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Abstract: The road friction coefficient is a key parameter for autonomous vehicles and vehicle
dynamic control. With the development of autonomous vehicles, increasingly, more environmental
perception sensors are being installed on vehicles, which means that more information can be used
to estimate the road friction coefficient. In this paper, a nonlinear observer aided by vehicle lateral
displacement information for estimating the road friction coefficient is proposed. First, the tire
brush model is modified to describe the tire characteristics more precisely in high friction conditions
using tire test data. Then, on the basis of vehicle dynamics and a kinematic model, a nonlinear
observer is designed, and the self-aligning torque of the wheel, lateral acceleration, and vehicle lateral
displacement are used to estimate the road friction coefficient during steering. Finally, slalom tests
and DLC (Double Line Change) tests in high friction conditions are conducted to verify the proposed
estimation algorithm. Test results showed that the proposed method performs well during steering
and the estimated road friction coefficient converges to the reference value rapidly.

Keywords: road friction coefficient; tire model; nonlinear observer; self-aligning torque; lateral
displacement; Lyapunov method

1. Introduction

Vehicle safety-related state estimation [1–3] and control systems [4–6] have received much attention
in recent decades. Vehicle dynamic control systems, such as the ASR (Anti-slip Regulation System), ESC
(Electronic Stability Control), and AEB (Autonomous Emergency Brake), are realized by controlling
the driving forces or braking forces so that the forces exerted by the road on the tires can be changed to
maintain the stability of the wheels and the vehicle. The road friction coefficient is a key parameter for
vehicle dynamic control systems [7,8], because it can reflect the dynamic motion limitations to a certain
extent [9]. For human-operated vehicles, drivers can estimate the motion limitation of the vehicle and
adapt their driving style using experience to prevent the vehicle from driving into critical conditions.
However, with the development of intelligent vehicles, progressively more ADAS (Advanced Driving
Assistant System) functions are being implemented by automated systems, which means that driving
and braking forces and steering angles need to be calculated and controlled by control units, such
as ACC (Adaptive Cruise Control) and LKA (Lane Keep Assistant). Therefore, an accurate road
friction coefficient provides the automated system with the current motion limitation of the vehicle.
Furthermore, for highly automated vehicles, the road friction coefficient is critical for decision-making,
trajectory planning, and trajectory tracking.

Road friction coefficient estimation methods can be divided into two general types: cause-based
methods and effect-based methods. The state-of-the-art methods of road friction estimation have
been reviewed [10]. The principle of cause-based methods is the direct determination of road
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surface characteristics by special sensors, such as cameras, laser scanners, optical sensors, and
so on. Alonso, J. et al. [11] proposed an asphalt status classification system based on real-time
acoustic analysis of the tire-road interaction, but only wet and dry asphalt states were covered.
Roychowdhury, S. et al. [12] proposed a two-stage method based on images captured by the front
camera. A convolutional neural network model was applied to learn the road characteristics, and
then the road states were divided into three types according to a rule-based strategy. Although
cause-based methods can accurately characterize road states with special sensors, only a rough road
friction coefficient is estimated, and the interval may vary within a very large range. The road friction
coefficient describes the interaction effects between the road and tires [13], which means it cannot be
estimated accurately by cause-based methods without considering the vehicle and tire characteristics.
Effect-based methods estimate the road friction coefficient from the dynamic or kinematic motion
responses [14] of the vehicle or wheels due to the tire forces caused by the interaction between the
tires and the road. Normally, effect-based methods estimate the road friction coefficient by using
models, and the estimation results are more accurate than those of cause-based methods. Effect-based
methods fall into two categories: methods based on longitudinal dynamics and methods based on
lateral dynamics. In order to obtain the road friction coefficient in all conditions, Ahn, C. et al. [15]
divided driving conditions according to the slip ratio, the sideslip angle, and lateral acceleration.
Then, different estimation methods were applied to estimate road friction coefficients under different
conditions. Using longitudinal dynamics, Castillo Aguilar, J.J. et al. [16] applied a fuzzy logic algorithm
to estimate the road friction according to the variation curve of the relationship between the road
friction coefficient and the longitudinal slip ratio, and the algorithm was utilized in the hydraulic
pressure control system of the EHB (Electric Hydraulic Brake) [17]. Enisz, K. et al. [18] designed
an augmented vehicle model with the road friction coefficient and slip ratio, and the vehicle speed,
wheel rotation speed, slip ratio, and road friction coefficient were simultaneously estimated by the
EKF (Extended Kalman Filter). Taking advantage of the fact that the wheel torque of distributed
drive electric vehicles is available and can be controlled precisely, Xia, X. et al. [19] proposed a road
friction coefficient estimation algorithm under driving conditions using a nonlinearobserver. The
observer performed well with strong longitudinal excitation, and its stability was proved. Moreover,
many studies have focused on road friction coefficient estimation methods based on lateral dynamic
characteristics. Using the relationship between lateral force and the sideslip angle, Wang, R. et al. [20]
proposed a road friction coefficient estimation method that is effective when the vehicle has enough
lateral excitation. Qi, Z. et al. [21] designed a Kalman Filter to estimate the longitudinal and lateral
forces of each tire, as well as the derivatives of the two forces, using a 4 DOF(Degree of Freedom)
vehicle model, and then the road friction coefficient was estimated according to the estimated tire
lateral force. Compared with lateral force, self-aligning torque enters the nonlinear region earlier, so
less lateral excitation is needed to estimate the road friction coefficient. Therefore, the relationship
between the sideslip angle and self-aligning torque has been applied in many studies to obtain an
accurate road friction coefficient. Luque, P. et al. [22] used a Kalman Filter to estimate longitudinal and
lateral tire forces, and the self-aligning torque of the tire was calculated by a pretrained neural network.
Then, the road friction coefficient was obtained by the relation curves between self-aligning torque and
the sideslip angle in different road states. Matsuda, T. et al. [23] considered the road friction coefficient
as a state and designed an EKF using a nonlinear 2 DOF single-track vehicle model, and self-aligning
torque was measured to update the states. With varying road friction, Hsu, Y.-H.J. et al. [24] estimated
the road friction coefficient from the relationships between (i) self-aligning torque and the tire trail
and (ii) the tire trail and the sideslip angle. Ahn, C et al. [25] used a Kalman Filter to estimate the
self-aligning torque of tires on the basis of the steering system and designed a nonlinear observer to
estimate the road friction coefficient using self-aligning torque and a nonlinear vehicle model, and the
stability and robustness of the nonlinear observer were proved. Shao, L. and Jin, C. [26] adopted a
novel strategy to estimate the front axle lateral force. Then, combined with an indirect measurement
based on total aligning torque estimation, a nonlinearadaptive observer was designed to estimate
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the road friction coefficient with guaranteed stability. The self-aligning torque of the front axle is
coupled with the sideslip angle; so, to precisely calculate self-aligning torque, we must know the
current sideslip angles of each tire. Therefore, an accurate sideslip angle contributes to improvement
in the estimation accuracy of the road friction coefficient using self-aligning torque-based estimation
methods. With the development of intelligent vehicles, besides conventional onboard sensors, such
as steering wheel angle sensors, wheel speed sensors, and inertial measurement units, information
from new sensors equipped on intelligent vehicles can also be used to estimate the vehicle state. Yoon,
J. and Peng, H. [27] used velocity measurements from two GPS receivers to estimate the sideslip
angle. To reduce the cost, they took advantage of the direction measurement using a magnetometer
and proposed a sideslip angle estimation method that integrated a magnetometer with a GPS [28].
Wang, Y. et al. [29] proposed a combined vehicle and vision model to increase the robustness of the
body-slip-angle estimation to uncertain vehicle parameters, and multi-rate and time-delay issues were
explained. Furthermore, camera-aided estimation of the lateral state for the integrated control of
automated vehicles was discussed in Reference [30].

Since new sensors equipped on intelligent vehicles facilitate the estimation of vehicle states, they
could be useful for improving the accuracy of the results of road friction coefficient estimation. In
this paper, we introduced vehicle lateral displacement, which is based on the relationship between
road friction and the self-aligning torque of the front axle, to the framework of road friction coefficient
estimation. On the one hand, lateral displacement information contributes to improvement in the
estimation accuracy of the vehicle’s sideslip angle so that tire forces can be estimated more precisely.
For intelligent vehicles, vehicle lateral displacement information can be obtained from cameras, GNSS
(Global Navigation Satellite System) and maps, or V2X (Vehicle to Everything) systems. We acquired
this information from a high-accuracy GNSS and a pre-established lane line map. On the other hand,
compared with methods based on the relationship between road friction and the longitudinal or lateral
forces of the tires, the self-aligning torque-based method requires fewer excitations, so the road friction
coefficient can be estimated before the vehicle drives into critical conditions. We adjusted the tire brush
model to fit the tire test data more accurately. Then, by integrating lateral displacement information,
self-aligning torque measurement, lateral acceleration measurement, the tire model, and the vehicle
model, we developed a nonlinear observer for road friction coefficient estimation. The stability of the
observer was proved, and the observer’s robustness was analyzed.

The main contributions of this paper are summarized as follows:

• A novel modified tire brush model based on tire test data is proposed. Compared with the
traditional tire brush model, new mapping relationships between lateral tire force and the sideslip
angle and between self-aligning torque and the sideslip angle are established, which can model
tire forces and self-aligning torque more precisely. Further, the simple expression form of the
modified tire model functions facilitates the proof of the non-linear observer’s stability.

• Lateral displacement information is introduced into the estimation system. Lateral displacement
information can be obtained from new sensors equipped on intelligent vehicles, and it can be
useful for accurate sideslip angle estimation, so that the road friction coefficient can be calculated
more precisely.

• A non-linear observer for the road friction coefficient is proposed. The stability of the nonlinear
observer is proved thorough the Lyapunov method, and the robustness is analyzed.

The remainder of this paper is organized as follows. In Section 2, the vehicle model and modified
tire model are introduced. In Section 3, the nonlinear observer for road friction coefficient estimation
is proposed, and its stability and robustness are analyzed. Section 4 presents experiments that were
conducted to prove the proposed estimation method, and the experimental results are discussed.
Finally, the conclusions are summarized in Section 5.
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2. Vehicle and Tire Model

2.1. Vehicle Model

A nonlinear 2 DOF vehicle model is introduced to express the vehicle lateral dynamics, as shown
in Figure 1. Both longitudinal and lateral load transfer are considered, and the dynamic model is
expressed as:

.
ω =

l f

Iz
(Fy f l cos δ f l + Fy f r cos δ f r) −

lr
Iz
(Fyrl + Fyrr) (1)

.
β =

ay

vx
−ω (2)

where ω is the yaw rate; l f and lr are the distance between the COG (Center of Gravity) and the front
and rear axles, respectively; Iz is the vehicle yaw moment of inertia; Fy f l, Fy f r, Fyr f , and Fyrr are the
lateral forces of the front left tire, front right tire, rear left tire, and rear right tire, respectively; δ f l and
δ f r are the steering angles of the front left wheel and front right wheel, respectively; β is the sideslip
angle; ay is the lateral acceleration of the vehicle; vx is the longitudinal speed of the vehicle.
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Lateral force Fy is calculated by the tire model, and it corresponds to the road friction coefficient µ
and sideslip angle α of each tire and vertical load Fz. The sideslip angles of tires are:

α f l =
vy+l fω

vx−
b
2ω
− δ f l αrl =

vy−lrω

vx−
b
2ω

α f r =
vy+l fω

vx+
b
2ω
− δ f r αrr =

vy−lrω

vx+
b
2ω

(3)

where vy is the lateral speed of the vehicle, and b is track base. Given the load transfer, the vertical load
of each tire is:
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

Fz f l = mg lr
2(l f +lr)

−max
h

2(l f +lr)
−may

hlr
b(l f +lr)

Fz f r = mg lr
2(l f +lr)

−max
h

2(l f +lr)
+ may

hlr
b(l f +lr)

Fz f l = mg lr
2(l f +lr)

+ max
h

2(l f +lr)
+ may

hl f

b(l f +lr)

Fz f l = mg lr
2(l f +lr)

+ max
h

2(l f +lr)
−may

hl f

b(l f +lr)

(4)

where Fz f l, Fz f r, Fzr f , and Fzrr are the vertical forces of the front left tire, front right tire, rear left tire, and
rear right tire, respectively; m is the vehicle mass; ax is longitudinal acceleration; h is the height of the COG.

2.2. Tire Model

A novel modified tire brush model is applied to describe lateral force Fy and the self-aligning
torque of the tire Mz. Compared with the traditional tire brush model, the proposed modified tire
model has a simpler form and fits the tire test data better, so it is more convenient for road friction
coefficient estimation during normal steering conditions. In the proposed modified tire model, the

relationship between α
F0.15

z
and

Fy

F0.81
z

and the relationship between α
F0.45

z
and Mz

F1.85
z

are established, as

shown in Equations (5) and (6), respectively. With the new mapping relationships, the tire model can
describe the variation in lateral force and self-alignment with different vertical loads more precisely.

Fy

F0.81
z

= −sign(α)•3d1µ
c1

3µ

(
|α|

F0.15
z

)1−
c1

3µ

(
|α|

F0.15
z

)
+

1
3

[
c1

3µ

(
|α|

F0.15
z

)]2
 (5)

Mz

F1.85
z

= sign(α)•
d2

2
µ

c2

3µ

(
|α|

F0.45
z

)[
1−

c2

3µ

(
|α|

F0.45
z

)]3

(6)

where d1, d2, c1, and c2 are parameters, and µ is the road friction coefficient.
Tire tests were conducted on a tire test bench to verify the proposed tire model. The raw test data

are shown in Figure 2. If we normalize the lateral tire force with the vertical load using the traditional
tire brush model, the curves for different tire loads do not line up very well, as shown in Figure 3,
which means that Fy and Mz are not directly correlative with Fz. With the new relationship proposed
in the modified tire brush model, the test data are normalized, as shown in Figure 4. For lateral tire

force, Figure 4a reveals that the relationships between α
F0.15

z
and

Fy

F0.81
z

calculated by the modified tire

model are nearly the same for different tire loads. Similarly, the test results in Figure 4b show that the
relationships between α

F0.45
z

and Mz
F1.85

z
are the same for different vertical loads. Therefore, the proposed

modified tire brush model can calculate the lateral tire force more precisely with tire load variation.
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The tire test data in Figure 4 prove the function form of the modified tire model, so the next step is
to use the test data normalized by the vertical load to fit the tire model function. The fitting results are
shown as the black line in Figure 4, and the proposed modified tire model can be expressed as:

Fy(α, Fz,µ) = −sign(α)•3d1µF0.81
z

c1

3µ

(
|α|

F0.15
z

)1−
c1

3µ

(
|α|

F0.15
z

)
+

1
3

[
c1

3µ

(
|α|

F0.15
z

)]2
 (7)

Mz(α, Fz,µ) = sign(α)•
d2

2
µF1.85

z
c2

3µ

(
|α|

F0.45
z

)[
1−

c2

3µ

(
|α|

F0.45
z

)]3

(8)

3. Nonlinear Observer Design for Road Friction Coefficient Estimation

3.1. NonlinearObserver Design

Assuming that the road friction coefficient µ is piecewise constant and using the vehicle dynamic
model (2) we have:
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.
µ = 0 (9)

.
vy = ay

(
µ, vy, Fz

)
−ωvx (10)

where ay
(
µ, vy, Fz

)
is lateral acceleration, which is:

ay
(
µ, vy, Fz

)
= 1

m

(
Fy f l cos δ f l + Fy f r cos δ f r + Fyrl + Fyrr

)
= 1

m

[
Fy

(
µ,α f l, Fz f l

)
cos δ f l + Fy

(
µ,α f r, Fz f r

)
cos δ f r +Fy(µ,αrl, Fzrl) + Fy(µ,αrr, Fzrr)

] (11)

Since the lane line map information is available, we can measure (i) the distance between the COG
of the vehicle and the lane line yl and (ii) the angle between the lane line and vehicle heading ϕ. yl
and ϕ can either be obtained by a camera installed on the vehicle or calculated through the location
information from a GNSS receiver and lane map, which is a priori knowledge. The lateral displacement
can also be obtained through V2X technology; for example, through the UWB (Ultra-Wideband)
localization technique, the distance between the vehicle and infrastructure along the road can be
calculated. According to the kinematic relationships of vehicle motion, the dynamics of the distance
between the COG and the lane line can be expressed as:

.
yl = vx sinϕ+ vy cosϕ (12)

From the system defined by Equations (10)–(12), the corresponding nonlinear observer
isdesigned as:

.
µ̂ = k1sign( f1)[M k − fk(µ̂, α̂, Fz)] + k2sign( f2)[ay − ay(µ̂, α̂, Fz)

]
(13)

.
ŷl = vx sinϕ+ v̂y cosϕ+ k3(yl − ŷl) (14)

.
v̂y = ay

(
µ̂, v̂y, FZ

)
− rvx + k4(yl − ŷl) + k5

[
ay − ay

(
µ̂, v̂y, FZ

)]
+ k6

∫ t

0

[
ay − ay

(
µ̂, v̂y, FZ

)]
dt (15)

where the superscript ^ denotes an estimated value; k1, k2, k3, k4, k5, and k6 are parameters; k1, k2, k3

and k6 are positive, k4 = cosϕ. From Equation (13) f1 is defined as:
f1 > 0 α f > 0, α̂ f > 0

f1 < 0 α f < 0, α̂ f < 0

f1 = 0 else

(16)

and f2 is defined as: 
f2 < 0 α f > 0, α̂ f > 0,αr > 0, α̂r > 0

f2 > 0 α f < 0, α̂ f < 0,αr < 0, α̂r < 0

f2 = 0 else

(17)

Mk is the self-aligning torque at the kingpin, and it can be calculated as:

Mk = FklLl(δ f l) − FkrLr(δ f r) (18)

where Fkl and Fkr are tie rod forces on the left and right sides, respectively. Ll(δ f l) and Lr(δlr) are the
distances from the steering rods to the kingpin on the left and right sides, respectively. It has to be
mentioned that, in our approach, Fkl and Fkr are measured by tension and compression force sensors
installed at the left and right tie rods. This measurement can be provided by the steer-by-wire system of
intelligent vehicles. It can also be estimated by the steering system if the algorithm of the EPS (Electric
Power Steering) system is available. fk

(
µ̂, v̂y, Fz

)
is the self-aligning torque at the kingpin estimated by

the wheel steering model and tire model, which can be expressed as:
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fk
(
µ, vy, Fz

)
= Mz f l + Mz f r + lmlFy f l + lmrFy f r

= Mz
(
µ,α f l, Fz f l

)
+ Mz

(
µ,α f r, Fz f r

)
+ lmlFy

(
µ,α f l, Fz f l

)
+ lmrFy

(
µ,α f r, Fz f r

) (19)

where lml and lmr are the mechanical trails of the left and right front tires, respectively.

3.2. Stability Analysis

According to the system dynamics in (9), (10), (12) and nonlinear observer in (13), (14), (15), the
corresponding error dynamics is:

.
µ̃ = −k1sign( f1)

[
fk
(
µ, vy, Fz

)
− fk

(
µ̂, v̂y, Fz

)]
− k2sign( f2)

[
ay

(
µ, vy, Fz

)
− ay

(
µ̂, v̂y, Fz

)]
(20)

.
ỹl = −k3 ỹl + ṽy cosϕ (21)

.
ṽy = (1− k5)

[
ay

(
µ, vy, Fz

)
− ay

(
µ̂, v̂y, Fz

)]
− k6

∫ t
0

{[
ay

(
µ, vy, Fz

)
− rvx

]
−

[
ây

(
µ̂, v̂y, Fz

)
− rvx

]}
dt− k4 ỹl

= −k6ṽy − (k5 − 1)
[
ay

(
µ, vy, Fz

)
− ay

(
µ̂, v̂y, Fz

)]
− k4 ỹl

(22)

where the superscript ~denotes the error between the estimated value and the real value.
The Lyapunov function is defined as:

V =
1
2
µ̃2 +

1
2

ỹ2
l +

1
2

ṽ2
y (23)

Then, we have:

.
V = µ̃

{
−k1sign( f1)

[
fk
(
µ, vy, Fz

)
− fk

(
µ̂, v̂y, Fz

)]
− k2sign( f2)

[
ay

(
µ, vy, Fz

)
− ay

(
µ̂, v̂y, Fz

)]}
+ỹl

{
−k3 ỹl + (cosϕ)ṽy

}
+ ṽy

{
−k6ṽy − (k5 − 1)

[
ay

(
µ, vy, Fz

)
− ay

(
µ̂, v̂y, Fz

)]
− k4 ỹl

} (24)

Using the mean value theorem, we have:

fk
(
µ, vy, Fz

)
− fk

(
µ̂, v̂y, Fz

)
=
∂ f k
∂µ

µ̃+
∂ f k
∂vy

ṽy (25)

ay
(
µ, vy, Fz

)
− ay

(
µ̂, v̂y, Fz

)
=
∂ay

∂µ
µ̃+

∂ay

∂vy
ṽy (26)

where 

∂ f k
∂µ =

∂ fk
∂µ

(
µ, vy

)
∂ f k
∂vy

=
∂ fk
∂vy

(
µ, vy

)
∂ay
∂µ =

∂ay
∂µ

(
µ, vy

)
∂ay
∂vy

=
∂ay
∂vy

(
µ, vy

)
(27)

In Equation (27) µ is a median between µ and µ̂; vy is a median between vy and v̂y. Substituting
(25), (26) and (27) into (24) we have:

.
V = −

[
k1sign( f1)

∂ f k
∂µ + k2sign( f2)

∂ay
∂µ

]
µ̃2
− k3 ỹ2

l −

[
(k5 − 1)

∂ay
∂vy

+ k6

]
ṽ2

y

−

[
k1sign( f1)

∂ f k
∂vy

+ k2sign( f2)
∂ay
∂vy

+ (k5 − 1)
∂ay
∂µ

]
µ̃ṽy + (−k4 + cosϕ)ỹlṽy

= −

[
µ̃ ỹl ṽy

]
A


µ̃
ỹl
ṽy


(28)
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where

A =


A11 0 A13

0 k3 A23

A31 A32 A33

 (29)

A11 = k1sign( f1)
∂ f k
∂µ

+ k2sign( f2)
∂ay

∂µ
(30)

A13 = A31 =
1
2

k1sign( f1)
∂ f k
∂vy

+
1
2

k2sign( f2)
∂ay

∂vy
+

1
2
(k5 − 1)

∂ay

∂µ
(31)

A23 = A32 = −
1
2

k4 +
1
2

cosϕ (32)

A33 = (k5 − 1)
∂ay

∂vy
+ k6 (33)

If A is a positive definite matrix, then
.

V < 0 holds, which means that the estimation system is
stable, and the estimation error will converge to zero as time t→∞ . To ensure that A is a positive
definite matrix, all sequential principal minors of A need to be positive. According to the modified tire
model in (7) and (8) and the symbolic function defined in (16) and (17) it can be deduced that:

sign( f1)
∂ f k
∂µ
≥ 0 (34)

sign( f2)
∂ay

∂µ
≥ 0 (35)

Therefore, if we choose k1, k2, and k3 as positive constants, the first-order and second-order sequential
principal minors of A are positive. If we choose k4 = cosϕ, then the third-order sequential principal
minor of A is:

|A| = k3

[
k1sign( f1)

∂ f k
∂µ + k2sign( f2)

∂ay
∂µ

][
(k5 − 1)

∂ay
∂vy

+ k6

]
−

k3
4

[
k1sign( f1)

∂ f k
∂vy

+ k2sign( f2)
∂ay
∂vy

+ (k5 − 1)
∂ay
∂µ

]2 (36)

Since ∂ f k
∂vy

,
∂ay
∂vy

, and
∂ay
∂µ are bounded according to the modified tire model, there exists a parameter k5

such that: k1sign( f1)
∂ f k
∂vy

+ k2sign( f2)
∂ay

∂vy
+ (k5 − 1)

∂ay

∂µ

2

=

[
A11 + (k5 − 1)

∂ay

∂µ

]2

= 0 (37)

If the chosen value of k6 is large enough, then |A| > 0 holds. Therefore,
.

V < 0 holds, and it can be
deduced that: 

µ̃
ỹl
ṽy

→


0
0
0

 as t→∞ (38)

and the estimation error can converge to zero exponentially.

3.3. Robustness Analysis

The uncertainties of the tire and vehicle models or measurements from sensors introduce
perturbance to the system. It is necessary to analyze the performance of the estimator with bounded
external excitation. According to the error dynamics of the system in (20), (21) and (22) without external
inputs, the error dynamics of the system with inputs can be expressed as
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.
µ̃ = −k1sign( f1)

∂ f k
∂µ

µ̃+
∂ f k
∂vy

ṽy

− k2sign( f2)
(
∂ay

∂µ
µ̃+

∂ay

∂vy
ṽy

)
+ u1 (39)

.
ỹl = −k3 ỹl + ṽy cosϕ+ u2 (40)

.
ṽy = −k6ṽy − (k5 − 1)

(
∂ay

∂µ
µ̃+

∂ay

∂vy
ṽy

)
− k4 ỹl + u3 (41)

where u1, u2, and u3 are external bounded inputs. u1 includes the uncertainties of the tire model and
the uncertainties in the estimation results of vy. u2 includes the uncertainties in the measurements of
lateral distance between the COG and the lane line and uncertainties in the estimation results of vy.u3

includes the uncertainties in lateral distance measurements and uncertainties in the estimation results
of µ.

The Lyapunov function is chosen and defined in Equation (23) thus, according to (39), (40), and
(41) we have:

.
V = µ̃

{
−k1sign( f1)

(
∂ f k
∂µ µ̃+

∂ f k
∂vy

ṽy

)
− k2sign( f2)

(
∂ay
∂µ µ̃+

∂ay
∂vy

ṽy

)
+ u1

}
+ỹl

{
−k3 ỹl + (cosϕ)ṽy + u2

}
+ ṽy

{
−k6ṽy − (k5 − 1)

(
∂ay
∂µ µ̃+

∂ay
∂vy

ṽy

)
− k4 ỹl + u3

}
= −A11µ̃2

− k3 ỹl
2
−A33ṽy

2
−

[
A11 + (k5 − 1)

∂ay
∂µ

]
µ̃ṽy + (cosϕ− k4)ṽy ỹl + µ̃u1 + ỹlu2 + ṽyu3

(42)

Since k4 = cosϕ, substituting (37) into (42) we have

.
V = −A11µ̃2

− k3 ỹl
2
−A33ṽy

2 + µ̃u1 + ỹlu2 + ṽyu3

≤ −A11
∣∣∣µ̃∣∣∣2 − k3

∣∣∣ỹl
∣∣∣2 −A33

∣∣∣̃vy
∣∣∣2 + ∣∣∣µ̃∣∣∣|u1|+

∣∣∣ỹl
∣∣∣|u2|+

∣∣∣̃vy
∣∣∣|u3|

=
[
−A11(1− θ1)

∣∣∣µ̃∣∣∣2 −A11θ1
∣∣∣µ̃∣∣∣2 + ∣∣∣µ̃∣∣∣|u1|

]
+

[
−k3(1− θ2)

∣∣∣ỹl
∣∣∣2 − k3θ2

∣∣∣ỹl
∣∣∣2 + ∣∣∣ỹl

∣∣∣|u2|

]
+

[
−A33(1− θ3)

∣∣∣̃vy
∣∣∣2 −A11θ1

∣∣∣̃vy
∣∣∣2 + ∣∣∣̃vy

∣∣∣|u3|

]
= −A11(1− θ1)

∣∣∣µ̃∣∣∣2 − k3(1− θ2)
∣∣∣ỹl

∣∣∣2 −A33(1− θ3)
∣∣∣̃vy

∣∣∣2
−

(
A11θ1

∣∣∣µ̃∣∣∣2 − ∣∣∣µ̃∣∣∣|u1|

)
−

(
k3θ2

∣∣∣ỹl
∣∣∣2 − ∣∣∣ỹl

∣∣∣|u2|

)
−

(
A11θ1

∣∣∣̃vy
∣∣∣2 − ∣∣∣̃vy

∣∣∣|u3|

)
(43)

where 0 < θ1 < 1, 0 < θ2 < 1, and 0 < θ3 < 1. Therefore, if the bounded inputs satisfy:
|u1| < A11θ1

|u2| < k3θ2

|u3| < A33θ3

(44)

then we have:
.

V ≤ −A11(1− θ1)
∣∣∣µ̃∣∣∣2 − k3(1− θ2)

∣∣∣ỹl
∣∣∣2 −A33(1− θ3)

∣∣∣̃vy
∣∣∣2 (45)

If we define:
A11(1− θ1)

∣∣∣µ̃∣∣∣2 + k3(1− θ2)
∣∣∣ỹl

∣∣∣2 + A33(1− θ3)
∣∣∣̃vy

∣∣∣2 = W(x) (46)

where x =
[
µ̃ ỹl ṽy

]T
, then inequalities (47) (48) hold:

1
4
‖x‖2 ≤ V ≤ ‖x‖2 (47)

∂V
∂t

+
∂V
∂x

.
x ≤ −W(x). (48)

By applying Theorem 4.19 from [31], we can reason that the system expressed in (39), (40), and (41) is
input-state stable; thus, if the estimation system is interfered by bounded inputs, then the system will
still stay stable.
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4. Experimental Validation

Tests based on an electric vehicle were conducted to verify the proposed road friction coefficient
estimation algorithm. The experimental setup and results are discussed in this section.

4.1. Experimental Setup

4.1.1. Test Vehicle

The test vehicle is an electric vehicle and shown in Figure 5a, and the vehicle parameters are
listed in Table 1. Information about the wheel speed and steering wheel angle was obtained through
CAN-Bus. The GNSS receiver is Novatel 718D, which provides the absolute position and heading
angle of the vehicle. It is necessary to point out that the lane lines were modeled in advance in the
navigation coordinates so that the distance between the vehicle and lane line could be calculated in real
time. ADIS16495 is the IMU (Inertial Measurement Unit), which measures the acceleration and angular
velocities. The angle between the vehicle heading and lane line can be calculated by integrating the
yaw rate of the vehicle. The steering tie rods are cut off and two Kistler tension and compression force
sensors 9321B are installed on the left and right tie rods, respectively, as shown in Figure 5b. The
tension and compression force sensors measure the force at the tie rods so that the self-aligning torque
of the wheel can be measured indirectly.
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Table 1. Vehicle parameters.

Parameters Value

m/(kg) 1343.8
b/(m) 1.356
lf/(m) 1.112
lr/(m) 1.193

Iz/(kg·m2) 1785

4.1.2. Test Road

To verify the proposed road friction coefficient estimation algorithm, slalom tests and DLC (Double
Line Change) tests were conducted on the road shown in Figure 6. The white lane lines shown in
Figure 6 were mapped in advance. According to a large number of emergency braking experiments,
the real road friction coefficient is considered to be around 0.8.
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4.2. Experimental Results and Analysis

4.2.1. Slalom Test

Slalom test results are shown in Figure 7. Figure 7a shows the vehicle speed measured by the
GNSS receiver. The blue line and green line show the steering wheel angle and yaw rate during the test,
respectively. Figure 7c shows the accelerations recorded by the IMU, and we can see that the maximum
lateral acceleration reaches 8 ms−2, which means that the vehicle has enough lateral excitation. Figure 7d
shows the estimated self-aligning torque at the kingpin according to the tension and compression
force sensors installed at the steering tie rods. Figure 7e shows the estimated lateral distance between
the COG of the vehicle and the lane line. The reference is calculated by the absolute position and the
lane line map. The road friction coefficient estimation result is shown in Figure 7f. Since the road
friction coefficient is related not only to the road surface but also to the tires, an absolutely precise road
friction coefficient could not be obtained. From braking tests, we know that the real friction coefficient
is about 0.8; therefore, we set 0.75–0.85 as the reference region. The initial road friction coefficient is
set at 1. From Figure 8f, we can see that at around 9 s, the estimated road coefficient converges to the
reference region, and the convergence time was about 3 s with continuous lateral excitation. After
9 s, the estimated value remains within the reference region, although there is a slight fluctuation,
which means that the nonlinear estimator performs well. If the reference value of the road friction is
considered as 0.8, then the estimation accuracy was about 97.2%. From 16 s onward, the vehicle drives
straightly, and the road friction coefficient estimation algorithm stops without lateral excitation.
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Figure 7. Cont.
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Figure 7. Results of the slalom test: (a) vehicle speed; (b) steering wheel angle and yaw rate; (c) 
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Figure 7. Results of the slalom test: (a) vehicle speed; (b) steering wheel angle and yaw rate; (c)
longitudinal and lateral acceleration; (d) self-aligning torque at the kingpin; (e) distance between the
vehicle and the left lane line; (f) road friction coefficient.
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Figure 8. Results of the DLC (Double Line Change) test: (a) vehicle speed; (b) steering wheel angle and
yaw rate; (c) longitudinal and lateral acceleration; (d) self-aligning torque at the kingpin; (e) distance
between the vehicle and the left lane line; (f) road friction coefficient.

4.2.2. DLC Test

Figure 8 shows the experimental results of DLC maneuvering. Figure 8a shows the vehicle speed
during the test, and in Figure 8b represents the steering wheel angle and yaw rate of the vehicle by the
blue line and green line, respectively. Figure 8c shows the longitudinal and lateral accelerations of
the vehicle, and the maximum lateral acceleration is between 8 and 9 ms−2. The estimated aligning
torques of the left and right kingpins are shown in Figure 8d. Figure 8e shows the estimated lateral
distance between the vehicle and the lane line, and the estimated value tracks the reference value with
little error. The road friction coefficient estimation results are shown in Figure 8f. If the reference
value of the road friction is considered as 0.8, then the estimation accuracy was about 97.8%. Since the
nonlinear estimator only works during steering, the estimation holds if the vehicle’s lateral acceleration
is relatively small during DLC, for example, from 7 to 8 s. Compared with the slalom test results,
the road friction estimation results dose not fluctuate because the lateral excitation is not continuous.
From the experimental results, we can see that the road friction coefficient rapidly converges to the
reference value.
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5. Conclusions

In this paper, a nonlinear observer for the road friction coefficient during steering based on the
self-aligning torque characteristics of the tires aided by vehicle lateral displacement information was
proposed. A modified tire brush model was established according to the tire test data, and the model
describes the tire characteristics more precisely than the original model. A nonlinear observer using
vehicle lateral displacement information was designed, and the stability and robustness were analyzed.
Experiments were conducted to verify the proposed road friction coefficient estimation algorithm. The
test results demonstrate that the proposed method performs well during vehicle steering, and the
estimated road friction coefficient converges to the reference value very rapidly.

6. Future Work

We have modified the tire brush model according to the tire test data, and the results show that
the modified model describes the tire characteristics properly. However, the tire tests were done with
only one type tire in high friction condition, which is not sufficient to verify that the modified tire
model is suitable for other tires with different sizes or types. Tire tests with more tires in different
friction conditions should be conducted to verify the modified tire brush model.

The experiments were conducted only in high friction condition due to the test condition limitation.
The algorithm should also be validated in low friction condition and high to low or low to high friction
transition conditions in the future.
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