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Abstract: A part-based strategy has been applied to visual tracking with demonstrated success
in recent years. Different from most existing part-based methods that only employ one type of
tracking representation model, in this paper, we propose an effective complementary tracker
based on structural patch response fusion under correlation filter and color histogram models.
The proposed method includes two component trackers with complementary merits to adaptively
handle illumination variation and deformation. To identify and take full advantage of reliable patches,
we present an adaptive hedge algorithm to hedge the responses of patches into a more credible one
in each component tracker. In addition, we design different loss metrics of tracked patches in two
components to be applied in the proposed hedge algorithm. Finally, we selectively combine the
two component trackers at the response maps level with different merging factors according to the
confidence of each component tracker. Extensive experimental evaluations on OTB2013, OTB2015,
and VOT2016 datasets show outstanding performance of the proposed algorithm contrasted with
some state-of-the-art trackers.
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1. Introduction

Visual object tracking is a fundamental research task and plays a crucial role in numerous computer
vision applications including motion analysis, surveillance, segmentation, and autonomous driving
and so forth [1]. Basically, the purpose of visual tracking is to estimate the motion trajectory of the
target over successive video frames, only initializing its state at the first frame. Numerous robust
tracking algorithms [2—4] have emerged and taken exciting progress gains in recent years. However, it
is still a very challenging task to design a robust tracking algorithm due to significant target appearance
variation caused by factors such as fast motion, shape deformation, partial occlusion, illumination
change, background clutter, and so on. To overcome these issues, a more discriminative appearance
representation which is a key part of successful tracking is needed.

Recently, tracking approaches based on discriminative correlation filters (DCFs) [5-9] have
attracted considerable attentions and obtained excellent performances on several tracking benchmark
datasets [10-12]. Benefited from the circular assumption of training samples, the DCFs-based algorithms
can be learned and detected very efficiently in the Fourier domain by element-wise multiplication
and, hence, is of significance for real-time tracking application. However, as traditional DCFs that
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use histogram of oriented gradients (HOG) features [13] strongly depend on the spatial layout of the
tracked object, it is hard for them to handle deformation and rotation well.

To tackle the above shortcoming, an effective tracker termed as Staple [14] has been proposed to
compensate for the deficiencies of both color histograms and DCFs via linearly combining their response
maps, which successfully deals with deformation and illumination variation simultaneously. However,
there emerge two principal lacks of the Staple tracker. Firstly, the Staple tracker only employs holistic
appearance representations of color histogram and DCFs, ignoring the underlying spatial local structural
information, thereby its component trackers Staple, (only applying color histogram-based tracker) and
Staple. (only applying DCFs-based tracker), are likely to perform poorly alone in some challenging
scenarios such as partial occlusion and drastic deformation. This always leads to failure due to the
merged inaccurate response maps. Secondly, Staple tracker resorts to a fixed merging percentage factor
(i.e., 0.3) for overall performance on datasets, which may cause tracking failure because of considering
too much unreliable component trackers in some complex scenes. Figure 1 illustrates the tracking results
on four sequences to explain the above findings of the Staple tracker. Due to the failures of both Staple¢
and Stapleg, at frame 176 and frame 88 in Surfer and Shaking sequences respectively, Staple which is
the result of merging these two components fails at these instants as well. Staple fails at the 560th
frame of the BlurCar1 sequence and Staple, fails at the 506th frame of the Box sequence. These tracking
failures also lead to the failure of Staple tracker since it has no emphasis on reliable component tracker.
The LGCmF tracker [15], which is an improved method based on the Staple, performs well on both
Surfer and Box sequences, while fails on the BlurCar1 and Shaking sequences.

CSPRF LGCmF Staple Staple Staple,

Figure 1. Tracking results of the Staple, its component trackers including Staples and Stapley,, the
LGCmF and our CSPRF tracker on four sequences. The Staple tracks failure on all four sequences
and the LGCmF can track two of the four sequences, which illustrates the LGCmF indeed has some
improvement. Our CSPRF can perform well on four sequences. From left to right and from top to
bottom are Surfer, Box, BlurCarl, and Shaking sequences.

To alleviate the aforementioned deficiencies, in this work, we follow the research line of merging
response maps between color histograms and DCFs [14] and embed a spatial local patch-structured
framework to it for visual tracking. We first construct two part-based component trackers: correlation
filter-based structural patch tracker (CFSP) and color histogram-based structural patch tracker (CHSP).
In each of them, an adaptive hedge algorithm is introduced to determine weights of structural patches.
The standard hedge algorithm [16] is an online decision theoretical method for multi-expert, which uses
the difference between the loss of an expert and the weighted average loss of all experts to define the
regret of this expert. This algorithm uses the cumulative regret corresponding to each expert to generate
its weight in each frame. In this work, we treat each tracked patch as an expert and design a reliable
loss metric for each expert by analyzing the similarity or the discrimination of these patches and the
difference among displacement of each patch with the target. Then based on the tracking reliabilities of
CFSP and CHSP, we selectively combine the response maps of them to formulate the final complementary
structural patches response fusion tracker (CSPRF). Inspired by [15,17], we train and update a SVM
detector for determining the confidences of the component trackers CFSP and CHSP, and implement a
re-detect procedure when both of the component trackers are unreliable. From Figure 1, it can be seen
that our proposed CSPRF tracker performs favorably when the Staple and LGCmF lose the target.
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The main contributions of this work can be summarized as: (1) In contrast to existing Staple tracker
which only uses holistic appearance representations of color histograms and DCFs, we use the local
structural appearance information and propose an novel structural patch response map fusion tracking
algorithm using complementary correlation filter and color histogram. (2) We develop an adaptive hedge
algorithm for part-based tracking framework by adaptively considering the proportion of instantaneous
and cumulative regrets of each expert over time. (3) We design two reliable loss measurement methods in
correlation filter and color histogram models to provide credible inputs for the adaptive hedge algorithm,
by which the correlation filter-based structural patch tracker (CFSP) and the color histogram-base
structural patch tracker (CHSP) are proposed. (4) We execute the extensive experiments on three tracking
benchmark datasets OTB2013 [10], OTB2015 [11], and VOT2016 [12] to demonstrate the efficiency and
robustness of our proposed CSPRF tracker in comparison with the state-of-the-art trackers.

2. Related Work

2.1. Correlation Filter-Based Tracking

Since discriminative correlation filter-based tracking method was initially proposed by
Bolme et al. [5], now it has been widely applied to the visual object tracking community and has
been demonstrated very impressive performance on benchmark datasets. The work in [5] optimizes a
minimum output sum of squared error filter (MOSSE) that uses simple grayscale features to represent
the target appearance. According to the circular matrix structure and kernel trick, Henriques et al. [18]
propose the circular structure with kernels tracking algorithm (CSK), and soon after extend this
work to handle multi-channel features such as histograms of oriented gradients (HOG) [13], namely
kernelized correlation filters (KCF) [6]. Danelljan et al. [19] introduce color names feature [20] to
correlation filter for improving tracking performance. To resolve scale changing problem during
tracking process, Danelljan et al. propose the DSST tracker [21] with a separate multi-scale correlation
filter. To mitigate the boundary effects, Danelljan et al. propose the SRDCF tracker [7] by using a
spatially regularized weight to penalize filter coefficients far away from the target center. Lietal. present
spatial-temporal regularized correlation filters (STRCF) [9] by introducing temporal regularization to
SRDCE. Additionally, Yang et al. present parallel correlation filters (PCF) [22] for visual tracking by
constructing two parallel correlation filters. Zhang et al. propose a novel motion-aware correlation
filters (MACEF) tracking algorithm [23], which integrates instantaneous motion estimation Kalman
filters into the correlation filters.

2.2. Color Histogram-Based Tracking

Color histograms [24-26] are a common method to model the object appearance representation
among earlier tracking approaches. Compared to others features such as HOG or pixels, color histogram
is robust to shape deformation and rotation, hence it is meaningful to track non-rigid objects. The early
mean shift tracker [24] minimizes the Bhattacharyya distance of color histograms between the target
object and the reference regions iteratively. Abdelai et al. [25] present an efficient accept-reject color
histogram-based scheme embedding integral image into a Bhattacharyya kernel to find most similar
area with target. Duffner et al. [26] construct a probabilistic segmentation using back-projection maps
between foreground and background, where the target tracking process is accomplish by applying a
generalized Hough transform with pixel-based descriptors. The distractor-aware tracker (DAT) [27]
proposed by Possegger et al. formulates an efficient discriminative color histograms model to identify
potentially distracters and significantly reduce the risk of drifting.

In recent years, there appear complementary learners [14,28] combining color histogram and
correlation filter to represent the target, which are able to compensate each other in visual tracking.
In [14], Bertinetto et al. linearly incorporate the output response maps of color histograms and
correlation filters to achieve high tracking performance and speed. Fan et al. [29] present a dual
color clustering and spatio-temporal regularized correlation regressions-based complementary tracker,
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where a color clustering-based histogram and a spatio-temporal regularized correlation filters are
formulated as complementary learners to improve the tracking performance of [14]. Lukezic et al. [28]
construct a spatial reliability map to adjust the filter support to the part of the target object suitable
for tracking by exploiting color histograms. Zhang et al. [15] propose a collaborative local-global
layer visual tracking method (LGCmF), in which a block tracker (SLC) utilizing structural local color
histograms feature and a global correlation filter tracker based on HOG feature are merged in the
response map level. Inspired by [15], the block strategy also is adopted in this work. In contrast to [15]
that only applies part-based tracking strategy in color histogram model, we employ more complete
blocking strategy in both component trackers and more efficient block weighting method for each
patch based on adaptive hedge algorithm.

2.3. Part-Based Tracking

Part-based tracking algorithms focus on the local parts of the target and, hence, they are very
robust to handle partial occlusion and severe deformation. Commonly, the visible parts can still
provide reliable cues for tracking when the target is partially occluded. Nejhum et al. [30] match the
intensity histograms of foreground blocks by dividing the foreground shape as several rectangular
blocks to update the target shape and adjust layout of them. Zhang et al. [31] propose a part matching
tracker (PMT) based on a locality-constrained low-rank sparse learning method to optimize partial
permutation matrixes for image blocks among multiple frames. Yao et al. [32] present a latent structured
learning method to model the unknown parts of target.

Several recent tracking methods have attempted to integrate the correlation filters into a part-based
framework for improving the tracking performance [33,34]. Liu et al. [33] propose a part-based tracker
with multiple adaptive correlation filters, where the Bayesian inference framework and a structural
constraint mask are adopted to be robust to partial occlusion and deformation. Li et al. [34] identify the
reliability of patches according to the motion trajectory and trackability of each patch. Sun et al. [35]
present a shape-preserved kernelized correlation filter within a level set framework for deformable
tracking of individual patches. Wang et al. [36] formulate an occlusion-aware part-based tracker that
can convert between the global model and local model adaptively to avoid polluting target templates
by background information.

2.4. Sparse-Based Tracking and Deep Learning-Based Tracking

In addition to correlation filter tracking and color tracking, popular tracking algorithms in recent
years include sparse tracking [37-39] and deep learning tracking [40-43] as well. In sparse tracking,
Zhang et al. [37] propose a novel sparse tracking method by matching framework for robust tracking
based on basis matching. Zhang et al. [38] propose a tracker using a semi-supervised appearance
dictionary learning method. Zhang et al. [39] develop a biologically inspired appearance model
for robust visual tracking. As for deep learning based tracking, the work of [40] learns multi-level
correlation filters with hierarchical convolutional features to integrate the correlation responses
proportionally. Subsequently, Qi et al. [41] exploit an adaptive hedge algorithm to make a weighted
decision of all weak correlation filter trackers. Zhang et al. [42] integrate the point-to-set distance
metric learning (DML) into visual tracking tasks and take full advantage of all the training samples
when determining the best target candidate. Danelljan et al. [43] introduce a novel tracking architecture
consisting of two components designed exclusively for target estimation and classification. This method
achieves a considerable performance gain against the previous tracking approach.

3. Proposed Algorithm

3.1. Overview

Following the Staple [14], our work also relies on the strengths of both correlation filters and color
histograms. However, the Staple employing the holistic appearance information is likely to drift or fail
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in the scenes of severe deformation or partial occlusion. A part-based tracking strategy can achieve
favorable tracking results for above challenging scenes, since reliable cues for tracking can be provided
by remaining visible parts or undeformed parts. Therefore, in this work we take into account the
structural local information of both correlation filters and color histograms, which show promising
tracking performance improvement over Staple.

Since the trackability of individual patches is distinct in different scenes, it should be highlighted for
these patches with high trackability. The LGCmF [15] calculates the discrimination value to determine
the trackability of individual patch in its component tracker SLC by the foreground-background
discrimination analysis, which only considers the appearance information of the individual patch.
To fully utilize both appearance discrimination and spatial motion information, we do not only
consider discrimination value, but also allow motion consistency of individual patch with the target.
And according to them, we formulate the loss metric of each patch tracker in CHSP, which is used as
input for adaptive hedge algorithm. Figure 2c illustrates that our component tracker CHSP allocates
more desirable weights to individual patch trackers than the SLC [15]. For instance the weights of our
CHSP are more uniform than them of SLC when all patches are clearly visible at frame 4. And when
the target is partially occluded at frames 39 and 253, the remaining visible patches 1, 2, 3, and 4 still can
provide reliable tracking cues, which mean these patches are more likely to be tracked correctly, hence
these patches are given higher weights in our CHSP.

patch 7 patch 8 patch 9
() the target (b) the segmented patches
Weie WChSP Wee Wchsp W wch?p

patch 1| 0.0589 [ 01113 17 Z 3T Laien 1| 0.0768 | 0.2228 377 pateh 1| 0.1123 | 0.2887

2

.ii patch 2 | 0.0949 | 0.1183 ' , /| “ patch 2 | 0.0621 | 0.1549 I,.‘.’.’f“lﬂpmchz 0.0970 | 0.3854
patch 3| 0.0784 | 0.1133 m g paich3| 01226 | 0.1056 '| 5 patch 3| 0.1076 | 0.0613

u l l patch 4 | 0.0534 | 0.1123 l N 0 patch 4| 0.1362 | 0.2789 m d u patch 4 | 0.1009 | 0.1462
patch 5 | 02021 | 0.1194 /) patch 5 | 0.2297 | 0.0484 patch 5 | 0.1318 | 0.0405

patch 6 | 02139 | 0.1107 | W patch 6 | 0.0778 | 0.0366 W patch 6 | 0.1360 | 0.0201

u l l patch 7 | 0.0603 | 0.1037 . I patch 7 | 0.0643 | 0.0687 H u patch 7| 0.1097 | 0.0410
0.1239 | 0.1083 0.1025 | 0.0070

patch 8 patch 8 | 0.1777 | 0.0393 patch 8

Frame 253
Frame 4 icho| 0.1142 | 0.1026 Frame 39 icho| 0.0528 | 0.0449 patch 9 | 0.1021 | 0.0099

(c) the comparison of weights for SLC and CHSP

Figure 2. The segmented instance and the comparison of weights of patches in SLC and CHSP. (a) shows
the tracking target with red bounding box in Coke sequence. (b) shows that the target is divided into
nine overlapped patches using red bounding box. In (c), the tables list the patch’s weights of SLC and
CHSP for the frames 4, 39, and 253. wg; and w5, represent the weights of corresponding patches of
SLC and CHSP, respectively.
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In CFSP, we calculate the loss of individual patch tracker according to similarity and motion
consistency of individual patch. The motion consistency refers to the difference among displacement
of individual patch with the displacement of predicted target. And the similarity of each patch is
measured by employing the intensity and the smooth constraint of response map between patch
expert trackers.

We describe the main steps of the proposed approach in Figure 3. In this section, we first present
the adaptive hedge algorithm, and then describe the two component trackers in detail. Based on these
component trackers, we formulate the final complementary structural patches response fusion tracker.

Correlation filter-based structural patch tracking (CFSP)

Correlation filter response
Segmented patches maps of patches

Correlation filter | Dby Daby Adaptive hedging Selective merging
“ee = > .o ———— —
tracking response

Response of CFSP Final response

L_-»
Re-detection

Frame t

g
¥

| Color histogram_ | o g Adaptive hedging 7
e —_ o —_— '
tracking i . . I.J .

Color histogram response
maps of patches

Color histogram-based structural patch tracking (CHSP)

"Segmented patches

Response of CHSP Online SVM

Figure 3. The flow chart of the proposed tracking algorithm. When a new frame t arrives, we first
divide the target into several overlapped patches. The responses of correlation filter and color histogram
of all these patches are computed. These correlation filter responses are combined together by the
adaptive hedge algorithm to constitute the component tracker CFSP. With the same way, the component
tracker CHSP is also constructed. Finally, responses of CFSP and CHSP are selectively fused to obtain
final response and the new location of the target is estimated at its peak. When both of the combined
responses are unreliable, an online SVM classifier is activated to re-detect the target.

3.2. Adaptive Hedge Algorithm

The standard hedge algorithm [16] for decision theoretic online learning problem generates a
weight distribution w; over all experts i € {1,2,...,K} at frame ¢, where K is the number of experts.
Each expert i incurs a loss li, and the expected loss is calculated as:

K
it =Y wil 1)
i=1

The standard hedge algorithm introduces a new notion of regret to generate a new weight
distribution over all experts for next frame t 4 1. The instantaneous regret to expert i is defined as:

Ca
=1 =1 ()
Its cumulative regret to expert i for frame ¢ is:

t
Ri=Y ri=R, +7l 3)

=1

The purpose of the hedge algorithm is to minimize the cumulative regret Ri over all experts
throughout the whole video frames.

Since the cumulative regret Ri is computed by simply summing the historical regret Ri_l and
instantaneous regret r; as shown in Equation (3), where R;_; and r; contribute equally in the loss
function, the standard hedge algorithm [16] performs not well in real-world tracking tasks as it ignores
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two key factors. First, the target appearance is possible to change with irregular velocity throughout
a video sequence, which means that the historical regret Ri_l should be considered with a varying
proportion over time to better reflect the target state for visual tracking. Second, since each expert
tracker captures a different part of the target in this work, it is less effective to utilize a fixed proportion
for the historical regret over all expert trackers.

Similar to [41,44], to overcome the above two shortcomings, we propose an adaptive hedge
algorithm, which is the use of an adaptive regret mechanism to determine the proportion of the
historical as well as instantaneous regrets over time. Since the appearance variation of target occurs
slowly in a short time period, we formulate the loss of each expert I' during time period At via a
Gaussian distribution with standard variance ¢! and mean p!:

t
| 4
T __ 1
y=x ), @
T=t-At+1
1 t
G=\a—g X (-t ®)
T=t-At+1

The stability of expert i at frame ¢ is decided by:

i
|lt :“t|
;
¢

(6)

S =

o

A large si means that this expert varies highly and, hence, its cumulative regret should mainly
depend on its historical regret. In contrast, a small s; means this expert tends to be more stable than the

one with a larger si. Hence, its cumulative regret should take a large proportion on its instantaneous
regret. Based on above rules, the adaptive cumulative regret for each expert is computed as follow:

ai = exp(-yst) )

Rl = (1 at)Rl +alirl (8)
where y is a parameter to control the shape of the exponential in Equation (7).

Our adaptive hedge algorithm also has the same solution form with the standard one [16]. The
weight of each expert is updated for the next frame as follow:

L N )

OC —
t+1 ct 2¢4

)

Here [RiL denotes max{O, Ri} and ¢; is a scale parameter constrained by:

Kiexp( ] ) =e (10)

In this work, we apply the proposed adaptive hedge algorithm to the following component
trackers, respectively. In addition, different metrics used to calculate the loss of patch experts in this
two component trackers are proposed.
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3.3. Correlation Filter-Based Structural Patch Tracking (CFSP)

In CFSP, the target is split into multiple overlapped image patches pi, ief{l,2,...,K}, where K is
the number of patches. The tracking task is then to locate these patches. During tracking, an image
block z' with the same size of appearance template ' is extracted out at the location of patch p in the
previous frame. After that, a kernelized correlation filter (KCF) [6], which can be considered as an
expert, is applied on each patch to track its position. The response map of the ith patch is calculated as:

() = FA(E() o F(a)) an

where the subscript cf represents the correlation filter operator. The patch p' in current frame is
localized according to the location where the peak of the response map R . - The tracking details of
KCF can be found in [6].

Based on the adaptive hedge algorithm proposed in the previous section, it is natural to fuse
response maps of all patches at the frame ¢ by:

K
Repy = ) w o Rip, (12)
i=1

where w' et is the weight of patch p' at frame f and Z‘ZKI 1 wé fi
by searching the peak of the fused response map R.y,.
The loss of each expert tracker need to be computed and is used by the adaptive hedge algorithm

described in the above section to update the weights of all expert trackers. In CFSP, we consider two

= 1. Then at frame ¢, the target is located

aspects for calculating the loss of each expert tracker. First, we use intensity and the smooth constraint
of each patch’s response map to reflect the similarity of patch between current frame and previous
frames. The peak-to-sidelobe ratio (PSKR) [5] that quantifies the sharpness of the response map peak is
used to estimate the intensity of response map. It is defined as:

max(‘Rif,t) - meﬂ”(%if,t)
Var(%i f,t)

PSR! = (13)

where mean(‘Ri f,t) and Var(?{é f,t) are the mean and the standard variance of the ith patch’s response
map at frame ¢ respectively. The smooth constraint of response map (SCRM) [33] is defined as:

i 2
SCRM: = ||%Cft ef i1 DAL (14)

where ® means a shift operation of the response map and A denotes the corresponding shift of
maximum value in response maps from frame ¢ — 1 to t. Then the normalized similarity of patch p’ can
be represented as:

(psri/scra)

Y.K | (Psri /scrui)

t = (15)

Second, we consider the displacement difference between each patch and the predicted target at
frame t:

t
||dzs - dzsc’}rtll
cft tar (16)
Zl 1 ||dzs - dzscftll

where dzs . and dzst’” denote the displacements of corresponding patch p' and target with respect to
frame t, respectlvely The loss of the ith patch expert tracker at frame f is defined as

I, =(1-p)(1-Si)+pDL, (17)
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where f is the trade-off between the similarity and the displacement difference. The loss calculated
from Equation (17) is put into the adaptive hedge algorithm to update the weight of patch p' for frame
t+ 1 in CFSP. Figure 4a illustrates the weight distribution of the sequence Bolt generated by CFSP
in some frames, in which different patches have different weights. Patch 8 lies in the leg area and
undergoes sever deformation. Hence, the weights of patch 8 are relatively smaller. The tracking
procedure of CFSP tracker is summarized in Algorithm 1.

T T T T T T T T .4 T T T T T T T T T
El patch 2| | | | | | | | | | | | | | | |l patch 2
H|[E&patch 5 — — + — — o — — —|— — - === o4 - —+-P+--+4--A4---1-——1-— -+ - -] - — + {Epatch5
Bl patch 8| | | | | | | | | B patch 8
|
I

37 73 109 145 181 217 253 289 325 348 37 73 109 145 181 217 253 289 325 348
Frame Index Frame Index
(a) weight distributions of patches on CFSP (b) weight distributions of patches on CHSP

(c) the Bolt sequence

Figure 4. The weight distribution of component trackers in the Bolt sequence. For the sake of clarity,
we only show the weight distribution of patches 2, 5, and 8. (a) and (b) are the weight distributions of
the component trackers CFSP and CHSP at some frames, respectively. (c) shows the tracking target
with red bounding box in Bolt sequence, in which the target suffers from severe deformation.

Algorithm 1: Correlation filter-based structural patch tracking

Inputs: current weight distribution w estimated target position pos;_; in the previous frame;

1 K.
cf,t’ ’wcf,t’

Output: updated weight distribution w'

oo K . 3
cfip w; i1 the response map R, f,t1n the current frame.
Repeat:

: compute correlation filter response of each patch using Equation (11);

: compute the fused response map R using Equation (12);

: compute the similarity and displacement difference of each patch using Equations (13-16);
: compute loss of each patch tracker using Equation (17);

: update stability models using Equations (4) and (5);

: measure each patch tracker’s stability using Equation (6);

: update regret of each patch using Equations (1), (2), (7), and (8);

: update weight distribution w

P N U WN

1 K ; ; .
i1 Ve for each patch tracker using Equation (9);

3.4. Color Histogram-Based Structural Patch Tracking (CHSP)

For the overlapped image patches p', i € {1,2,...,K}, we apply the same color histogram tracking
method as SLC [15] to track each of them. And each color patch tracker can be regarded as an expert.

Let R, Rj[ and Ri represent the target region, foreground and surrounding background regions of

patch p!, respectively, where the foreground region R} is slightly smaller than the target region R.

Additionally, we denote ¥/, as the observation of pixel u within patch p, which is represented by the
bin of u in the color histograms. The likelihood of pixel u belongs to the region R} can be derived by
applying Bayes rule like [27]:
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, P(y; u€R; )P(u € le)
P(u €R! ,R;,yu) ~ (18)
Z‘IJJ Rr Rl (yu|u S lp) ue ll})
The likelihood terms can be derived from color histogram:
Hi yi
P(yu e R ) and P(yifue RE) ~ Hilvi) . d (19)
|R | RT

where ’R ' and |R1| denote the number of pixels in the foreground and surrounding background

regions of patch p' respectively. H}(yu) and H§<yu) denote the color histogram over foreground and
surrounding background regions. The prior probability can be approximated as:

L

[R]
P(u eR ) ~ and P( € RY) ~ ——— 20)
|R |+ [Ri) [RE] -+ IR
Thus, the probability that pixel u belongs to the patch p can be simplified to:
. . Hi(y,
P(ueR) = P(u € RIRL, R, yu) ~ ¢ (1)
Hi(vi) + Hi(vi)

In the tracking stage, for patch p, we extract a rectangular searching region centered at its location
in previous frame. And the response map of patch p' can be evaluated by using its color histogram
model. Using a dense sliding-window searching way over probability map P(u € Rlo) derived from
Equation (21), we can obtain the response map of patch p' as follow:

() = ———— (22)

Here |h ]-| represents the number of pixels in the jth sliding window /;, the size of which is the
same as patch p'. The location of the ith patch at this frame is estimated by searching for the peak of
the response map R,

Similar as the above proposed CFSP, we also treat each patch tracker as an expert and apply the
weights calculated from the adaptive hedge algorithm to fuse response maps of all patches at the
frame t:

K
Rt = Z wlch,t lch,t (23)

where w , is the weight of patch p' at frame t and Zl 1 w' = = 1. The subscript ch denotes the color
histogram operator Then the target is located by searching the peak of the fused response map R, ;.

Different from SLC [15] only exploits appearance discrimination to determine the weight of each
patch, we employ both the discrimination value and displacement difference to calculate the loss
of each expert tracker and put this loss into adaptive hedge algorithm to update weight. Figure 2c
illustrates that our weighted method has better performance. The discrimination values [15] of patches
are calculated by considering their variance ratios (VR) [45] and histogram similarities between the
foreground and surrounding background regions.
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The variance ratio (VR) [35,45] is to measure the discriminative power of each patch against its
surrounding background. The log likelihood of pixel u within patch p at frame t can be computed by
using color histogram as follow:

max{H} (1), 6}

max{Hé,t (u), 6} 24

Li(u) = log

where 6 is a small value to prevent dividing by zero. The log likelihood Li maps the histogram into
positive for colors associated with the foreground of the ith patch, and negative for colors associated
with the surrounding background of the ith patch. Then the variance ratio (VR) of patch p' at frame ¢

can be computed as:
Var(L; ( ft—i-HZ )/ )

Var(Ll }t) + Var<Li,‘ Hé,t)

VR’(L’ H. H )— (25)

fr

where var(L; H) defines the variance of L(u) with respect to the color histogram H (1) and is calculated as:

2
var(L; H) ZH VL2 (u [ZH } (26)

In Equation (25), the denominator is small when the log likelihood values of pixels in the patch
and background classes are tightly clustered, while the numerator is large when the two clusters are
widely separated. Thus, patches with large variance ratio show stronger discriminative power to
separate the foreground and surrounding background.

Moreover, less similarity of histograms between foreground and surrounding background can
readily distinguish the target from its surroundings. Therefore, the Bhattacharyya distance can
be exploited:

pi(H}/t, H;',t) =) JH: (0H, () (27)
u
Thus, the normalized discrimination of patch p' can be defined as:

VR}/pi

di = = (28)
X (VRi/p})
i=1
Therefore, the loss of the ith patch expert at frame ¢t is defined as:
1= 0-p)(1-d)+pDi,, (29)

where D’ ; denotes the displacement difference between the ith patch and the predicted target in
CHSP at frame t:

_ dlstar

Hdlsch t ch, t”

D, = (30)
MK st~ dist 2
Figure 4b displays the weight distribution of the sequence Bolt generated by CHSP at some
frames. Similar as CFSP, different patches also have different weights and patches 5 and 8 have obvious
distinction, of which the patch 5 is the middle part of the body whereas the patch 8 is the leg area.
The leg area contains more background interference and has poor motion consistency with the body

part. The tracking procedure of CHSP tracker is summarized in Algorithm 2.



Sensors 2019, 19, 4178 12 of 26

Algorithm 2: Color histogram-based structural patch tracking

Inputs: current weight distribution wgh, ERR wfh, b estimated target position pos;_; in the previous frame;
Output: updated weight distribution w
Repeat:

1: compute color histogram response of each patch using Equation (22);
2: compute the response map R, ; using Equation (23);

3: compute the discrimination and displacement difference of each patch using Equations (24)—(28) and (30);
4: compute loss of each patch tracker using Equation (29);

5: update stability models using Equations (4) and (5);
6
7
8

ih 1 wfh Y the response map ‘Rch,t in the current frame.

: measure each patch tracker’s stability using Equation (6);
: update regret of each patch using Equations (1), (2), (7) and (8);

: update weight distribution w for each patch tracker using Equations (9);

1 oowK
cfir1 Yo

3.5. Response Maps Fusion between CFSP and CHSP

To complement the strengths of CFSP and CHSP, inspired by [15], we combine their response maps
in a selective strategy as well. Different from LGCmF [15] using the peak value of response map in the
global layer tracker to analyzing the confidence, we apply the online support vector machine (SVM)
classifier on both the tracking results of CHSP and CFSP to evaluate their confidences. Specifically,
we first use the SVM classifier on the tracking results of CFSP and CHSP to obtain the confidence
scores Cfsp and Cepsp. When Ceggp o1 Cyigp are larger than the predefined thresholds T, fsp OF Tepsp, we
consider that the CFSP or the CHSP tends to be credible. Therefore, the merging factor (1¢fs OF 7cpsp)
can be picked according to the credibility of the two component trackers:

R=nRgy+(1- n)ﬁcf (31)

where R, and R,  are the response maps of CHSP and CFSP, respectively. 1 = 1).fsp OF Tcpsp is the
merging factor that is chosen based on the confidences of CFSP and CHSP. If the confidence scores
Ccfsp and Cesp are both below the thresholds T ¢y, and Ty, we consider that the CFSP and CHSP are
unreliable at this frame. Similar as [15,17], a re-detection process using the SVM classifier is performed
by drawing dense candidates around the searching region. In this case the detected result of the SVM
can be adopted only if its maximum detecting score max(Csyy, ) is above a threshold Ty, to guarantee
the accuracy. Once max(Csom) < Tsom, the re-detected result is given up and we select the 1), fop @S the
merging factor in Equation (31). At this time the target usually suffers from partial occlusion or severe
deformation, we trust the CFSP tracker more as its performance is more robust and accurate compared
to the CHSP tracker, which is illustrated in experiment section. The tracking procedure of final CSPRF
tracker is summarized in Algorithm 3.
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Algorithm 3: Complementary structural patches response fusion tracking (CSPRF)

Inputs: the responses of the CFSP and CHSP R, s R it estimated target position pos;_j in the previous frame;
Output: estimated current target position pos;.

Repeat:

1: obtain the confidence scores C s, and Cepsp using the SVM classifier on the tracking results of CFSP and
CHSP.

2: if Cepsp = Tepsp then

3: setn = ngsp and compute the current target position pos; using Equation (31);

4: else if C.fy > T fp then

5:  setn = sy and compute the current target position pos; using Equation (31);

6: else

7: use the online SVM classifier to draw dense candidates around pos;_; and obtain the detecting scores
Csum of all candidate samples;

8: if max(Cspp) > Tspm then

9: current target position pos; = argmax(Csym);

10: else

11: set 1 = 1.5 and compute the current target position pos; using Equation (31);

12: end

13: end

14: end

3.6. Update Scheme

To adapt to the target appearance variations, we need to update CFSP tracker, CHSP tracker and
the SVM classifier. For CFSP tracker, we incrementally update the correlation filter of each patch when
its response map peak max(%i f,t) at frame t is above the threshold T:

- |- 5)'07;_1 + &xi, if max(%lcf,t) > Tyeak
ap =1 . (32a)
@y, otherwise
=i (1- 5)}7;_1 +&xi, if max(%éf,t) > Tpeak (32b)
! }f_l, otherwise

Here ¢ is the learning rate. For CHSP tracker, the color histograms of each patch are update
as follow:

u ' (33)

1

5 - {(1 —OH! | +H, if d) > Ty
C
c,t—=1’

otherwise

where 7 is the learning rate and Hé,t € {H} " Hé,t} indicates the learned color histograms of foreground
and surrounding background regions of patch p' at frame ¢. di is the discrimination value of patch p' at
frame t computed from Equation (28), and Tj;, is the predefined threshold.

For the SVM classifier, it is updated only when C gy > Tefsp Or Consp = Tepsp, since at this time
we consider the current tracking result is credible. We incrementally update the SVM classifier by
applying the passive-aggressive algorithm [46] efficiently, which is similar to [17].

3.7. Scale Estimation

Similar to the DSST tracker [21], we first localize the target in a new frame and subsequently
estimate scale variation. We train a one-dimensional correlation filter to perform scale estimation.
A scaling set S = {11” ne {l—ST_lJ, cee, V\%J}} is built, where a and N denote the scale parameter
and the number of scales respectively. Let M X N be the target size in the current frame and for each

scale s € S, an image patch zs of size sM X sN centered at the target location is extracted to construct a
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feature pyramid. We exploit the correlation filter on these image patches z; with corresponding to one
dimensional Gaussian regression label y;s. The estimated scale is derived as:

Sopt = argmax{f(zs)ls € S} (34)

where sqpt is the maximum value of the scale correlation response. This implementation details can
refer to [21].

4. Experimental Results

We first evaluate our complementary structural patches response fusion tracker (CSPRF) by
comparing with others state-of-the-art trackers on OTB2013 and OTB2015. Then, the performance
comparison of the LGCmF with our CSPRF is conducted. After that, to validate the effectiveness of two
component trackers (CFSP and CHSP), we compare them with several relevant tracking algorithms,
respectively. Finally, we conduct comparative experiments on VOT2016 [12].

4.1. Experimental Setup

We conducted our experiments on OTB2013 [10] and OTB2015 [11] benchmarks. All these
sequences cover 11 challenging attributes: background clutters (BC), deformation (DEF), fast motion
(FM), scale variation (SV), out-of-plane rotation (OPR), motion blur (MB), out-of-view (OV), in-plane
rotation (IPR), illumination variation (IV), occlusion (OCC), and low resolution (LR). The tracking
methods are evaluated by the following metrics: center location error (CLE), distance precision rate
(DP), and overlap success rate (OS). The CLE is defined as the average Euclidean distance between the
ground truth and the estimated center location of the target. The DP is computed as the percentage of
frames where CLE is smaller than a specified threshold. The OS indicates the percentage of frames
whose overlap ratio between the estimated bounding box and the ground truth bounding box surpasses
a certain threshold. Following the evaluation protocol [10,11], we set the two preset thresholds of
the DP and OS to 20 pixels and 0.5 in overall experiments, respectively. In addition, experimental
results are reported using the precision plots and success plots under one-pass evaluation (OPE) as
in [10,11]. In success plots, the area under the curve (AUC) is adopted to rank the compared trackers
in the legend.

Besides OTB2013 and OTB2015, we also implement comparative experiments on VOT2016 [12].
This dataset consists of 60 challenging sequences. The performance is evaluated both in terms of
robustness, accuracy and expected average overlap (EAO). The robustness calculates the average
number of tracking failures over all sequences. The accuracy computes the average overlapping ratio
between the estimated bounding box and the ground truth. EAO ranks the overall performance which
takes both accuracy and robustness into account. Readers can refer to [12] for details.

Our methods are implemented in MATLAB 2014a (MathWorks, Natick, MA, USA) for learning
and tracking process and C++ for feature extraction. The source codes of compared tracking algorithms
are offered by authors, whose parameters are at default values. All the experiments are run on a
PC with an AMD A10-5800K 3.8GHz CPU and 8 GB of RAM (Advanced Micro Devices, Sunnyvale,
CA, USA).

4.2. Implementation Details

Let M, X N, represent the size of the target bounding box. The global target is divided into 3 x 3
overlapped patches by taking the patch size and step length as (%, %), that is to say, the parameter
K = 9. The time period At in Equations (4) and (5) is set to five frames and the scale factor y in
Equation (7) is set to 10. The g in Equations (17) and (29) is set to 0.5. For the component tracker CFSP,
the histogram of the oriented gradient (HOG) [13] and color names (CN) [20] are applied as the feature
representation. The searching window size of M X N is set to four times the patch size. The learning

rate ¢ in Equation (32) is set to 0.01 and the threshold T, = 0.16.
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For the component tracker CHSP, the surrounding background region R; is an expanded region
of patch with %(% + %) as the length and width, while the foreground region Ry is set to 0.8 times
the patch size R,. In Equation (24), 56 = 10~2. The learning rate 7 in Equation (33) is set to 0.04 and the
threshold Ty is set to 0.5/2.5 for gray/color image sequences. For CSPRE, the thresholds Tefs,, Tensp
and Tsom are set to 0, 0, and 0.5, respectively. The merging factors 7. ¢s, and 75, are set to 0.6 and 0.3.
The SVM classifier is trained by densely drawing samples from a searching window centered at the
global target location. The samples with positive label are selected when their overlap ratios with the
global target bounding box are above 0.6, and for the samples with negative label, their overlap ratios
are below 0.2. For scale estimation, the parameters are the same as the DSST [21] tracker. We keep the
above parameters fixed throughout all of the experiments and our proposed CSPRF tracker runs at an
average of 5.1 frames per second (FPS).

4.3. Performance Evaluation of the CSPRF Tracker on OTB2013 and OTB2015

Our proposed CSPREF tracker is compared with 10 state-of-the-art trackers including KCF [6],
MEEM [4], DSST [21], Staple [14], Staple_CA [8], CSR-DCF [28], SRDCF [7], SAMF [47], LCT+ [17] and
RPT [34]. In above trackers, KCF, DSST, and SRDCF are the correlation filters-based trackers. Staple,
Staple_CA, CSR-DCF and SAMF introduce color feature as an effective complement to the HOG feature.
RPT is the part-based tracker and MEEM is the tracker that uses multiple online SVM classifiers.

4.3.1. Quantitative Evaluation

Figure 5 and Table 1 show overall comparisons between our CSPRF tracker and other 10 trackers
on OTB2013 and OTB2015 datasets. It is easily to observe that our CSPRF tracker performs favorably
against the compared trackers on both datasets. For the OTB2013 dataset as shown in Figure 5a, the
proposed CSPRF tracker achieves the best overall performance both in precision and success plots with
a DP score of 87.6% and an AUC score of 65.3%, outperforming the second best tracker LCT+ by 2.9%
and 1.8%. For OTB2015 dataset as illustrated in Figure 5b, the CSPRF performs best with a DP score of
83.9% on the precision plot and an AUC score of 61.7% on the success plot, and outperforms the second
best Staple_CA by 2.9% and 0.9%, respectively. In contrast to the Staple_CA that only promotes the
correlation filter module of Staple, our method improves both the correlation filter and color histogram
modules of Staple and, hence, obtains better performance than Staple_CA. Additionally, compared
with the Staple tracker, our approach achieves gains of 8.8% and 5.2% in the DP score and 4.6% and
2.6% in the AUC score on both OTB2013 and OTB2015, respectively.

Table 1. Overall performance on the OTB2013 (I) and OTB2015 (II) datasets with the representative
mean overlap success (OS) rate at threshold of 0.5, median overlap success (OS) rate, median distance
precision (DP) rate, and median center location error (CLE). Best: bold; second best: underline.

CSPRF LCT+ DSST Staple CA Staple SAMF SRDCF RPT KCF CSR-DCF MEEM

Meam OS 1 81.4 81.2 67.3 76.1 74.2 722 78.1 70.2 62.1 75.6 70.8
(%) I 75.4 70.1 61.3 72.8 70.4 67.0 71.2 61.6 55.1 71.2 62.2
Median OS 1 82.5 82.3 68.0 77.2 75.1 73.4 78.8 719 63.7 76.9 729
(%) I 76.6 71.3 62.2 74.5 71.8 68.7 72.3 63.6 56.9 72.3 64.5
Median DP I 89.1 86.1 75.1 85.0 80.2 80.6 82.7 80.5 75.5 83.0 86.7
(%) I 85.6 78.2 69.8 82.7 80.4 77.6 78.3 74.0 71.7 81.5 81.0
Median CLE I 6.39 723 12.2 7.27 8.42 8.72 4.82 8.26 114 7.98 7.50
(pixel) I 7.10 9.13 13.1 7.09 8.35 9.43 7.75 113 14.7 8.50 9.92

Table 1 reports the mean OS (%), median DP (%), median OS (%) and median CLE (pixels) over
the OTB2013 and OTB2015 datasets. Our tracker obtains the best results in above three evaluation
metrics except that its median CLEs with 6.39 on OTB2013 and 7.10 on OTB2015 are slightly lower
than the SRDCF and Staple_CA by 1.57 and 0.01, respectively.
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Figure 5. Quantitative evaluation over the OTB2013 and OTB2015 datasets. Precision and success
plots using the one-pass evaluation (OPE). The legend of precision plots shows the average distance
precision rates (DP) at 20 pixels, and the legend of success plots contains the overlap success scores
(OS) with the area under the curve (AUC).

4.3.2. Attribute-Based Evaluation

To facilitate analyzing the strength and weakness of our method in various aspects, we further
evaluate the trackers on datasets with 11 attributes. Figure 6 shows the precision and success plots of
all compared trackers on OTB2015 with various attributes. Among them, our tracker ranks the best
within seven out of 11 attributes including OPE, SV, OCC, DEF, OPR, OV and BC, and achieves a top
three performance in terms of IPR and LR. This is attributed to our proposed complete structural patch
tracking strategy and the novel updated weight strategy, which can fully emphasize valid cues of the
target. Especially, our tracker makes a large margin in terms of BC, DEF, and OCC in the precision
plots. This illustrates that our tracker has the distinct advantage in dealing with the background clutter,
deformation, and occlusion.
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Figure 6. The precision plots and the success plots with 11 attributes on OTB2015. The legend of
precision plot contains the average DP score at 20 pixels while the legend of success plot contains the
area under the curve (AUC) score for each tracker. The number of sequences for each attribute is shown
in brackets.

Table 2 reports the mean DP scores of compared trackers over all 11 attributes on the OTB2013.
Our CSPREF tracker obtains the best performance within seven out of 11 attributes including IV, SV,
OCC, DEF, OPR, OV, and BC, and achieves the second best performance in IPR with the mean DP score
of 82.8%. From Figure 6 and Table 2, it demonstrates that our proposed CSPRF obtains competitive
tracking performance against the other state-of-the-art trackers in these challenging attributes.
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Table 2. Distance precision scores (%) at a threshold of 20 pixels in terms of individual attributes on the
OTB2013. Best: bold, second best: underline.

CSPRF LCT+ DSST Staple CA Staple SAMF SRDCF RPT KCF CSR-DCF MEEM

IV(25) 84.5 79.2 724 80.1 74.2 70.6 713 74.1 70.7 71.3 76.9
SV(28) 84.4 75.7 71.5 80.5 73.6 73.0 77.1 74.0 65.5 70.0 70.0
OCC(29) 87.0 84.6 70.0 80.6 78.3 84.5 81.2 73.5 73.1 79.0 81.6
DEF(19) 90.1 87.0 66.3 83.9 78.8 81.9 79.5 72.8 74.6 82.6 84.6
MB (12) 71.1 66.5 54.0 78.5 70.8 61.3 729 72.6 60.5 724 713
FM (17) 71.6 66.3 51.8 76.6 66.1 65.4 73.0 67.7 57.0 73.2 741
IPR (31) 82.8 80.2 75.2 83.9 78.8 722 75.0 77.7 70.8 74.6 80.9
OPR(39) 87.6 84.9 72.0 82.3 77.4 77.8 78.7 77.0 71.5 78.5 84.9
OV (6) 76.6 72.8 514 69.7 65.0 63.5 70.6 67.8 64.8 66.2 744
BC (21) 84.0 79.3 69.2 79.0 74.9 71.7 72.7 78.4 72.3 78.8 79.8
LR (4) 80.4 71.7 69.0 97.2 69.5 65.0 76.9 78.1 62.9 65.3 98.7

4.3.3. Qualitative Evaluation

Figure 7 illustrates the qualitative comparison of our CSPRF tracker with mentioned 10 trackers
on 14 challenging sequences. From these figures, it is clearly observed that our method performs well
in all these challenging sequences.

Occlusion. In the Box sequence, the LCT+ quickly drifts to the similar background area from the
beginning, and the target is gradually occluded by the Vernier caliper from the 445th frame. When the
target reappears in the 490th frame, only our CSPRF, SAMF and MEEM successfully track it while other
trackers still stay on the obstruction (Vernier caliper). In the Human3 sequence, LCT+, SAME KCF,
MEEM, and RPT fail to track the target in the 36th frame. After a short partially occluded duration, all
other trackers lose the target as well, only our tracker sticks on it throughout the sequence. In addition,
in the Girl2 sequence, only our method can effectively capture it again when the target reappears,
while all other compared trackers drift toward the distracter that has the similar appearance as the girl.
Here, the success of our tracker is mainly attributed to the confidence updating strategy and the online
re-detection mechanism.

Rotation. The target undergoing the in-plane or out-of-plane rotation often causes the variation
of target appearance, which will increase the tracking difficulty. In the Skiing sequence, since the target
keeps rotating in consecutive frames, most of trackers lose the target in the 19th frame. Only our CSPRE,
Staple_CA, and MEEM successfully track the target in the entire tracking period. In the Freemanl
sequence, all the trackers perform well at the beginning, such as frame 30. The target undergoes the
out-of-plane rotation at the 140th frame, our tracker and Staple get right estimates in location and scale,
and the other trackers all drift to the face of the man, SAMF even loses the target completely. At frame
276, KCF and DSST also lose the target. Another example where the rotation is the main challenge is
Sylvester sequence. At frame 1179, only MEEM, LCT+, RPT, and our CSPRF locate the target while
other trackers fail to track the target.

Deformation. In Panda sequence, the target suffers from severe deformation. LCT+, SRDCF, KCE,
DSST and RPT lose the target at frame 486 and more trackers drift to the background when the panda
passes by the tree, whereas our CSPRF, MEEM still track the target (e.g., frames 642, 958). Although
the Staple_CA can track the target, it gets inaccurate target location. In Bolt2 sequence, the target
undergoes severe deformation as well. Others trackers fail to track the target form the beginning, only
our CSPRF, CSR-DCF, Staple and Staple_CA successfully track the target in the whole tracking period.
In the Bird2 sequence, many trackers obtain inaccurate target location when the bird turns around
at frame 72, and SAMF and DSST fail to track the target at this time. Only our CSPRF, MEEM, and
Staple_CA obtain the accurate results in the overall tracking process.
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MEEM  CSR-DCF KCF RPT SRDCF  SAMF Staple  Staple CA  DSST LCT+ CSPRF

Figure 7. Qualitative evaluation of the proposed algorithm with 10 state-of-the-art methods on 14
challenging video sequences (from left to right and from top to bottom are Box, Human3, Girl2,
Skiing, Freeman1, Sylvester, Panda, Bolt2, Bird2, Soccer, Shaking, CarScale, Walking?2, and Football,
respectively).

Background clutter. The existence of similar-appearing objects to the target in the background
makes it challenging to distinguish the target from the background and accurately locate the target.
In the Soccer sequence, among all 11 compared trackers, the KCF, LCT+, SRDCF, MEEM, and DSST
lose the target at frame 120, and RPT, Staple, and SAMF obtain inaccurate results in terms of location
and scale. Only our CSPREF, Staple_CA, and CSR-DCF get the reliable tracking results both in scale and
location during the entire tracking period. In the Shaking sequence, Staple_CA, SRDCEF, and KCF fail to
locate the target and drift to the distracters in the 77th frame. At frame 238, CSR-DCF and SAMF lose
the target as well. Only our CSPRF, MEEM, LCT+, and DSST successfully track the target. Although
RPT can locate the target, it obtains an incorrect scale estimate. In the Football sequence, most of the
compared trackers drift to the distracters at frame 302, only our method, LCT+, MEEM, and SRDCF
stick on the target and favorably track the target over all frames.

Scale variation. Due to the KCF and MEEM without handling the scale variation, they do not
perform well when the target undergoes large scale variation. The targets in the CarScale and Walking?2
sequences undergo the scale variation from beginning to end. In the CarScale sequence, MEEM and
KCF obtain inaccurate tracking results in scale in the 174th frame. At frame 205, only our tracker
obtains accurate results in scale and location, while many other trackers focus on the head of the car.
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In the Walking? sequence, MEEM, RPT, KCF, and SAMF do not perform well in scale at frame 132.
MEEM and LCT+ eventually drift away to the distracter at frame 332. Our tracker with others trackers,
including DSST, SRDCF, Staple, Staple_CA, and CSR-DCE, all perform well in scale and location in the
whole tracking period.

4.4. Performance Comparison of LGCmF with CSPRF

Since LGCmF exploits the block tracking and response fusion strategies as well, we compare
our CSPREF tracker with the LGCmF tracker on OTB2015. Table 3 shows comprehensive performance
comparison between these two trackers. Our CSPRF outperforms LGCmF in all evaluation criteria.
The reason that our method obtains better results lies in the fact that we adopt a complete block tracking
strategy, a novel adaptive hedge algorithm to update the weights and efficient loss metrics in both
component trackers.

Table 3. Performance comparison of LGCmF with CSPRF on OTB2015 with the representative mean
distance precision (DP) rate at the threshold of 20 pixels, mean overlap success (OS) rate at the threshold
of 0.5, median distance precision (DP) rate, median overlap success (OS) rate, median center location
error (CLE), and the area under the curve (AUC). Best: bold.

Mean DP Mean OS Median DP Median OS Median

(%) (%) (%) (%) CLE AUC
LGCmF 80.6 722 824 741 8.35 59.8
CSPRE 83.9 75.4 85.6 76.6 7.10 61.7

Figure 8 visualizes the tracking results of the LGCmF tracker with our CSPRF tracker on six
challenging sequences. CSPRF tracker can perform well when the target objects undergo in-plane
rotation (ClifBar), motion blur (BlurCar3), out-of-plane rotation (DragonBaby), background clutter
(Dudek), occlusion (Jogging?), and illumination variation (Singer2), whereas the LGCmF fails in all of
these sequences.

CSPRF LGCmF

Figure 8. Visualization of the tracking results of LGCmF and CSPRF trackers on six challenging
sequences. (from left to right and from top to bottom are BlurCar3, ClifBar, DragonBaby, Dudek,
Jogging?, Singer?2).

4.5. Performance Evaluation of Component Trackers CFSP, CHSP

To better understand the improvements of the two component trackers of our CSPRE, in this
section we carry out experimental evaluations by comparing with some relevant trackers on OTB2013
and OTB2015.
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We compare the tracking performance of CFSP with four relevant trackers, including KCF [6],
Staples [14], RPT [34], and SAMF [47]. Among them, Staple is the part of Staple based on the
correlation filter. KCF is the baseline tracker which is used to track each patch in our CFSP. SAMF
also employs color names as complementary feature which is the same as our CFSP. In addition, RPT
attempts to find the motion trajectory and trackability of random parts.

Figure 9 shows the precision and success plots on the OTB2013 and OTB2015. Overall, our
CFSP tracker performs favorably and achieves the best results against the other compared trackers.
This demonstrates the effectiveness of the adaptive hedge algorithm and loss terms in CFSP. Specifically,
our CFSP significantly improves the Staple.¢ with gains of 6.0% in the DP score and 2.8% in the AUC
score on OTB2013, and with gains of 7.5% in the DP score and 5.0% in the AUC score on OTB2015.
Additionally, RPT is also a part of the tracking algorithm based on correlation filters, and our CFSP
outperforms the RPT with gains of 1.9% and 5.7% in the DP scores and 2.4% and 5.5% in the AUC
scores on OTB2013 and OTB2015, respectively.
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Figure 9. Comparison of the CFSP with four relative trackers on OTB2013 and OTB3015. The legend of
the precision plot contains the average DP score at 20 pixels while the legend of success plot contains
the area under the curve (AUC) score for each tracker.

We evaluate our component tracker CHSP on OTB2013 and OTB2015 with four relevant trackers
including DAT [27], Staple.y, [14], PPT [48], and SLC [15]. The Staple., only contains the part of Staple
based on the color histogram. Both PPT and SLC employ part-based color histogram appearance
models, while DAT exploits the holistic color histogram appearance model.
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Figure 10 visualizes the precision and success plots of our CHSP with four compared trackers.
From the figures, we can discover that our CHSP achieves competitive performance against the relevant
trackers. Our CHSP is mere inferior to the PPT with losses of 0.5% and 1.8% in the AUC on OTB2013
and OTB2015, respectively. The tracking performance of Staple, is not satisfactory in the overall
evaluation, which ranks at the bottom. Although DAT using the holistic color histogram models
owns the similar tracking idea with Staple,, DAT performs better because of adding analysis of the
distracters in the tracking process. Specifically, our CHSP outperforms the DAT and Staple., with gains
of 18.4% and 18.8% in the DP scores and 10.4% and 14.4% in the AUC scores on OTB2013 respectively,
and with gains of 12.8% and 14.9% in the DP scores and 6.0% and 9.1% in the AUC scores on OTB2015,
respectively. SLC employ the same block framework as our CHSP, and its tracking performance has
been significantly improved compared to Staple, and DAT. Our CHSP tracker outperforms the SLC
with gains of 5.2% in the DP score and 3.4% in the AUC score on OTB2013, and outperforms the SLC
with gains of 3.9% in the DP score and 1.3% in the AUC score on OTB2015. This demonstrates the
advantages of the adaptive hedge algorithm and loss terms in CHSP.
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Figure 10. Performance comparison of the CHSP with several relative trackers on OTB2013 and
OTB3015. The legend of precision plot contains the average DP score at 20 pixels while the legend of
success plot contains the area under the curve (AUC) score for each tracker.

4.6. Performance Evaluation of the CSPRF Tracker on VOT2016

We compare our CSPRF tracker with eight state-of-the-art trackers, including CSR-DCF [28],
DAT [27], DSST [21], HCF [40], KCF [6], SRDCEF [7], Staple [14], and STRCF [9]. Table 4 lists the
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tracking results on VOT2016. Our CSPRF performs the second best EAO score of 0.307, only below the
CSR-DCF with the best score of 0.332. According to the analysis of [12], the EAO score of our CSPRF
is 0.307 which outperforms the definition of the strict state-of-the-art bound 0.251 by 5.6%, and thus
it can be regarded as state-of-the-art. And CSPRF achieves some improvement against Staple by a
gain of 1.2% in the EAO metric. As for accuracy and robustness, our CSPRF ranks within top three
on both two metrics, which demonstrate that our tracker achieves competitive performances against
compared trackers.

Table 4. Performance comparison of different trackers on VOT2016 with expected average overlap
(EAO), accuracy and robustness. Best: bold, second best: underline.

CSPRF CSR-DCF DAT DSST HCF KCF SRDCF  Staple STRCF

EAO 0.307 0.332 0.217 0.181 0.220 0.194 0.246 0.295 0.252
Accuracy 0.53 0.52 0.47 0.53 0.45 0.49 0.53 0.54 0.51
Robustness 0.97 0.90 1.72 2.52 1.42 2.03 1.5 1.35 1.35

5. Conclusions

Based on the success of the Staple tracker, we extend it and propose a novel structural patch
complementary tracking algorithm in this paper. We firstly present an adaptive hedge algorithm to
overcome the disadvantage of the fixed percentage factor used in the standard hedge algorithm. In the
component trackers CHSP and CFSP, we design two reliable loss measurement methods of structural
patches, respectively, by which the adaptive hedge algorithm can reliably weigh patches to combine
their response maps. The final CSPRF tracker is formulated by selectively merging the response maps
of component trackers CHSP and CFSP. In addition, when both of component trackers CHSP and CFSP
are unreliable, an online SVM detector is activated to rediscover the target in an extended searching
area. Extensive experimental results on OTB2013, OTB2015, and VOT2016 show that the proposed
algorithm CSPRF performs favorably against the state-of-the-art trackers in terms of accuracy and
robustness. Meanwhile, the CSPRF and the component tracker CHSP have some tracking performance
improvements in comparison with the LGCmF and its local layer tracker SLC, respectively. Moreover,
the superiorities of two component trackers CHSP and CFSP are justified by comparing with some
relevant trackers, in which the CHSP and CFSP have greatly improved in comparison with Staple.
and Stapley, respectively.
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