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Abstract: In this paper, a novel method is proposed to enhance the accuracy of fault diagnosis for
rolling bearings. First, an enhanced complementary empirical mode decomposition with adaptive
noise (ECEEMDAN) method is proposed by determining two critical parameters, namely the
amplitude of added white noise (AAWN) and the ensemble trails (ET). By introducing the concept
of decomposition level, the optimal AAWN can be determined by judging the mutation of mutual
information (MI) between adjacent intrinsic mode functions (IMFs). Furthermore, the ET is fixed at
two to reduce the computational cost. This method can avoid disturbance of the spurious mode in the
signal decomposition and increase computational speed. Enhanced CEEMDAN demonstrates a more
significant improvement than that of the traditional CEEMDAN. Vibration signals can be decomposed
into a set of IMFs using enhanced CEEMDAN. Some IMFs, which are named intrinsic information
modes (IIMs), effectively reflect the vibration characteristic. The evaluated comprehensive factor (CF),
which combines the shape, crest and impulse factors, as well as the kurtosis, skewness, and latitude
factor, is developed to identify the IIM. CF can retain the advantage of a single factor and make up
corresponding drawbacks. Experiment results, especially for the extraction of bearing fault under
variable speed, illustrate the superiority of the proposed method for the fault diagnosis of rolling
bearings over other methods.

Keywords: fault diagnosis; computational cost; ensemble trails; amplitude of added white noise;
variable speed

1. Introduction

The rolling bearing is an important part of rotating machinery. Fault diagnosis is significant to
ensure normal machinery operation [1–3]. A diagnosis method which concentrates on the time domain,
frequency domain, and time-frequency domain has been proposed to minimize the interference and
extract the fault feature due to interferences from heavy background noise and other unsteady operation
states [4,5]. However, the time and frequency domain methods are unsuitable in fault diagnosis in the
case of non-stationary and non-linear vibration signals [6]. Time-frequency domain methods, such as
wavelet transform [7] and Wigner–Ville distribution [8], have been used to extract the fault feature of
rolling bearings. However, these methods cannot obtain the ideal time-frequency resolution subject to
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inherent cross-interference items [9] and Heisenberg’s uncertainty principle [10]. Hence, developing a
signal processing method to identify the fault feature of rolling bearings is necessary.

Originally, empirical mode decomposition (EMD) [11] is an adaptive data-driven method to
process non-linear and non-stationary signals. This technology has been applied in various fields, such
as the fault diagnosis of rotational machinery [12,13], signal filtering [14,15], and biomedical signal
processing [16]. However, the decomposed IMFs may include discrete scales in one mode, or alike
scales in different modes. This annoying problem, termed as ‘mode mixing’, limits the application
of EMD. The ensemble EMD (EEMD) [17] was developed by adding Gaussian white noise into the
original signal to solve the problem of mode mixing. IMFs can be obtained by averaging the ensemble
copies of the original signal. Although the EEMD can reduce ‘mode mixing’, this approach also
introduces a new problem. The IMFs contain the residue white noise, and the different realizations of
signal and noise may produce spurious modes. Consequently, complementary EEMD (CEEMD) [18]
was introduced to eliminate the residue noise by adding a pair of white noise (positive and negative)
into the signal. Although the added white noise can be partly eliminated, the decomposed IMFs still
contain the spurious modes. CEEMD with adaptive noise (CEEMDAN) [19] was then proposed to
solve the problems of residual noise and the spurious mode. However, the improved versions of EMD
(EEMD, CEEMD, and CEEMDAN) involve two critical parameters, namely the amplitude of added
white noise (AAWN) and the number of ensemble trials (ET). If the AAWN is small, then eliminating
mode mixing in the EMD will be difficult, however, if the AAWN is large, sufficient ETs are needed
to eliminate the residue noise. Similarly, the program execution requires a high computational cost.
Hence, determining AAWN and ET is challenging. Huang et al. [17] selected two critical parameters
using the empirical method, however, the method is unsuitable to decompose signals for any case.
Zhang et al. [20] proposed correlation coefficients between IMFs and the original signal to determine
the suitable ET. Niazy et al. [21] employed the relative root mean square error to find the appropriate
AAWN. However, this method does not select the noisy level. Lei et al. [22] proposed the adaptive
EEMD method, which focuses on the selection of AAWN and the ET, to improve the decomposition
performance. However, the determination of AAWN and ET is still conducted using empirical methods.
Thus, developing a method to determine the proper parameters (AAWN and ET) is necessary.

Moreover, the entire IMFs do not effectively reflect the vibrational characteristic of the bearing fault.
The intrinsic information of the vibration signal concentrates on an IMF or several IMFs, which are
known as intrinsic information modes (IIMs). Recently, several studies have reported the identification
of IIMs. For example, kurtosis [23] is sensitive to bearing vibration signals. However, when the fault
becomes severe, it is not consistent with the fault development. Using the correlation coefficient [24]
and Kullback–Leibler divergence [25] does not work well for fault identification. Sample entropy
(SE) [26], approximate entropy (AE) [27], and fuzzy entropy (FE) [28] have been recently introduced
into the health monitoring domain. However, SE is suddenly changed and non-continuous at the
boundary. AE has the drawback of heavily reliant on the dimensions of the given data. FE employs
the membership function, which is difficult to determine. Hence, introducing a method to identify
IIMs is urgent.

To solve the aforementioned problem, this paper first proposes the enhanced CEEMDAN
(ECEEMDAN) method. In this method, the ET is fixed at two trails to reduce the computational cost.
By introducing the concept of decomposition level, the optimal AAWN can then be determined by
judging the mutation of mutual information (MI) between adjacent IMFs at different decomposition
levels. Finally, the ECEEMDAN suppresses the interference of the spurious mode, and the decomposed
IMF has physical meaning. The statistical methods, such as the shape, crest, and impulse factors, as
well as the kurtosis, skewness, and latitude factor, are given the same weight to constitute a complete
comprehensive factor (CF) to determine the IIM. Through simulation and the analysis of real signals
the effectiveness of the proposed method is verified. The results indicate that the proposed method
performs well for the fault diagnosis of rolling bearings.
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The remainder of this paper is organized as follows. Section 2 introduces the related works to
illustrate the principles of existing algorithms. Section 3 describes the proposed works. Section 4
evaluates the effectiveness of the proposed method for fault feature extraction. Finally, Section 5
presents the conclusion.

2. Relevant Works

2.1. CEEMDAN Algorithm

Although the EEMD [17] can solve mode mixing in EMD [11], this approach presents two
drawbacks, namely the residual noise and spurious mode. Consequently, CEEMDAN [19] is introduced
to alleviate these issues. This process is carried out as follows:

1. Generate the noisy signal xi, xi = x + ω0ξi(i = 1, · · · , N), where ξi is white noise with unit
variance, ω0 is coefficient of added white noise, and x is the discrete signal.

2. Extract the first IMF (ci
1) in each noisy signal xi decomposition by EMD.

3. Obtain the first IMF (c1) by taking the average of each ci
1.

c1 =
1
N

N∑
i=1

ci
1 (1)

4. Acquire the first residual: r1 = x− c1.

5. Apply EMD to decompose r1 +w1E1
(
εi
)

and extract the first IMF to obtain the second decomposed
IMF (c2). w1 is the coefficient of added white noise for this stage, and operator Em(·) is the m-th
IMF by EMD decomposition.

c2 =
1
N

N∑
i=1

E1
(
r1 + w1E1

(
εi
))

(2)

6. Compute the m-th residual mode (m = 2, . . . , K), and extract the first IMF to generate the
(m + 1)-th decomposed IMF by Equation (3).

cm+1 =
1
N

N∑
i=1

E1
(
rm + wmEm

(
εi
))

(3)

7. Repeat the above steps until the residual R contains less than two extrema.

R = x−
K∑

m=1

ck (4)

The discrete signal x can be written as:

x =
K∑

m=1

ck + R (5)

where K is the number of IMFs.
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2.2. Mutual Information

Information theory, which originally deals with communication problems, was developed by
Shannon [29]. In this study, the key measure was entropy. Afterward, information theory was also
applied to feature extraction [30–32].

Let xi be a discrete series with n data length. p(xi) is the probability mass function for discrete
series xi. The entropy H(X) is defined as:

H(X) = −
n∑

i=1

p(xi) log p(xi) (6)

The joint entropy can be expressed as:

H(X, Y) = −
n∑

i=1

m∑
j=1

p
(
xi, y j

)
log p

(
xi, y j

)
(7)

where p
(
xi, y j

)
is the joint probability distribution of discrete series xi and y j. The conditional entropy

H(X|Y ) for discrete series xi is defined as:

H(X|Y ) = −
n∑

i=1

m∑
j=1

p
(
xi, y j

)
log p

(
xi
∣∣∣y j

)
(8)

where p
(
xi
∣∣∣y j

)
is the posterior probabilities of X given Y, which can be rewritten as:

H(X|Y ) = H(X, Y) −H(Y) (9)

Thus, the MI [33] is introduced to quantify the shared information by discrete series x j and y j:

I(X; Y) =
n∑

i=1

m∑
j=1

p
(
xi, y j

)
log

p
(
xi
∣∣∣y j

)
p(xi)

(10)

Moreover, the entropy and MI can be related (Equation (11)):

I(X; Y) = H(X) −H(X|Y ) (11)

By combining Equations (9) and (11), the MI is re-expressed as:

I(X; Y) = H(X) + H(Y) −H(X, Y) (12)

3. Proposed Works

3.1. ECEEMDAN

Using the traditional CEEMDAN method, a discrete signal x can be decomposed into the following
modes ci(i = 1, . . . , N):

CEEMDAN(x, AAWN, ET) =
N∑

i=1

ci + R (13)

Equation (13) shows that the decomposition effect is related to two parameters, namely AAWN
and ET. Traditionally, the AAWN is 0.2–0.5 times the strand deviation of the signal, and the ET is fixed
at several hundred ensemble trails [17]. However, the specified guidelines for the selection of the two
critical parameters are lacking. To solve this problem, first, ET is fixed at two ensemble trails. If the ET
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is fixed at one trail, then the process of IMF decomposition using CEEMDAN is the same as the EMD
method, preventing the elimination of mode mixing. If the ET is bigger than the two trails, then the
computational speed will decrease. Hence, the optimal ET is two trails. Then, the different AAWN is
defined using the following expression:

AAWNi = Liσ (i = 1, . . . , n) (14)

where σ is the strand deviation of signal and Li is the decomposition level. Thus, Equation (13) can be
rewritten as:

CEEMDAN(x, σLi, 2) =
Ni∑
j=1

ci j + R (15)

If the decomposition level Li is determined, then the two critical parameters are also identified. MI
is introduced in this study to determine the optimal decomposition level (Lopt), and (L1, . . . , LN) is the
defined decomposition level. A set of IMFs (ci j( j = 1, . . . , Ni)) can be obtained for each decomposition
level Li using CEEMDAN. Then, the MI between adjacent IMFs (ci j and ci( j+1)) is calculated. The MI
for each Li can be expressed as:

MI11 MI12 · · · MI1(N1−2)
MI21 MI22 · · · MI2(N2−2)

...
MIN1 MIN2 · · · MIN(Ni−2)

= MI


(c11, c12) (c12, c13) · · ·

(
c1(N1−2), c1(N1−1)

)
(c21, c22) (c22, c23) · · ·

(
c2(N2−2), c2(N2−1)

)
...

...
...

...
(cN1, cN2) (cN2, cN3) · · ·

(
cN(Ni−2), cN(Ni−1)

)
 (16)

If no interference of spurious modes is observed, then the MI of corresponding IMF is almost the
same under each decomposed level (Equation (17)):

MI11 ≈MI12 ≈ . . . ≈MI1(M−1) ≈MI1M

MI21 ≈MI22 ≈ . . . ≈MI2(M−1) ≈MI2M
...

MI(i−1)1 ≈MI(i−1)2 ≈ . . . ≈MI(i−1)(M−1) ≈MI(i−1)M
MIi1 ≈MIi2 ≈ . . . ≈MIi(M−1) ≈MIiM

(17)

where M is the order of the decomposition level. Once the spurious modes are available in IMFs, the
relationship between adjacent IMFs will be broken, indicating that the unsuitability of Equation (17).
Hence, the optimal Lopt can be determined by judging the change in MI. The Figure 1 presents the
flowchart of ECEEMDAN algorithm.



Sensors 2019, 19, 4047 6 of 24

Sensors 2019, 19, x FOR PEER REVIEW 6 of 25 

 

 
Figure 1. Flowchart of enhanced complementary empirical mode decomposition with adaptive noise 
(ECEEMDAN). 

3.2. Evaluation Methodology of Decomposing Effect 

A signal x  can be decomposed into a set of IMFs by ECEEMDAN. Ideally, each IMF has an 
independent frequency component, and any two IMFs are mutually orthogonal [34]. This means that 
the scalar product ( ( ) i jc c i j⋅ ≠ ) should be zero. However, the orthogonality, which means that 

the product ( ) i jc c i j⋅ ≠  is not zero, will be broken due to the interaction between the added 

white noise and the signal. Thus, this paper introduces the concept of an orthogonality index (OI) to 
evaluate the decomposing effect.  

(1) Equation (5) is squared. 

1 1 1
2 2

1 1 1
2

K K K

i i k
i i k

x c c c
+ + +

= = =

= +   (18) 

(2) Equation (18) is normalized. 

1 1 1
2

1 1 1
2 2

2
1

K K K

i i k
i i k
c c c

x x

+ + +

= = == +
 

 
(19) 

(3) Equation (19) is reorganized and quantified. The OI is defined as: 

1 1 1
2

1 1 1
2 2

1OI = 1-
2

K K K

i k i
i k i

c c c

x x

+ + +

= = =

 
 
 =
 
 
 

 
 (20) 

A small OI results in an improved decomposition effect, and vice versa. Moreover, the 
decomposition number and computational cost are considered to be the evaluation methodology. 
The two indexes can reflect the interference situation of spurious mode and computational speed. 
  

Figure 1. Flowchart of enhanced complementary empirical mode decomposition with adaptive noise
(ECEEMDAN).

3.2. Evaluation Methodology of Decomposing Effect

A signal x can be decomposed into a set of IMFs by ECEEMDAN. Ideally, each IMF has an
independent frequency component, and any two IMFs are mutually orthogonal [34]. This means that
the scalar product (

〈
ci · c j

〉
(i , j)) should be zero. However, the orthogonality, which means that the

product
〈
ci · c j

〉
(i , j) is not zero, will be broken due to the interaction between the added white noise

and the signal. Thus, this paper introduces the concept of an orthogonality index (OI) to evaluate the
decomposing effect.

(1) Equation (5) is squared.

x2 =
K+1∑
i=1

c2
i + 2

K+1∑
i=1

K+1∑
k=1

cick (18)

(2) Equation (18) is normalized.

1 =

K+1∑
i=1

c2
i

x2 +

2
K+1∑
i=1

K+1∑
k=1

cick

x2 (19)

(3) Equation (19) is reorganized and quantified. The OI is defined as:

OI =

K+1∑
i=1

K+1∑
k=1

cick

x2 =
1
2

1−

K+1∑
i=1

c2
i

x2

 (20)

A small OI results in an improved decomposition effect, and vice versa. Moreover, the
decomposition number and computational cost are considered to be the evaluation methodology. The
two indexes can reflect the interference situation of spurious mode and computational speed.

3.3. Simulation Signal Analysis

Some typical signals, which include pure (noise-free) signals, noisy signals, and simulated
vibration signals, were decomposed to verify the effectiveness of ECEEMDAN. Meanwhile, the
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decomposition effect of traditional methods (EEMD, CEEMD and CEEMDAN) was compared with the
ECEEMDAN method.

3.3.1. Free-Noise Signal

In this section, ECEEMDAN is used to decompose the simulation signal, which contains three
different frequency components: 

x1(t) = a1 cos(2π f1t)
x2(t) = a2 cos(2π f2t)
x3(t) = a3 sin(2π f3t)

(21)

x(t) = x1(t) + x2(t) + x3(t) (22)

where the amplitudes a1, a2, and a3 were 4, 2.5, and 5, respectively, and the frequencies f1, f2, and f3
were 20 Hz, 10 Hz, and 3 Hz, respectively. The sample frequency ( fs) was 1 kHz. The data length was
1024. Figure 2 presents the simulation signal.
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Figure 2. Test simulation signal with the specified frequency component.

First, ECEEMDAN was used to decompose the simulation signal (SSC). Figure 3 shows the MI of
adjacent IMFs under each decomposition level. The decomposition level in this study was set from
10−12 to 10−1, with a step of 101. The results showed that the MI and decomposition number were
the same when the decomposed levels were between 10−12 and 10−6. However, when decomposition
levels were higher than 10−6, MI mutation occurred (shown as the red ellipse in Figure 3). This finding
indicates that a low decomposition level results in an improved decomposition effect. The decomposed
level (L = 10−6) was considered as the optimal level in this study.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 25 

 

 
Figure 3. Decomposition results for the simulation signal (SSC) signal under different decomposition 
levels. 

Meanwhile, improved EMD versions (EEMD, CEEMD and CEEMDAN) were also used to 
decompose the SSC (here, the ET and AAWN were fixed at 200 and 0.2, respectively). Figure 4 shows 
the comparison of ECEEMDAN with the EMD improved versions. The results show three IMFs and 
one residual in the ECEEMDAN method, whereas the number of IMFs using the EMD improved 
versions are all more than four. 

 
Figure 4. Comparison of decomposing effects of empirical mode decomposition (EMD) improved 
versions with ECEEMDAN. 

Meanwhile, the MI of the adjacent sub-signal ( ( ) ( ) ( ) ( )1 2 2 3 and  and x t x t ,x t x t ) in the 

original signal was also compared with the decomposed IMFs (IMF1 and IMF2, IMF2 and IMF3) 
using the ECEEMDAN method (Figure 5), and the relative errors were 13% and 2%, respectively. 
These results illustrate that the IMFs, including the information component, were also almost the 
same as that of the original signal. Moreover, the spurious modes exist in IMFs using improved EMD 
versions. 

M
I o

f a
dj

ac
en

t I
M

F
nu

m
be

r o
f I

M
F

Figure 3. Decomposition results for the simulation signal (SSC) signal under different
decomposition levels.
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Meanwhile, improved EMD versions (EEMD, CEEMD and CEEMDAN) were also used to
decompose the SSC (here, the ET and AAWN were fixed at 200 and 0.2, respectively). Figure 4 shows
the comparison of ECEEMDAN with the EMD improved versions. The results show three IMFs and
one residual in the ECEEMDAN method, whereas the number of IMFs using the EMD improved
versions are all more than four.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 25 

 

 
Figure 3. Decomposition results for the simulation signal (SSC) signal under different decomposition 
levels. 

Meanwhile, improved EMD versions (EEMD, CEEMD and CEEMDAN) were also used to 
decompose the SSC (here, the ET and AAWN were fixed at 200 and 0.2, respectively). Figure 4 shows 
the comparison of ECEEMDAN with the EMD improved versions. The results show three IMFs and 
one residual in the ECEEMDAN method, whereas the number of IMFs using the EMD improved 
versions are all more than four. 

 
Figure 4. Comparison of decomposing effects of empirical mode decomposition (EMD) improved 
versions with ECEEMDAN. 

Meanwhile, the MI of the adjacent sub-signal ( ( ) ( ) ( ) ( )1 2 2 3 and  and x t x t ,x t x t ) in the 

original signal was also compared with the decomposed IMFs (IMF1 and IMF2, IMF2 and IMF3) 
using the ECEEMDAN method (Figure 5), and the relative errors were 13% and 2%, respectively. 
These results illustrate that the IMFs, including the information component, were also almost the 
same as that of the original signal. Moreover, the spurious modes exist in IMFs using improved EMD 
versions. 

M
I o

f a
dj

ac
en

t I
M

F
nu

m
be

r o
f I

M
F

Figure 4. Comparison of decomposing effects of empirical mode decomposition (EMD) improved
versions with ECEEMDAN.

Meanwhile, the MI of the adjacent sub-signal (x1(t) and x2(t), x2(t) and x3(t)) in the original
signal was also compared with the decomposed IMFs (IMF1 and IMF2, IMF2 and IMF3) using the
ECEEMDAN method (Figure 5), and the relative errors were 13% and 2%, respectively. These results
illustrate that the IMFs, including the information component, were also almost the same as that of the
original signal. Moreover, the spurious modes exist in IMFs using improved EMD versions.Sensors 2019, 19, x FOR PEER REVIEW 9 of 25 
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Figure 5. Mutual information (MI) comparison of information component of original signal and
corresponding intrinsic mode functions (IMFs).

Moreover, the computational cost and OI were compared when using the improved EMD versions
(Table 1). The results show that the computational cost and OI using the ECEEMDAN method are
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smaller than that of the improved EMD versions. Hence, the decomposition effect for the proposed
method is superior than that of the traditional methods (EEMD, CEEMD, and CEEMDAN).

Table 1. Comparison of the decomposition effect.

Method Number of IMF Computation Time (s) Orthogonality Index

EEMD 10 7.88 0.11
CEEMD 10 7.58 0.20

CEEMDAN 11 10.16 0.10
ECEEMDAN 4 0.09 0.03

3.3.2. Noisy Signal

In this section, the noisy signals, which were ‘blocks’, ‘bumps’, ‘heavy sine waves’ and ‘quadchirps’,
were decomposed using ECEEMDAN to prove the performance of the decomposition effect under the
effect of noise interference. Here, the data length was 2048. Figure 6 plots the noisy signals.
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of 1 dB, was added into the four noisy signals. Moreover, the improved EMD versions were used to
decompose the noisy signal. Evaluation methodologies, which include the computational cost, OI
and decomposition number, were employed to analyze the decomposition effect under each SNR. The
compared results are shown in Figures 7–10. The results show that the computational cost and OI
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3.3.3. Simulated Vibration Signal

In this section, ECEEMDAN is used to decompose the following simulated vibration signal (SVS):

u(t) = G
∑

i

u(t− iT) + n1(t) (23)

where G refers to the amplitude of the vibration signal, i refers to the number of oscillation periods of
vibration signal, T refers to the period of vibration oscillation and reciprocal of characteristic frequency
of bearing fault ( fc), and n1(t) refers to the noise component. u(·) is the operator of impulse response:

u(t) =
{

exp(−dt) sin(2π f0t) t > 0
0 t ≤ 0

(24)

where d refers to the attenuation constant and f0 refers to the resonant frequency.
The following parameters were used in the simulated signal: G at 1.4 m/s2, d at 620, f0 at 1 kHz,

fc at 117 Hz, and a sample frequency ( fs) of 20 kHz. Here, the data length was 1197. White Gaussian
noise, with SNR of 6 dB, was added to the simulated signal. Figure 11 presents the noise-free signal,
the noise, and the noisy signal.
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The decomposition level was specified from 10−12 to 10−1, with a step of 101. Figure 12 plots the MI
of adjacent IMFs under each decomposition level, and Table 2 shows the decomposition number under
each decomposition level. When the decomposition level was higher than 10−7, the MI demonstrated a
marked change (shown as a red ellipse in Figure 12). The decomposition number changes from nine to
ten, illustrating that the optimal decomposing level is smaller than 10−7.
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Table 2. Decomposition number of the IMF under each decomposition level.

Decomposition Level (L)

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

IMF number 9 9 9 9 9 9 10 11 12 13 12 12

Moreover, the improved EMD versions were employed to decompose the SVS (ET and AAWN
were 200 and 0.2, respectively). Figure 13 shows the decomposition result. The results indicate that
the IMF numbers obtained using EEMD, CEEMD, and CEEMDAN were 10, 10, and 11, respectively,
whereas that obtained using ECEEMDAN was only nine. These results illustrate that ECEEMDAN can
restrain the spurious mode.
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Then, the OI and computational cost were utilized to compare the decomposition effect. Table 3
shows the compared results, which indicate that the computational cost and OI were smaller than
those of the three others decomposition methods. This finding proves that the proposed method is
more suitable for vibration signal decomposition than the traditional methods.

Table 3. Comparison of decomposition effect for the simulation signal.

Method Number of IMF Computation Time (s) Orthogonality Index

EEMD 10 17.83 0.15
CEEMD 10 16.59 0.14

CEEMDAN 11 25.89 0.12
ECEEMDAN 9 1.01 0.07

3.4. Identification of IIM

Although ECEEMDAN can decompose a signal into a set of IMFs with physical meaning, each
IMF does not completely and effectively reflect vibrational characteristics (intrinsic information). One
of the IMFs mainly concentrates on the intrinsic information of the vibration signal. Traditionally,
some statistical methods, such as the shape factor, crest factor, and impulse factor, as well as the
kurtosis, skewness, and latitude factor, are used to identify IIMs. Table 4 shows the expressions of
the statistical methods. However, these methods have different sensibilities and stabilities for various
fault patterns. The latitude factor, impulse factor, and kurtosis are sensitive for initial issuance faults.
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Sensitivity significantly decreases a when fault is developed to a certain degree. The shape factor
method is sensitive to fault features with low frequency. Kurtosis is suitable for diagnosing fault
components from medium to high frequency. These findings indicate that a single method does not
effectively identify IIMs when the fault pattern development is from slight to severe. Thus, this paper
combines these statistical methods into the comprehensive factor (CF) to avoid the drawbacks of a
single statistical method. Assuming that ECEEMDAN decomposes signals into a set of IMFs (IMF1,
IMF2, . . . , IMFN). The normalized shape factor, crest factor, and impulse factor, as well as the kurtosis,
skewness, and atitude factor can represented as Shi, Cri, Imi, Kui, Ski and Lai, respectively, for the i-th
IMF. The CF can be expressed as:

CFi =
Shi

N∑
i=1

Shi

+
Cri

N∑
i=1

Cri

+
Imi

N∑
i=1

Imi

+
Kui

N∑
i=1

Kui

+
Ski

N∑
i=1

Ski

+
Lai

N∑
i=1

Lai

(25)

Table 4. Statistical methods of IIM selection.

Number Statistical Parameter Expression

1 Shape factor SH =

√
(1/N)

N∑
i=1

x(i)2/(1/N)
N∑

i=1

∣∣∣x(i)∣∣∣
2 Crest factor CR = max

(∣∣∣x(i)∣∣∣)/ √
(1/N)

N∑
i=1

x(i)2

3 Impulse factor IM = max
(∣∣∣x(i)∣∣∣)/ √

(1/N)
N∑

i=1

∣∣∣x(i)∣∣∣
4 Kurtosis KU =

N∑
i=1

(x(i) − x)4/N(xσ)
4

5 Skewness SK =
N∑

i=1
(x(i) − x)3/N(xσ)

3

6 Latitude factor LA = N max
(∣∣∣x(i)∣∣∣)/ N∑

i=1

∣∣∣x(i)∣∣∣
Note: x and xσ refer to the mean and standard deviation, respectively, of time series x(i).

Here, the following selected criterion is used:

k = arg max(CF) (26)

where k is the index of the corresponding IIM. This is the adaptive threshold identified method. Table 5
shows the framework of the identified IIM.

Table 5. Framework of identified IIM.

Input: A set of IMFs
Obtain number (N) of decomposing IMFs;
For i = 1:1:N
Calculate Shi, Cri, Imi, Kui, Ski and Lai for i-th IMF (IMFi);
End for

Sum each statistical method:
N∑

i=1
Shi,

N∑
i=1

Cri,
N∑

i=1
Imi,

N∑
i=1

Kui,
N∑

i=1
Ski and

N∑
i=1

Lai;

For i = 1:1:N
Calculate CFi =

Shi
N∑

i=1
Shi

+ Cri
N∑

i=1
Cri

+ Imi
N∑

i=1
Imi

+ Kui
N∑

i=1
Kui

+ Ski
N∑

i=1
Ski

+ Lai
N∑

i=1
Lai

;

End for
Find maximum of CF(CFmax);
Find index corresponding CFmax: k = arg max(CF);

Output: the intrinsic information mode (IMFk).
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In this study, the decomposed IMFs by ECEEMDAN in Figure 13 are used to select the IIM to
prove the effectiveness of the CF. Figure 14 presents the CF and the single statistical method. The results
show that the CF of IMF3 (CF3) is the largest. The envelope spectrum of IIM (IMF3) was determined to
extract the feature frequency. Moreover, the original signal was analyzed to compare the identified
effectiveness of feature frequency. Figure 15a,b shows the identified result of the feature frequency.
Figure 15c,d comprehensively shows the identified result. The fault frequency ( fc) and second harmonic
frequency (2 fc) are completely identified using the IIM and the original signal. However, reflecting the
third harmonic frequency (3 fc) is difficult for the original signal, thus, 3 fc is reflected in the identified
IIM. The peak frequencies were 334.2Hz and 367.6Hz for the original signal and 350.9Hz for IIM (here,
3 fc is consistent with the real signal, as shown in Figure 16 and Equation (23)). In addition, Figure 14
shows that the shape factor slightly changes and is unsuitable for IIM selection. The maximum value
for the skewness factor is reflected in IMF4. The corresponding envelope spectrum for IMF4 is plotted
in Figure 17. The result shows that 3 fc is difficult to identify.
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result of the feature frequency; (c,d) comprehensively shows the identified result.
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The different input SNR and fault frequency (as shown in the input parameters in Table 6) were
added to Equation (23) to further evaluate the discriminant capability of IIM. First, ECEEMDAN was
used to decompose the SVS of corresponding cases, such as cases 1, 2, 3, 4, and 5 in Table 5. Then, the
CF was used to identify the IIM for each case. Finally, the envelope spectrum of IIM was determined to
identify the feature frequency. Meanwhile, the original signal is also used in the envelope spectrum
to extract feature frequency and compare the identified effects. The identified result is shown in
Table 7. The ‘yes’ means that the feature frequency can been correctly identified, whereas ‘no’ indicates
the opposite. The fault frequency ( fc) and corresponding second harmonic frequency (2 fc) are both
identified by IIM and the original signal. However, the third harmonic frequency (3 fc) can only be
identified by the IIM. Thus, these results prove that the proposed CF method is suitable for the effective
selection of IIM.

Table 6. Different simulation signals and corresponding identified result.

Cases
Input Parameters Identified Results

Envelope Spectrum of Original Signal Envelope Spectrum of IIM

SNR
(dB)

Fault
Frequency

(Hz)
fc 2fc 3fc fc 2fc 3fc

1 5 77 yes yes no yes yes yes
2 4 87 yes yes no yes yes yes
3 3 97 yes yes no yes yes yes
4 2 107 yes yes no yes yes yes
5 1 117 yes yes no yes yes yes
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Table 7. Bearing parameter of 6205-2RS deep groove ball bearing.

Bearing Type Ball Number n Pitch Diameter D
(mm)

Ball Diameter d
(mm)

Contact Angle α
(◦)

6205-2RS 9 52 8 0

Thus, this paper proposes a novel identification method, namely ECEEMDAN with the addition
of CF (ECEEMDAN-CF) for the diagnosis of fault features concerning rolling bearings:

(1) Obtain the IMF without interference of a spurious mode via ECEEMDAN.
(2) Find the maximum index of CF to obtain the IIM.
(3) Extract the fault feature from the rolling bearing via the envelope spectrum of the IIM.

Figure 18 shows the flowchart of fault diagnosis.
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4. Performance Analysis

In this section, the proposed method (ECEEMDAN-CF) is used to extract fault features from
rolling bearings. This method is comprised of two parts: (i) The data obtained from the Case Western
Reserve University (CWRU) [35] and the (ii) real measurements from the experimental rig.

4.1. Experiment Data from the Case Western Reserve University

The test rig was comprised of a 2 HP motor, a torque transducer, a dynamometer, and control
electronics (Figure 19). The bearing type was 6205-2RS SKF, and the parameters are shown in Table 7.
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Figure 19. Test rig from the Case Western Reserve University.

A single point fault was introduced into the test bearing by electrodischarge machining, with
a fault diameter of 0.018 mm. The sample rate was 48 kHz. The rotation speed fr was 1797 RPM.
The data from the inner and outer raceway fault were selected to extract the characteristic frequency
(Figure 20) to evaluate the effectiveness of the proposed method.
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Figure 20. Experimental data of inner and outer raceway fault.

4.1.1. Case 1 Bearing with an Inner Raceway Fault

The following expression is the theoretical characteristic frequency of the inner raceway fault ( fin):

fin = 0.5n
(
1 +

d
D

cosα
)

fr (27)

First, ECEEMDAN is employed to decompose the fault signal. The decomposed level (L) is set from
10−14 to 100, with a step of 101, and the ET is fixed to two. The MI of the adjacent IMFs corresponding
to each decomposition level are shown in Figure 21. The MI suddenly changed (shown as red
ellipse in Figure 21) when the decomposed level was higher than 10−6, which is considered to be
the optimal decomposition level. Figure 22 presents the decomposition number of the IMFs for each
decomposition level.
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Figure 22. Decomposition number corresponding to each decomposition level.

Figure 23 shows the CF of each IMF. Here, the first CF has the maximum value. This illustrates
that the first IMF is the IIM. Meanwhile, the traditional CEEMDAN method was used to decompose the
inner raceway fault signal, and the first IMF was selected to identify the envelope spectrum (Figure 24).
The results show that the proposed method can identify the inner fault frequency and its corresponding
harmonics (from second to seventh harmonics). The fault frequency is consistent with the theoretical
frequency (Equation (26)). However, identifying the corresponding harmonics using CEEMDAN is
difficult, because interference components disturb the extraction of fault information. Moreover, the
computational cost is compared for the two methods. The computational costs of ECCEMDAN and
CEEMDAN are 0.48 s and 9.16 s, respectively (Figure 25). Thus, the proposed method outperforms the
traditional method in terms of fault frequency extraction for rolling bearings.Sensors 2019, 19, x FOR PEER REVIEW 19 of 25 
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4.1.2. Case 2 Bearing with an Outer Raceway Fault

In this section, ECEEMDAN is used to decompose the fault signal. A total of 14 IMFs were obtained
under the condition of the optimal decomposition level (10−6). Then, the CF was employed to identify
the IIM (Figure 26). The results show that CF1 is the maximum, meaning that the first IMF contains the
main information of the vibration signal. Meanwhile, complete ensemble local mean decomposition
with adaptive noise (CELMDAN) -kurtosis and variational mode decomposition (VMD)-kurtosis [36]
are also utilized to extract the IIM. Figure 27 shows the identified result of IIM for the two methods.
Moreover, minimum entropy deconvolution (MED) [37] combined with autoregressive filter (AR)
(MED-AR) was used to identify the fault frequency. The first and the forth IMF were the identified
IIMs for CELMDAN kurtosis and VMD kurtosis, respectively.Sensors 2019, 19, x FOR PEER REVIEW 20 of 25 
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Figure 28 shows the identified result of the fault frequency. It was found that the proposed
method could identify the tenth fault harmonic (10 fout, shown as the red point in Figure 28d). Whereas,
auto-regression- minimum entropy deconvolution (AR-MED), VMD kurtosis and CELMDAN kurtosis
could only identify the second harmonics. From the results, more obvious disturbance components
existed with the VMD kurtosis method than that with the proposed method (shown as red circle in
Figure 28b). The amplitude energy of the fault characteristic for the AR-MED method was smaller
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than that of the proposed method (Figure 28a). This means that the proposed method had a better
performance for the identification of fault features than the other methods.
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4.2. Data from Real Measurement

In this section, the fault signal is acquired on the following test rigs (Figure 29). The defective
bearing with an inner raceway fault and a healthy bearing were installed on the experiment rig. The
temperatures of the inner and outer raceways were monitored by two wireless temperature sensors
and two thermocouple sensors, respectively. Accelerometer sensors were installed on bearing house in
the vertical direction.
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Below, Table 8 presents the bearing parameters.

Table 8. Bearing parameter in this experiment.

Ball Number n Pitch Diameter D (mm) Ball Diameter d (mm) Contact Angle α (◦)

10 46 7.932 0

The sample frequency ( fs) was 4 kHz. The rotating speeds of motor were set to 5000, 7500 and
9000 RPM. Figure 30 shows the acquired vibration signal, temperature signal, and rotational speed.
At increased rotation speeds, the temperatures of the inner and outer raceways for fault bearing also
increased, and the temperature of the outer raceway was higher than that of inner raceway for faulty
and healthy bearings.

Combining Table 8 and Equation (27), the theoretical feature frequency for faulty bearings under
each test condition was 488.5 Hz at 5000 rpm, 732.7 Hz at 7500 rpm and 879.32 Hz at 9000 rpm.

The proposed method was used to extract fault features under different rotation speeds. Meanwhile,
the CELMDAN kurtosis, final intrinsic mode functions-de-trended fluctuation analysis (FIMF-DFA) [38],
VMD kurtosis and AR-MED methods were used to extract the fault feature. The data length was
2048 for each test condition. Figures 31–33 show the identified results at three different speeds. This
finding indicates that the CELMDAN kurtosis and VMD kurtosis methods did not completely identify
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fault features for the three different test conditions. For the rotation speeds of 5000 and 9000 RPM,
evident interference components ( fint) are observed around the fault frequency. When the rotation
speed was 7500RPM, the amplitude of the fault frequency was considerably small, such that it was
difficult to extract the fault frequency using the AR-MED and FIMF-DFA methods. The identified
fault frequencies at 5000, 7500, and 9000 RPM, using the proposed method, were 488 Hz, 716.4 Hz
and 878.4 Hz, respectively, with relative errors of 0.1%, 2.22% and 0.1%, respectively. Evidently, the
fault frequency ( fin) can be identified by the proposed method, proving the suitability of the proposed
method for fault component extraction under variable speed conditions.
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Figure 31. Identified fault frequency of a rolling bearing at 5000 RPM.

Meanwhile, the feature frequency at different rotation speeds was also compared (Figure 34). The
results show that a high rotation speed results in the large energy amplitude for the fault frequency.
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Figure 32. Identified fault frequency of a rolling bearing at 7500 RPM.
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Figure 33. Identified fault frequency of a rolling bearing at 9000 RPM.
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5. Conclusions

This paper proposes a novel method for fault feature identification concerning rolling bearings.
The following conclusions are drawn:

(1) The ECEEMDAN method, which sets ET as two, was introduced and used to determine the
AAWN by the MI of adjacent IMFs under different decomposition levels. This method can improve
the computational speed and avoid the interference of the spurious mode under interactions of
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added white noise and signal. ECEEMDAN also enhances the decomposition effectiveness of the
original CEEMDAN method.

(2) The CF, which is established through combination with statistical methods, is proposed to identify
the IIM of vibration signals. This method can compensate for the drawbacks of single statistical
methods, such as insensitivity and unsteadiness, improving the identified effectiveness of the IIM.

In comparison with typical methods, the results indicate that the proposed method outperforms
typical methods for the fault feature extraction of rolling bearings.

Notably, when the proposed method is used in various applications, the decomposition level
should be investigated in future works.
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