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Abstract: Recent developments in laser scanning systems have inspired substantial interest in
indoor modeling. Semantically rich indoor models are required in many fields. Despite the rapid
development of 3D indoor reconstruction methods for building interiors from point clouds, the
indoor reconstruction of multi-room environments with curved walls is still not resolved. This study
proposed a novel straight and curved line tracking method followed by a straight line test. Robust
parameters are used, and a novel straight line regularization method is achieved using constrained
least squares. The method constructs a cell complex with both straight lines and curved lines, and
the indoor reconstruction is transformed into a labeling problem that is solved based on a novel
Markov Random Field formulation. The optimal labeling is found by minimizing an energy function
by applying a minimum graph cut approach. Detailed experiments were conducted, and the results
indicate that the proposed method is well suited for 3D indoor modeling in multi-room indoor
environments with curved walls.

Keywords: 3D indoor modeling; curved wall; line regularization; graph cut; point cloud

1. Introduction

Recently, 3D building modeling has been increasingly requested for a variety of applications, such
as building information models (BIM) [1], indoor navigation and positioning, emergency services,
smart building, and architectural planning and simulations. The modeling of as-built constructions can
range from mesh and computer-aided design (CAD) models to object-based parametric models. Mesh
representations are focused on creating visually realistic models. CAD models focus on representing
geometry digitally for the purpose of design and simulation. In contrast, semantic information, as well
as parametric information with a defined data structure, is added to the geometry of object-based
parametric models. The Open Geospatial Consortium (OGC) CityGML [2] and industry foundation
classes (IFC) [3] are commonly used for semantically rich representations of buildings, in which, apart
from detailed geometry, semantics and topology play an important role [4].

Advances in laser scanning systems have provided an efficient way to collect 3D point clouds of
both indoor and outdoor scenes. However, this procedure is challenging due to complex building
layouts and the high presence of objects such as furniture and wall hangings that cause clutter and
occlusions [4]. Furthermore, the procedure is challenging due to noise. Recent works have exploited
prior knowledge about building structures to achieve robustness and transform scene reconstruction
into an indoor space decomposition problem. Despite the rapid development of 3D reconstruction
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methods for building interiors from point clouds, the reconstruction of curved walls in multi-room
environments is still not resolved.

Many works have utilized the Manhattan world (MW) assumption [4], which holds true for many
indoor scenes that contain man-made architectural structures. The MW assumption assumes that
most man-made structures can be approximated by planar surfaces that are parallel to one of the
three principal planes of a common orthogonal coordinate system. Obviously, the MW assumption
is not suitable for indoor spaces with curved walls. One direct method for addressing curved walls
is to use piecewise straight lines to approximate a curved line [5,6], but this method is not always
appropriate for the following two reasons. On the one hand, the use of a few piecewise straight lines
to approximate a curved line will lead to an unsmooth boundary of rooms [5]. On the other hand,
the use of too many piecewise straight lines will lead too many small cells in the cell complex. It is
difficult to arrange a label to such small cells. Furthermore, it is not trivial to detect curved surface
walls in multi-room indoor environments [7,8]. Although slices are often used to simplify detection
work, detected curved lines are often scattered and broken into pieces and vary in length, which is
not suitable for modeling problems. It is also difficult to detect straight and curved lines separately,
especially in the case of noisy point clouds.

In this work, a novel straight and curved line tracking method with a straight line test was
proposed to detect straight and curved walls. Robust parameters are used, and a novel straight line
regularization method is achieved by using constrained least squares. Room space decomposition
with curved walls is cast as an energy minimization problem that partitions the indoor space into
separate semantic entities. A novel Markov Random Field (MRF) formulation is proposed, and the
energy function is efficiently minimized using an existing graph cut method. The proposed method
is performed without a priori knowledge of viewpoints, and it is not restricted to the strong MW
assumption. The assumption of this study is that floor and ceilings are horizontal and walls are
orthogonal to the floor.

The remainder of this paper is organized as follows. Important related works are introduced in
Section 2. The semantic definition of indoor space, structural constraints and the proposed method are
described in Section 3. Experiments and the discussion are presented in Section 4. Finally, conclusions
are drawn in Section 5.

2. Related Works

The indoor reconstruction method can be classified as a structural element extraction method
and a space decomposition-based method. The former research attempts to classify the point cloud
of indoor scenes and extract structural elements. A method for the planar 3D modeling of building
interiors from point clouds was proposed in [9]. This method divides indoor points into ceilings,
floors, walls, and other small architectural structures according to the normally computed principal
component analysis (PCA) algorithm, and random sample consensus (RANSAC) is employed to fit
the detected planar primitives. Furthermore, predominantly planar surfaces, such as walls, floors,
and ceilings, were modeled [10], despite the presence of significant clutter and occlusion, which occur
frequently in natural indoor environments. Shi et al. [11] proposed a semantic geometric modeling
method to reconstruct 3D building models with semantic information from the unstructured 3D point
cloud. The method enables the accurate detection of wall surfaces.

The structural element extraction methods for building structure elements cannot construct
complete wall surfaces due to missing data and the existence of occlusion in scanned point clouds.
Thus, the space decomposition-based method exploits prior knowledge about building structures to
achieve robustness and transform the scene reconstruction into an indoor space decomposition problem.

By initializing the domain of the point clouds in the XOY plane, the k-medoids algorithm was
applied to cluster subsampled pixels [12], and room segmentation was then formulated as a clustering
problem. Previtali et al. [4] proposed an automatic method for modeling MW indoors from occluded
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point clouds using graph cut and ray tracing. However, these two methods use a strict MW assumption,
which limits the adaptability of the method.

In the work by Oesau et al. [13], the point cloud is partitioned by taking horizontal cross sections
from which lines are fitted. A 2D cell decomposition is performed and is then stacked to partition the
3D space. The surfaces are extracted from the 3D cell decomposition by labeling the cells as either
empty or solid space, and a set of faces between adjacent labeled cells is constructed for the final model
as a surface mesh.

Mura et al. [14] proposed an automatic method for room detection and reconstruction that starts
by projecting the entire point cloud onto the XOY plane. The projected candidate walls are represented
by a small number of lines. Then, a cell complex is built from the intersections of the representative
lines, the edges of which are weighted according to the likelihood that the walls are real. Finally,
diffusion distances, which are computed on the cell graph of the complex, are used to derive the
iterative cell clustering, which enables the extraction of separate rooms. This method can be used in
cluttered indoor environments with complex room layouts.

A decomposition and reconstruction strategy [15] was then employed to create indoor structural
elements on the floor plan. This method can address the reconstruction of both inner and outer walls by
solving the optimization energy problem using graph cut. It utilizes a hierarchical clustering method
to obtain initial labels and a merging method to refine over-segmented rooms.

The reconstruction task [6] is formulated as a multiclass labeling problem using energy minimization.
A greedy fashion is used to sample viewpoints, and simulated viewpoints are obtained automatically.
The room segmentation algorithm can lead to over-segmentation in cases where imaginary walls are
inferred, and such regions need to be merged in a post-processing step.

As the above studies are based on either the constrained MW assumption or the detection of only
planar walls, none has proven to be an efficient method for indoor reconstruction with curved walls.
The author in [6] proposed an idea to find piecewise linear approximations of the projected curve and
insert each individual line segment into the cell complex to deal with curved wall surfaces. However,
no experiment was conducted in their research. In theory analysis, the idea can work in some cases
(very few curved walls) but with some limitations. The approach relies on the proper length of each
piecewise linear approximation to represent the curved wall lines. However, straight line detection
methods do not work well for curved line detection. Furthermore, the author did not give any curved
line detection method. The use of just a few piecewise straight lines will lead to unsmooth room
boundaries. However, the use of too many piecewise straight lines will lead too many small cells in
the cell complex.

To the best of our knowledge, no previous research has attempted to solve the problem of indoor
reconstruction from point clouds in multi-room indoor environments with curved walls. It is not trivial
to detect curved surface walls in multi-room indoor environments. To simplify the work of curved
surface wall reconstruction, 2D slices are often used [7,16]. Because this work restricts the assumption
that walls are orthogonal to the ground, the slice method is proper. Curved wall surface detection
becomes a 2D curved line detection problem. Line feature detection is widely used in 2D images [17,18].
The Canny edge detector is often used for straight line feature detection. The image-based method for
curved line detection often contains three steps, e.g., transformation to a binary image, image thinning
and line detection. Some methods, such as the RANSAC [19,20], Hough transforms method [21] and
least-square (LS) methods [22], directly detect straight lines in point clouds. LS methods are often used
for line fitting or regular shape (e.g., circle, ellipse) fitting. Structural lines in the indoor environment
contain not only straight lines but also curved lines. Yang et al. proposed a curved line detection
method [23] that first extracts edge points and then employs a tracing step. Contour curves have
been computed for rapid prototyping model generation via adaptive slicing, data point reduction and
B-spline curve fitting [7]. However, the method only works for closed curves. Some researchers have
achieved the detection of exterior building boundaries, but this method is not proper for multi-room
indoor environments because exterior building boundaries are often closed, while edge lines are
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discrete in indoor environments. These methods often use the tracing method for curved line detection.
As noise and occlusions exist, the scan point clouds on the wall are often incomplete. The detected
curved lines are often scattered and vary in length. The lines are often broken. Such detected curved
lines are not suitable for modeling problems. Although slices are often used to simplify the work, it is
still not easy to detect straight and curved lines separately, especially in the case of noise point clouds.

3. Proposed Method

3.1. Overview

In this section, we introduce our automatic indoor 3D reconstruction framework. First, we define
straight lines and curved lines. A straight line is a succession of points that are aligned in the
same direction. In other words, when going from one point to another, the direction never changes.
In contrast, the points of a curved line change direction from one point to the next [24]. The input into
this work is a 3D point cloud; the pi ∈ P, pi =

{
xi, yi, zi

}
coordinates of each point are given via the

world coordinate system.
We now describe the components that compose our method. A visual overview of the method is

given in Figure 1 and consists of five main steps: (1) straight line segment and curved line detection,
(2) straight line test, (3) regularization, (4) room space decomposition and (5) opening detection.
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3.2. Straight and Curved Line Detection

The proposed straight and curved line detection method is described in detail in this section.
The preprocessing step uses the statistical outlier removal (SOR) method [25] to clean outliers. This
step rejects the points that are farther than the average distance plus a number of times the standard
deviation. The vertical attribute ah = |ni·nz| is used to measure the deviation of the unit normal ni to
point pi with respect to the vertical axis, where nz denotes a unit vector along the z coordinate axis [26].
If ah < ε, the point is classified as vertical point. The variable ε, which is the cosine value of the angle
threshold, is the threshold used to distinguish a vertical point. If the angle threshold is set to 90◦ ± 1◦,
ε = cos(90◦ ± 1◦). Thus, flat structural elements, such as tables and beds, are rejected.

The vertical point cloud is then split into a set of horizontal slices, as shown in Figure 2. Generally,
the indoor objects like furniture often located on the floor. The indoor space near the ceiling is often
free space. Thus, we follow the concept of offset space proposed by [27]. A door will be lower than the
height of the wall in which it is contained. As shown in Figure 3, the slices located in the offset space
are selected in priority. The offset space can be determined by door height experientially.
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The straight and curved line detection method contains two steps. Because noise exists, the sliced
wall should be thinned first. Mean-shift is a mode-seeking algorithm that searches for the maximum
densities of local neighborhoods from discrete points [28]. The algorithm is iterated to obtain a stable
result, that is, a certain number of iterations are reached or all points move to the location of the local
maximum density in the support neighborhood. To obtain a stable result, the slice thinning algorithm
runs k times, with the search radius increasing 1.5 times; and the search radius should be smaller than
the thickness of a wall. The employed version of the regularized mean-shift formula [28] is:

xk+1
i =

∑
j∈J pk

j α
k
ij∑
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αij =
θ
(∣∣∣∣∣∣∣∣xi − pj

∣∣∣∣∣∣∣∣)∣∣∣∣∣∣∣∣xi − pj

∣∣∣∣∣∣∣∣ , βii′ =
θ(||xi − xi′||)∣∣∣∣∣∣xi − xi′

∣∣∣∣∣∣2 (2)

θ

(∣∣∣∣∣∣∣∣xi − pj

∣∣∣∣∣∣∣∣) = e−||xi−pj ||
2/R2

, λ = µσ
(
xk

i

)
(3)

where the first item is the classical mean-shift algorithm; the second item is a regularized term to
prevent further accumulation once points are already contracted onto their local center positions; λ is
a balancing constant between the two items; and µ = 0.35 is chosen empirically [29]. Using the above
formula, the mean-shift algorithm clusters the sampling points based on the resampling of the original
point. In this study, 10% of the input points are selected as initial samples. The sliced point cloud
thinned by the mean-shift algorithm is shown in Figure 4.
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The wall line tracing algorithm contains the following steps:

Step 1: Build the KD tree for the sliced point cloud.
Step 2: Randomly select a point from the point cloud. Search the nearest neighbor within a radius

less than the threshold d2 (Figure 5). The eigenvalues λ1 ≤ λ2 ≤ λ3 and the corresponding
eigenvectors

→
e 1,
→
e 2,
→
e 3 of the covariance matrix Σ are computed for each selected point.

The eigenvector
→
e 3 is selected as the search direction. The eigenvector −

→
e 3 is selected as the

reverse search direction.
Step 3: The candidate points within a radius less than the threshold d1 (Figure 5) are marked as

visited. Suppose that the candidate point in the sphere has a minimum angle with the
principal direction of the seed point. The minimum angle is less than ∆θ (40◦ in this study).
The point is selected as the new seed point. The seed point is marked as a vertex point.

Step 4: If the entire vertexes are traced, the two opposed lines are merged.
Step 5: Go to Step 2 until all the points in the sliced point cloud are marked as visited and vertex points.
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3.3. Straight Line Test

The traced wall lines consist of a set of vertexes. The distance between adjacent vertexes is
relatively even. After the wall line tracing step, the detected wall lines are classified as straight lines
and curved lines. In this step, only x, y coordinates of each vertex is used in the algorithm, so the
description below is 2-dimensional. A straight line can be defined as a pair

(
p,
→
v
)
, where p is a point

on the line, and
→
v is the line’s direction vector. p is estimated as the median of the positions of all

vertexes in the polyline.
→
v is a normalized direction vector whose value is determined by the median

of each component line segment of the polyline.

p =
[
median(Px), median

(
Py

)]T
(4)

→
v =

[
median(dx), median

(
dy

)]T
(5)

The distance of each vertex to the estimated straight line is obtained using Equation (6); we compute
the angle θi between the vector from each point Pi to the center point p and the straight line direction
vector using Equation (7). If Condition 1 and Condition 2 are satisfied, the line is a straight line;
otherwise, it is a curved line. Three examples are shown in Figure 6.

di =
∣∣∣∣(Pi − p)·

→
v
∣∣∣∣ (6)

cos(θi) =
(Pi − p)·

→
v∣∣∣∣∣∣∣∣Pi − p

∣∣∣∣∣∣∣∣·∣∣∣∣∣∣∣∣→v ∣∣∣∣∣∣∣∣ (7)

Condition 1 : cos(θi) > cos(∆θ′)
∣∣∣∣∣∣cos(θi) < cos(π− ∆θ′)

Condition 2 : di < ∆d
if Condition 1 & Condition 2, Li is a straight line; otherwise, Li is a curved line.

(8)
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3.4. Regularization

The typical indoor structures in man-made buildings, i.e., walls, ceilings, floors, doors, and
windows, are composed of straight lines; most of these structures are parallel or orthogonal. Because
noise exists in the point cloud, regularization is necessary.

The above step classifies the wall lines into a set of straight line segments and a set of curved
lines. The initial value for each straight line segment parameter is obtained using the median point
coordinates and median line direction. The line parameter for each straight line is represented as(
pi,
→
v i

)
, i = 0, 1, 2, · · · . Provided that the first line is the reference Lref (the longest line segment, or a

line including the greatest number of point clouds), the conditional rules for the other orthogonal and
parallel lines Li, i = 1, 2, 3, · · · are defined as:

if cos(θ) > cos(∆θ)
∣∣∣∣∣∣cos(θ) < cos(π− ∆θ), Li is parallel.

if cos(θ) < sin(∆θ), Li is orthogonal.

cos(θ) =
→
v

ref
·
→
v i∣∣∣∣∣∣∣∣∣∣→v ref

∣∣∣∣∣∣∣∣∣∣·∣∣∣∣∣∣∣∣∣∣→v i

∣∣∣∣∣∣∣∣∣∣
(9)

For other lines, the angle between the line and reference line is θ. ∆θ is the empirically determined
threshold (10◦ was used in this work). If condition 1 is satisfied, the line is supposed to be parallel to
the reference line. If condition 2 is satisfied, the line is supposed to be orthogonal to the reference line.

In the regularization process, to obtain the optimum parameter for each straight line, the
constrained LS method is used. The wall-surface lines in the indoor environment are always orthogonal
or parallel to each other. For line representation, the line segment is represented by Equation (10).

ax + by + c = 0 (10)

The reference line is represented by:

Lref(a0, b0, c0) = a0x + b0y + c0 (11)

If a straight line is parallel to the reference line, then:

Li(ai, bi, ci) = aix + biy + ci = a0x + b0y + ci (12)

If a straight line is orthogonal to the reference line, then:

Li(ai, bi, ci) = aix + biy + ci = b0x− a0y + ci = a0(−y) + b0x + ci (13)

This results in a linear system Ax = b. Let A be the matrix of the linear system, x denote the
vector of unknowns and b = ∅ for the right-hand side.

x = (c0, c1, · · · , ci, a0, b0)
T

Use QR decomposition of A and reduce this problem to solve a small system. The solution is given
by the corresponding singular vector. After the orthogonal and parallel principles are applied, the
collinear principle is used to obtain the mean value for collinear lines. The straight line regularization
algorithm is presented in Algorithm 1. Examples for straight line regularization can be seen in Figure 7.
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Algorithm 1. Straight Line Regularization Algorithm.

Input:
L: straight lines
Lnew: adjustment straight lines
A: the matrix of the linear system
Initialize:
Lnew ← ∅ ;//array
(1) Lref = find_longest_line(L);
(2) for each (Li ∈ L )

(3) cos(θ) =
→

v
ref
·
→

v i∣∣∣∣∣∣∣∣∣∣→vref
∣∣∣∣∣∣∣∣∣∣·∣∣∣∣∣∣∣∣∣∣→v i

∣∣∣∣∣∣∣∣∣∣ ;
(4) i f cos(θ) > cos(∆θ)

∣∣∣∣∣∣cos(θ) < cos(π− ∆θ)
(5) Li is parallel;
(6) if cos(θ) < sin(∆θ)
(7) Li is orthogonal;
(8) end for
(9) for each (Li ∈ L )
(10) if Li is parallel
(11) Construct A using Equation (12);
(12) else if Li is orthogonal
(13) Construct A using Equation (13);
(14) End if
(15) end for

(16) x = arg min
x

N∑
i=1
||Ax− b ||22 .;//solving a linear system

(17) for each (Li ∈ L )
(18) if Li is parallel
(19) L′i ← (ci, a0, b0), Lnew ← Lnew ∪ L′i ;
(20) else if Li is orthogonal
(21) L′i ← (ci, b0,−a0), Lnew ← Lnew ∪ L′i ;
(22) end if
(23) end for
(24) return Lnew;
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3.5. Room Space Decomposition

In this study, we consider room space reconstruction as a labeling problem. A decomposition
and merges strategy is used in this research. First, the 2D space is partitioned by wall straight lines,
and the cell complex is constructed by subdividing the plane into zero-dimensional, one-dimensional
and two-dimensional cells, called vertices, edges and polygons, respectively. Then, the polygon
feature class is further subdivided with curved walls. As the detected curved lines may be shorter
than their true length, it is necessary to extend the start and end line segments with a certain length.
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The labeling problem addresses assigning a label from a set of labels to each of the cells in the cell
complex. The optimum labeling is achieved by assigning each cell a label from the label set to minimize
an objective function. An undirected graph G = 〈v, e〉 is defined as a set of nodes v and a set of
undirected edges e to encode the set of cells to the label set L.

In contrast to our previous work [5], in the present study, indoor space decomposition is defined
as an energy minimization problem. The energy is minimized on a dual graph by associating data
term with the vertices (representing the faces in the cell complex) and smooth terms with the edges.
The graph edges are used to model the relations between pairs of adjacent nodes vi and vj, thus
enabling the modeling of contextual relations. Therefore, each cell vi is linked to its neighbors (vj ∈ N)
in 2D by edges, where N is the set of neighborhood links. The energy function for the labeling problem
is defined as:

U(l) =
∑
i∈v

Di(li) +
∑
i,j∈N

Vij

(
li, lj

)
·T

(
li , lj

)
(14)

3.5.1. Data Term

The unary data term describes the likelihood that a cell belongs to a label. The unary potential
links data to the class labels and determines the most likely label for a single node. The initial value is
obtained from the labeling results on a free-space raster using morphological room segmentation [27,30].
The free-space raster is generated by orthographically projecting the point cloud onto the XOY plane.
The wall-occupied evidence is generated by orthographically projecting the selected sliced point
cloud onto the XOY plane. The morphological algorithm segments the free-space evidence raster
into semantically meaningful regions. The minus operator [31] between the free-space evidence and
wall-occupied evidence is also utilized to obtain refined free-space evidence [5].

The assignment of the unary data term is achieved by using the Monte Carlo method, which
randomly samples N points within each cell complex; the value of each point is extracted from the
labeled room raster. In addition, a center point in each cell is added to the random point set in case
there are no points sampled inside a small cell.

Di∈v(li) =
(
1−

count(pixel = li)
N + 1

)
∗area(cell) (15)

3.5.2. Smoothness Term

The smooth term associated with each edge intuitively describes the likelihood that two cells are
contained within the same room. A larger likelihood between two cells indicates a weaker linking
between them. When two cells are separated by a wall, the cells are unlikely to be in the same room.
Taking wcell for the cell complex edge and w for the original wall segment, Ambruş et al. [6] obtained
a smooth term between two cells separated by edge e, i.e., 1− |wcell ∩w|/|wcell|. The overlap between
straight segments is easy to calculate, but it is difficult to calculate the overlap between curved lines.
Therefore, the wall-occupied evidence raster was used for smooth term calculation. The smooth term
is defined as the ratio between pixels occupied by the original wall segment and pixels in the cell
complex edge.

Vi,j∈N

(
li, lj

)
= 1−

count(pixel = occupied and pixel ∈ wcell)

count(pixel ∈ wcell)
(16)

The comparison predicate T
(
li , lj

)
is 1 if the argument is true and 0 otherwise. An approximate

solution can be found by minimizing the objective function by applying a minimum graph cut approach.
This energy minimization problem is solved through the α-β swap algorithm [32]. A room floorplan is
generated after room space decomposition. Finally, the histogram method is used to obtain the average
height from the floor to the ceiling for each room [5]. As shown in Figure 8a, the cell complex is added
to the initial room segmentation raster layer. The constructed room spaces are shown in Figure 8b.
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3.6. Opening Detection

In this step, we introduce a wall opening element detection method that detects doors and
windows as holes in the point clouds of wall planes. With a mapping function, both straight walls
and curved walls can be mapped to wall point evidence images, which are inverse binary images
created by projecting the points on the wall to the wall surface. First, the points on the curved wall are
projected to the wall point evidence image. The x axis is the distance to the start point of a curved line,
and the y axis is the height of each point on the wall.

f(d, h)↔ f(u, v)

Second, the hollow areas on the wall are extracted using the U-V direction region growing.
The algorithm contains two main components. The first component consists of obtaining seed points
from the last row (i.e., seed selection in the V-direction). The second component consists of obtaining the
un-labeled pixels of the current row and performing growth in the row (i.e., growth in the U-direction).
After obtaining all of the clusters, statistical calculations are performed on the rows and columns of
each cluster. The median values in the horizontal and vertical directions of each cluster, which can be
treated as the width and height of an opening, respectively, are then obtained.

Four examples for U-V direction region growing are shown in Figure 9. The U-V growing
algorithm first selects seed pixel s1-1 and then grows in the same row of the wall labeling image.
Neighboring pixels that have similar properties are merged if the neighboring pixels’ value is empty.
This growth step is repeated until all the pixels in the same row have been combined (i.e., growing
in the U-direction, as the arrow shows). In the next row, the seed pixel s2-1 is then selected because
it has the same value as s1-1 (i.e., seed selection in the V-direction). This growth step is repeated,
similar to the process for the front row. In Figure 9, the red points show the start seeds of each row.
The method of start-seed generation is seed selection from the front row. The hollow areas on the wall
were extracted as doors as shown in Figure 10.
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4. Experiments and Discussion

The proposed method was tested on two real datasets of indoor scenes from the Matterport3D
dataset [33]. The Matterport3D dataset is a large-scale RGB-D dataset containing 10,800 panoramic
views from 194,400 RGB-D images of 90 building-scale scenes. The data were captured with a Matterport
camera in home environments. The point clouds of these two datasets were created from raw data
(Figure 11). The algorithm was implemented in C++. The algorithm was implemented by the
Computational Geometry Algorithms Library (CGAL) [34] and Cloud Compare [35]. All experiments
were performed with a 3.60 Hz Intel Core i7-4790 processor with 12 GB of RAM.
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4.1. Wall Line Detection and Regularization

The point cloud is first split into several horizontal slices. The thickness of each slice is set as 0.01 m.
The number of slices is influenced by the height and density of the input point cloud. The radius
threshold d1 = 0.2 m for searching the nearest neighbors was applied, and radius d2 = 0.1 m was
applied for marking points as visited. The wall line detection and regularization results for dataset-1
are shown in Figure 12a. The straight line regularization step was not used for dataset-2. As shown in
Figure 12b, because glass walls exist in dataset-2, the curved wall was detected as incomplete.
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as incomplete.

4.2. Room Space Reconstruction

The parameters of the room segmentation for different datasets are shown in Table 1. The same
value of 25 mm was applied for the voxel size of the free space or pixel size of the 2D free-space
evidence raster. The lower bound of the room area was the same. The upper bound of the room area
was 125 m2 for dataset-1 and 75 m2 for dataset-2. Two-step cell complex construction was conducted.
The 2D space was partitioned by straight line segments, and the temple result was further partitioned
by curved lines. For dataset-2, the curved line segment was extended to ensure that the segment
intersected with the existing polygon. A distance value of 0.5 m was used for this dataset. The room
floor plan results of the two real-world datasets are shown in Figure 13. As shown in the red box
in Figure 13b, because the curved wall was approximated by straight lines, the model result is not
very smooth.
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Table 1. Parameters of the proposed method for different datasets.

Parameters Descriptions Dataset-1 Dataset-2

Wall line detection and regularization

d1 Search the nearest neighbor within a radius less than the threshold d1. 0.2 m 0.2 m
d2 The neighbor points within a radius d2 are marked as visited. 0.1 m 0.1 m
k The mean-shift runs k times, and each time the radius increases by 1.5 times. 3 3

∆θ Straight and curved line detection angle threshold. (default 40◦) 40◦ 40◦

∆d Straight line test distance threshold. 0.1 m 0.1 m
∆θ′ Straight line test angle threshold. (default 10◦) 10◦ 10◦

Room space reconstruction

svoxel or sf
Voxel size of free space or pixel size of 2D free-space evidence raster, as well

as point evidence raster. 25 mm 25 mm

τlower The lower bound of a room area. 0.5 m2 0.5 m2

τupper The upper bound of a room area. 125 m2 75 m2

Wall opening reconstruction

sw Pixel size of wall labeling process, resolution of raster. 25 mm 25 mm
ε Buffer threshold for the wall plane surface. 0.1 m 0.1 m

w0 The upper bound of window/door width. 2.5 m 2.5 m
w1 The lower bound of window/door width. 0.3 m 0.3 m
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The geometric elements were evaluated quantitatively through a comparison between the
reference model and the automatically reconstructed model, hereafter referred to as the source model.
The intersection over union (IoU) metric, also known as the Jaccard similarity index, was used to
evaluate the decomposition of room space. The IoU measures the similarity between finite sample sets
and is defined as the ratio between the area of the intersection and union of the results and ground
truth [6]. Similar to [3,5], the room discrepancy metric (RDM) was used to reflect the differences in
the relative positions of wall corners and the Euclidean distances of all point pairs for the corners.
The absolute area deviation (AAD) was also used in our evaluation to reflect the average room
area differences.

IoU =
Area of Intersection

Area of Union
(17)

RDM = dis(Pm − Pa) (18)

AAD = |Aream − Areaa| (19)
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The experimental results are analyzed statistically in this section. As shown in Table 2, a total of
7 rooms were detected in dataset-1, and the IoU score of dataset-1 was 97.5% ± 2.4%. The proposed
method obtained an RDM of 0.049 ± 0.031 m and an AAD of 0.35 ± 0.34 m2 for dataset-1. There were
13 rooms in the background. However, only 12 rooms were detected. Some unclear wall constraints
from the point clouds caused the method to fail to determine the correct rooms. Due to the complexity
of dataset-2, the accuracy was slightly low for this dataset. The IoU score of dataset-2 was 93.0%± 6.85%.
The proposed method obtained an RDM of 0.051 ± 0.025 m and an AAD of 0.49 ± 0.68 m2 for dataset-2.

Table 2. Description of the room reconstruction evaluations using real-world datasets.

Test Sites Background Detected IoU RDM (m) AAD (m2)

Dataset-1
Rooms 7 7

97.5% ± 2.4% 0.049 ± 0.031 0.35 ± 0.34Wall lines 36
Doors 8 8

Dataset-2
Rooms 13 12

93.0% ± 6.85% 0.051 ± 0.025 0.49 ± 0.68Wall lines 91
Doors 7 7

4.3. Wall Opening Reconstruction

To estimate room height information, including the floor height, ceiling height, and room area,
a histogram method was used to obtain the average height from the floor to the ceiling. In this
experiment, the histogram interval was 0.05 m. The hollow areas on the wall were extracted. Four
parameters were required in this step: the pixel size sw, buffer threshold ε for the wall plane surface,
upper bound of door widthr w0 and lower bound of door width w1. First, the original points closer
than the buffer threshold to the wall line were extracted. The buffer thresholds were set as 0.1 m in this
study. Next, the points of each wall were projected to the wall planer surface to obtain a point evidence
raster, and the U-V direction growing algorithm was used to extract hollow areas as openings. A value
of 2.5 m was applied as the upper bound of the door width. A value of 0.3 m was applied as the lower
bound of the door width.

Finally, 3D models were completed, as shown in Figure 14. The total time consumptions were
74.9 and 123.8 s for dataset-1 and dataset-2, respectively (Table 3). As CityGML clearly defines the
geometric and semantic relationships of builds, and the standard represents the building interior at
LoD-4, the final 3D models were exported as the following file formats: *.obj file and CityGML LoD-4
(*.gml).Sensors 2019, 19, x 16 of 19 
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Table 3. The time consumption for each modeling phase.

Process Phase Dataset-1 Dataset-2

Wall line detection and regularization (s) 6.1 15.9
Room space decomposition (s) 37.6 77.8

Wall opening detection (s) 31.2 30.1
Total time (s) 74.9 123.8

4.4. Discussion

This study concentrated on the modeling of building interiors with curved walls. Similar to
Li et al. [5], a few piecewise straight lines were used to approximate a curved line and an indoor 3D
model was constructed. It can be clearly found that the generated room boundaries were not as smooth
as proposed method (Figure 15).
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Figure 15. The comparison between the method using piecewise straight lines to approximate curved
line (a) and proposed method (b).This study proposed a point-based method for curve detection of
slice point cloud. The problem can also be solved in 2D domain by projecting the slice point cloud in
XOY plane and using image-based method [36]. The image-based method often contains two steps,
thinning [37,38] and tracing. It is useful and can detect curved lines quit well. However, the method
still has two problems when compared with proposed method.

(1) The image-based method can’t distinct the straight parts and curved parts well (Figure 16a).
(2) The detected curves are not as smooth as proposed method (Figure 16b).
The pixel size has big influence on curved line feature detection. For a larger cell size close to

the thickness of the wall, the parallel wall lines won’t be detected. A smaller cell size will cause the
thinning step to fail.

In the proposed method, vertical walls are assumed to exist in the multi-room indoor environment.
However, some structural components, such as oblique walls, may oppose this assumption. Another
difficulty arises from transparent glass walls and windows; dataset-2 contains many glass windows
that influenced curved wall line detection, as shown in the red box of Figure 12b. While geometric
elements are represented as volumetric solids in the IFC standard, the proposed method only models
geometric elements as surfaces. Finally, only XYZ coordinates are used to detect wall opening elements
in this study; therefore, more cues (e.g., color and intensity) can be used to detect wall opening elements
and obtain more precise results.
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Figure 16. Curve detection result using image-based method. (a) The image-based method can’t distinct
the straight parts and curved parts well; (b) the detected curves are not as smooth as proposed method.

5. Conclusions

In this work, a novel straight and curved line tracking method followed by a straight line test
was proposed for curved wall detection. Robust parameters are used to represent the line direction
parameter. A novel straight line regularization method is achieved using constrained least squares.
By transforming indoor reconstruction into a labeling problem, the constructed cell complex with both
straight lines and curved lines is labeled with graph cut based energy minimization. The method
does not rely on viewpoint information. Instead, the clear wall constraints from point clouds were
used in minus operation to determine the correct rooms in the initial room segmentation phrase.
The experimental results indicated that the proposed method is well suited for indoor modeling of
multi-room environments with curved walls.

In future work, the oblique wall issue must be solved. Only the geometric coordinates of points
were used in this study; further work should include feature-based and vision combined methods for
indoor reconstruction.
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