6.

We collected 22,000 defocused PSFs in the experiment. Of these, 20,000 PSFs formed the training
set and the other 2000 PSFs were the testing set. The results of the experiment are shown in Table 4.
The MRMS of the input wavefront was 0.2463λ. The distribution of wavefront error is shown in Figure 5.
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The results of the experiment show that the networks can use the defocused PSF to calculate
the corresponding Zernike coefficients accurately. CNN3 had similar estimation accuracy to other
networks. However, CNN3 took less time for computation. We found that the experimental results
were better than the simulation results, as the testing set of the experiment was the same situation as
the training set. In contrast, the testing set of the simulation (D/r0 = 6) was different to the training set
used to train the network (D/r0 = 20).
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In summary, CNN3 can used to measured wavefront aberration and perform well in fitting
accuracy. Although other networks have similar fitting accuracy, CNN3′s computation time is less.
As the correction of wavefront aberration is based on the correlation of each frame image, CNN3 is
more suitable for practical applications.

5. Conclusions

In this paper, an improved method of measuring wavefront aberration based on image intensity
was described and validated with an experiment. The proposed method had good real-time performance
and high estimation accuracy. We demonstrated that the trained network could be used to calculate
Zernike coefficients accurately. The root-mean-square wavefront error of CNN3 between reconstruction
and input was, on average, within 0.1263 waves when D/r0 = 20 (simulation) and 0.0521 waves when
D/r0 = 6 (experiment). After inputting an image, CNN3 only took 6–7 ms to output Zernike coefficients.
Thus, the computation time of the network decreased a lot and the network performed well.

Our future work will focus on building a closed-loop real-time system, which can be used in free
space optical communication. We will test the performance of such networks with dynamic aberrations.
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