
sensors

Article

An Unconventional Multiple Low-Cost IMU and
GPS-Integrated Kinematic Positioning and
Navigation Method Based on Singer Model

Minghong Zhu, Fei Yu * and Shu Xiao *

College of Automation, Harbin Engineering University, Harbin 150001, China; zhuminghong@hrbeu.edu.cn
* Correspondence: yufei@hrbeu.edu.cn (F.Y.); xiaoshu@hrbeu.edu.cn (S.X.)

Received: 7 August 2019; Accepted: 30 September 2019; Published: 2 October 2019
����������
�������

Abstract: To release the strong dependence of the conventional inertial navigation mechanization
on the a priori low-cost inertial measurement unit (IMU) error model, this research applies an
unconventional multi-sensor integration strategy to integrate multiple low-cost IMUs and a global
positioning system (GPS) for mass-market automotive applications. The unconventional integration
strategy utilizes a basic three-dimensional (3D) kinematic trajectory model as the system model to
directly estimate navigational parameters, and it allows the measurements from all of the sensors
independently participating in measurement updates. However, the less complex kinematic model
cannot realize smooth transitions between different motion statuses for the road vehicle with
acceleration maneuvers. In this manuscript, we establish a more practical 3D kinematic trajectory
model based on a “current” statistical Singer acceleration model to realize smooth transitions for the
maneuvering vehicle. In addition, taking advantage of the unconventional strategy, we individually
model the systematic errors of each IMU and the measurements of all sensors, in contrast to most
existing approaches that adopt the common-mode errors for different sensors of the same design.
A real dataset involving a GPS and multiple IMUs is processed to validate the success of the proposed
algorithm model under the unconventional integration strategy.
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1. Introduction

With the popularity of intelligent vehicles, positioning and navigation technology is particularly
important, because the foremost requirement for all of these safety and assistance systems is an accurate
knowledge of the vehicular states (including vehicle position, vehicle velocity, vehicle acceleration,
vehicle attitude, etc.) at all times [1]. High-precision sensors can certainly obtain very accurate vehicular
states, but their high prices prevent them from being used in general-priced vehicles. Developing
affordable sensors is the main research trend for driving applications [2]. On the other hand, the sensor
should offer continuous and higher-update-rate observations under all circumstances for driving
applications. Thus, considering cost-efficiency and high sampling frequency, a low-cost inertial
measurement unit (IMU) is a good option and could autonomously provide navigation information.
Furthermore, IMUs mostly contain a gyroscope and accelerometer for all three axes which can offer
sufficient navigation information about a sudden acceleration or angular and heading change [3].
However, the accuracy of sensors decreases with the price reduction, and the performance is seriously
affected by accumulated bias, drift, and sensor noises [4]. While an automotive-grade gyroscope
typically gives drift performance of 1◦/h, a microelectromechanical system (MEMS) gyroscope has
a typical performance of 70◦/h [1]. Plainly, low precision is one of the most critical obstacles in the
development of a low-cost IMU, which limits its applications such as navigation and guidance [5].
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An approach to design sensors for systems requiring better performance than the one with a single
low-accuracy IMU may offer is to fuse the measurements of multiple low-accuracy IMUs to achieve
the advantage of complementarity [6]. This “wisdom of the crowd” design also has, in addition to
the improved measurement performance, the benefit of making it possible for sensor fault detection
and diagnosis, thereby increasing the integrity and reliability of the system [6]. Many related studies
confirmed the feasibility of this design, including Leszczynski (2014), Martin (2013), Skog (2014),
Wahlström (2018), etc. [6–9]. However, these studies for improving the accuracy of MEMS IMUs only
focused on the device itself.

The global positioning system (GPS) is by far the most widely used high-precision localization
method. However, it is further constrained by the non-availability of location during signal outage in
dense urban areas [10,11]. Additionally, for determining sudden acceleration and braking, the GPS
shows very limited success due to the insufficient update rate. Although both the low-cost IMU and
GPS have their merits and demerits, they are complementary [4]. All things considered, one preferable
approach is to integrate multiple low-cost inertial measurement units (IMUs) and one GPS receiver for
kinematic positioning and navigation in mass-market automotive applications.

The optimal filter design is the key to combining multiple sensors for accuracy improvement,
and the adoption of the Kalman filter (KF) is widespread. Conventionally, the Kalman filter based
on integration mechanization usually adopts the inertial navigation mechanization to estimate the
error states and sensor systematic errors through error measurements on the basis of the aiding
sensors [12–14]. Its strong dependence on the a priori inertial error model may limit the use of a
low-cost IMU, because the time-variant noise model could be highly sensitive to the dynamic excitations
and the temperature [15]. At the same time, the direct Kalman filter, which can accurately reflect
the evolution of the real state, was also occasionally discussed and applied [16–18]. However, these
system models used in Kalman filters are all based on the a priori inertial error model. In other
words, in all cases, there is no essential difference, as the IMU measurements are only applied in
free inertial navigation calculation and, thus, no measurement updates are performed in Kalman
filtering between adjacent measurement epochs [19]. The severe drift of low-cost IMU systematic
errors occurring during GPS outages can easily result in an intolerable free inertial navigation solution
between two aiding measurement updates [20,21]. To address the realization of a better utilization
of measurements from IMUs in Kalman filtering, especially with low-cost IMUs, several studies
were carried out. An unconventional Kalman filter was already developed by Wang and Qian [19],
specifically (1) utilizing a three-dimensional (3D) kinematic trajectory model as the central system
model, so that the influences of the time-variant errors of low-cost IMUs on the inertial navigation
solution are essentially alleviated; (2) allowing the measurements of all sensors, IMU included, directly
and independently participating in measurement updates of Kalman filtering, so that the heavy
dependence of the inertial navigation mechanization on the IMU measurements in the conventional
integration strategy is released [15,19]. The unconventionality of this integration strategy mainly
embodies in (1) implementation of the direct estimation of the whole-value states (navigational
parameters) via sensor measurements instead of the error states via error measurements; (2) the lack
of the need to make a distinction between the aiding sensors and the core sensors, since the raw
observables (specific forces and angular rates) of IMUs directly participate in measurement updates as
the raw outputs from sensors such as a GPS does, thereby implementing true multi-sensor integration.

This research applies the unconventional integration strategy for multiple low-cost IMUs and a
GPS-integrated system. There are some characteristics and some corresponding defects from previous
3D kinematic trajectory models. Inevitably, a road vehicle is certain to experience severe or light
irregular changes of velocity from time to time, and the changing velocity indicates the presence
of acceleration. However, the jerk vector in the kinematic trajectory model is usually treated as
process noise. In most cases, the a priori knowledge of vehicle maneuvers is very little. Because
the maneuvering process is controlled by human forces, it is difficult to be accurately described
with mathematical formulas and can only be artificially approximated under various assumptions.
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Therefore, a less complex kinematic model cannot realize smooth transitions between different motion
statuses for the road vehicle, which leads to an intolerable positioning and navigation solution. One
should avoid employing the most complex kinematic model as the core system model throughout [18].
An appropriate model will not only be able to properly model the vehicle maneuvers, but also exhibit
mathematical tractability.

We found that the key problem is how to model the unknown target accelerations. Some mature
maneuvering target models were proposed on this issue. So far, the most influential maneuvering target
model is the Singer model proposed by Singer in 1970, which attempts to model large-scale maneuvers
by assuming a time-correlated input process and incorporating the statistics into the subsequent filter
design [22]. As a global statistical model, the Singer model considers all maneuvering possibilities of
targets and can be applied to many types of maneuvering. However, the Singer model is essentially
an a priori model, which has some limitations in effectively describing random maneuvers of the
target. Based on the Singer model, a series of modifications were developed, including the “current”
statistical (CS) model, adaptive current input statistical model (ACISM), jerk model, coordinate turn
model, etc. [23,24]. The common feature of these models is that the maneuver of the target is regarded
as the result of a time-correlated colored noise sequence, rather than a statistically independent white
noise sequence. Among them, the ACISM considers the disturbance of maneuvering acceleration
caused by environmental noises and other factors, the jerk model is more suitable for describing jerky
maneuvering behaviors of highly maneuvering targets (such as aircraft), and the coordinate turn
model is mainly applied to turning motions. There is no comparatively great environmental noise
(such as atmospheric turbulence) or strong maneuvers in the application of this research. Therefore,
the “current” statistical model, which can fulfil the needs of this study, is used to model the system
acceleration. As one enhanced part of this manuscript, a more practical 3D kinematic trajectory model
based on the “current” statistical Singer acceleration model (CSSAM) is established as the main part of
the system equation so that the smooth transitions for the maneuvering vehicle can be realized.

In addition, the significant approach to how the low-cost IMU arrays are fused in this research
involves enabling the direct use of measurements for individual IMUs and separately modeling their
systematic errors in Kalman filtering, in contrast to most existing approaches working under the
supposition of “the common-mode errors of different sensors of the same design” [7], which means
modeling their systematic errors as a group of the shared states in KF from the view of algorithm
design. Usually, one created a high-performance artificial or virtual IMU to be equivalent to this IMU
array [8,25]. In general, those IMU systematic errors are different from run to run and in-run even
with the same IMU sensor, which was recognized and largely admitted by the community of IMU
manufacturers and users. The centralized filter fusion in Bancroft and Lachapelle (2011) could process
the relative position, velocity, and attitude between the IMUs in order not to repeatedly use the GPS
measurements once a GPS aiding epoch became available [25]. However, none of the aforementioned
outcomes allowed applying the measurements from each IMU and GPS receiver independently in KF
measurement updates. As another enhanced part of this manuscript, measurements and systematic
errors of these IMU arrays are individually modeled in Kalman filtering, instead of adopting a set of
common shared states for all IMUs. Therefore, the effect of the noises of low-cost IMU raw outputs
could be markedly reduced because both the raw data and systematic errors participate in Kalman
filtering updates. Moreover, we have the choice of multiple low-cost IMUs and need not stick to the
ones of the same design or from the same vendor.

As a matter of fact, given the integration strategy and the system model, various nonlinear filtering
candidates (e.g., extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), etc.)
are available. Nevertheless, this manuscript uses the EKF instead of other nonlinear filtering algorithms
because (1) the research does not focus on the filtering techniques, (2) the system model does not
present strong nonlinearity, and (3) the EKF algorithm is simple and easy to use in practical engineering.

A more practical system motion model is described in Section 2. The formulation of the
unconventional multi-sensor Kalman filter is presented in Section 3. The implementation of the
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Kalman filter is discussed in Section 4. The data processing results from road tests demonstrate the
feasibility by adopting the proposed algorithm model under the unconventional integration strategy.
The corresponding numerical results along with analysis are provided in Section 5. Conclusions and
remarks are given in Section 6.

2. The System Motion Model

The general system motion model contains three parts: (1) the 3D kinematic trajectory [26], (2) the
attitudes, and (3) the angular rate.

2.1. Three-Dimensional Kinematic Trajectory Model

The instantaneous motion of a rigid body can be described using kinematics without considering
the forces that cause different types of motion. For a mechanical system, suitable coordinate systems are
necessary to give a mathematical expression of the position, velocity, and acceleration. Two reference
frames move relative to each other, as shown in Figure 1. One is the space-fixed system oxyz(S),
and the other is the moving system obxbybzb(Sb).
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In Figure 1, the time-dependent position vector
→
r of a point P is uniquely expressed using three

unit vectors
→
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→
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k along three axes x, y, z in frame S.

→
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→
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→
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→
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In components, the motion of the moving point at a time instant t with respect to a start time t0

can be given as shown below.

x(t) = x(t0) +
.
x(t0)(t− t0) +

1
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..
x(t0)(t− t0)

2 +
1
6

...x (t0)(t− t0)
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..
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3 + · · · , (3)
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...z (t0)(t− t0)
3 + · · · , (4)

where
.
x,

..
x, ...x ,

.
y,

..
y, ...y ,

.
z,

..
z, ...z , . . . are the first, second, and third derivatives of x, y, z with respect to t. It is

noteworthy that the time interval (t− t0) must be short enough in order to require as few terms as
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possible. Let
→
r 0 be the position vector of the origin Ob, and let

→
ρ and

→
ρb be the relative position vector

of the point P from Ob and the same vector in Sb; then, we can get the following relationship:

→
r (t) =

→
r 0(t) +

→
ρ(t) =

→
r 0(t) + DT(t)

→
ρb(t), (5)

where D(t) is the instantaneous rotation matrix from S to Sb. According to Equation (5), we can
successively derive the velocity vector, acceleration vector, and jerk vector. Moreover, D(t) is coupled
with the angular motion.

With respect to a rigid body in motion, the basic trajectory parameters are considered in the local
navigation frame (Sn), i.e., the position rn

nb of the IMU center, the velocity vn
nb, the acceleration an

nb,
and the jerk jn

nb. In essence, vn
nb is the derivative of rn

nb, and it is also transformed from its opposite
number vb

nb in the body frame (Sb). Likewise, an
nb and jn

nb are the derivatives of vn
nb and an

nb, respectively.
According to the vector dynamics, the trajectory parameters are directly derived as shown below.

.
rn

nb = vn
nb = Cn

bvb
nb, (6)

.
vn

nb = an
nb = Cn

b[ω
b
nb×]v

b
nb + Cn

b(
.
vb

nbx
.
vb

nby
.
vb

nbz )
T
= Cn

bab
nb, (7)

.
an

nb = jn
nb = Cn

b[ω
b
nb×]a

b
nb + Cn

b(
.
ab

nbx
.
ab

nby
.
ab

nbz )
T
= Cn

bjb
nb, (8)

where rn
nb, vn

nb, an
nb, jn

nb,ωn
nb are the position, velocity, acceleration, jerk, and angular rate vectors in

Sn, respectively. vb
nb, ab

nb, jb
nb are the velocity, acceleration, and jerk vectors in Sb. Cn

b is the direction
cosine matrix (DCM) from Sb to Sn. The derivatives of the body velocity components and the body
acceleration components are given below.

.
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.
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.
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ωb
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.
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.
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 =


jb
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0 −ωb
nbz ωb

nby
ωb

nbz 0 −ωb
nbx

−ωb
nby ωb

nbx 0




ab
nbx

ab
nby

ab
nbz

,
where jb

nbx, jb
nby, jb

nbz are the body jerk components, ωb
nbx,ωb

nby,ωb
nbz are the body angular rate

components, vb
nbx, vb

nby, vb
nbz are the body velocity components, and ab

nbx, ab
nby, ab

nbz are the body
acceleration components.

2.2. “Current” Statistical Singer Acceleration Model

The Singer model assumes that the maneuvering acceleration a(t) obeys a stationary first-order
time-correlated process with zero-mean. The correlation function is expressed in the form of exponential
decay as

Ra(τ) = E[a(t)a(t + τ)] = σ2
ae−α|τ|,α ≥ 0, (9)

where σ2
a is the variance of the target acceleration, and α is the reciprocal of the maneuver (acceleration)

time constant, which is named “maneuvering frequency” and taken generally as an empirical value.
Assuming that the probability density function of the acceleration approximately obeys uniform

distribution, σ2
a =

a2
max
3 (1 + 4Pmax − P0) with the maximum maneuvering acceleration amax and its

probability Pmax, and the non-maneuvering probability P0.
Utilizing the correlation function Ra(τ), the acceleration a(t) may be expressed in terms of white

noise by the Wiener–Kolmogorov whitening procedure [16], as shown below.

.
a(t) = −αa(t) + wa(t), (10)



Sensors 2019, 19, 4274 6 of 23

where wa(t) is the white Gaussian noise with the mean of 0 and the variance of 2ασ2
a.

The “current” statistical (CS) model adopts a non-zero mean and modified Rayleigh distribution
to characterize the maneuvering acceleration. Specifically, the modified Rayleigh distribution is
used to describe the “current” probability density of maneuvering acceleration, and the mean value
is the “current” acceleration prediction. The random acceleration still conforms to the first-order
time-correlated process. According to the Singer model and the CS model, the body acceleration can
be given as

ab
nb(t) = a(t) + a(t)

.
a(t) = −αa(t) + wa(t)

, (11)

where a(t) is the “current” mean of maneuvering acceleration, and it is constant during each
sampling period.

The differential equation of body acceleration is acquired by consolidating Equation (11),
as shown below.

.
ab

nb(t) = −αab
nb(t) +αa(t) + wa(t). (12)

Then, the full-state differential equation in a continuous-time system is as follows:
∫

ab
nb(t)dt

ab
nb(t).

ab
nb(t)

 =


0 1 0
0 0 1
0 0 −α




s
ab

nb(t)dtdt∫
ab

nb(t)dt

ab
nb(t)

+


0
0
α

a(t) +


0
0
1

wa(t). (13)

2.3. Attitude Angle Model

Typically, Euler angles (i.e., pitch, roll, and heading) of Sb with respect to Sn are selected to
demonstrate the rotating properties of a 3D object. The differential equations of Euler angles are given
in matrix form as follows:

.
P
.
γ
.
ψ

 =


cosγ 0 sinγ
sinγ tan P 1 − cosγ tan P
sinγ sec P 0 − cosγ sec P



ωb

nbx
ωb

nby
ωb

nbz

 = C3×3ω
b
nb, (14)

wherein P,γ,ψ are the pitch, roll, and heading, respectively, ωb
nb is the angular rate in Sb, and

ωb
nbx,ωb

nby,ωb
nbz are the components of ωb

nb in three axes.

2.4. Angular Rate Model

For a normally running vehicle with a smooth steering within a small time interval, three
components of ωb

nb are reasonably treated as independent. In a general way, ωb
nbx and ωb

nby are

both modeled as zero-mean processes by the first-order Markov model, and ωb
nbz is modeled as a

non-zero-mean random process with random disturbance. More concretely, the zero-mean Singer
motion model is adopted to describe the dynamic variation ofωb

nbx andωb
nby in the system model, and

the modified Singer model is used to express the dynamics of ωb
nbz [22,27,28].

3. The Formulation of the Unconventional Kalman Filter

In a general way, the state and measurement vector ought to be arranged for the system Kalman
filter. In this research, the whole value state which describes the kinetic characteristic of the vehicle is
one part of the state vector. The systematic errors of each IMU, e.g., the biases, scale factor errors, and
so forth, are also modeled individually in the Kalman filter, instead of assuming “the common-mode
errors of different sensors of the same design”. Therefore, the systematic error is the other part. As for
the measurement vector, the raw observables from the GPS and multiple IMUs are considered. Figure 2
illustrates the unconventional integration mechanism in this research. To demonstrate the benefits of
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the individual modeling for systematic errors and measurements, choosing different low-cost IMUs
from different vendors is the best choice. Considering the cost of the experiment and the amount of
calculation, it is advisable to integrate three low-cost IMUs and one GPS receiver in the kinematic
positioning and navigation system.
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3.1. The State Vector Including the Systematic Errors in Kalman Filter

In this manuscript, the state vector of the constructed multi-sensor integration Kalman filter
contains 51 components as follows:

X51×1 =
[

rT (vb
nb)

T
(ab

nb)
T
θT (ωb

nb)
T

bT
g1 bT

g2 bT
g3 bT

a1 bT
a2 bT

a3 ST
g1 ST

g2 ST
g3 ST

a1 ST
a2 ST

a3

]T
,

where the position vector is expressed by triaxial coordinates in the earth-fixed coordinate system

r = ( X Y Z )
T

, the body velocity vector vb
nb = ( vb

nbx vb
nby vb

nbz )
T

, the body acceleration

vector ab
nb = ( ab

nbx ab
nby ab

nbz )
T

, the attitude θ = ( P γ ψ )
T

, the body angular rate

vector ωb
nb = ( ωb

nbx ωb
nby ωb

nbz )
T

, the gyroscope bias vector bg1 = ( bg1x bg1y bg1z )
T

,

bg2 = ( bg2x bg2y bg2z )
T

, bg3 = ( bg3x bg3y bg3z )
T

, the accelerometer bias vector ba1 =

( ba1x ba1y ba1z )
T

, ba2 = ( ba2x ba2y ba2z )
T

, ba3 = ( ba3x ba3y ba3z )
T

, the gyroscope

scale factor error sg1 = ( sg1x sg1y sg1z )
T

, sg2 = ( sg2x sg2y sg2z )
T

, sg3 = ( sg3x sg3y sg3z )
T

,

and the accelerometer scale factor error sa1 = ( sa1x sa1y sa1z )
T

, sa2 = ( sa2x sa2y sa2z )
T

,

sa3 = ( sa3x sa3y sa3z )
T

. Herein, subscripts 1, 2, and 3 are the sequence numbers of the IMUs.

3.2. The Discretization of the System Model

On the basis of the differential model in Section 2, the discrete system model for KF can be
summarized after omitting the higher-order terms in Taylor series expansion. It is mentionable that
the position vector r of a vehicle should be in the earth-fixed coordinate frame (Se); thus, the position
vector r at epoch k + 1 in Se is calculated concretely as follows:

• Firstly, the local coordinate increment ∆rn from epoch k to k + 1 in Sn is as follows:

∆rn = ∆tCn
b(k)v

b
nb(k) +

∆t2

2
Cn

b(k)a
b
nb(k) +

∆t3

6
Cn

b(k)j
b
nb(k). (15)

• Next, ∆rn is transformed from Sn to Se as follows:

∆re = Ce
n(k)∆rn. (16)
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• Finally, we obtain the position vector r at epoch k + 1 as follows:

r(k + 1) = r(k) + ∆re = r(k) + Ce
n(k)∆rn. (17)

Furthermore, there is a particular discussion for the discretization of the body acceleration model.
The discrete state of Equation (13) can be derived as

Y(k + 1) = Ã(k)Y(k) + B̃(k)a(k) + wa(k), (18)

with Ã(k) =


1 ∆t (α∆t− 1 + e−α∆t)/α2

0 1 (1− e−α∆t)/α
0 0 e−α∆t

, B̃(k) =




∆t2/2
∆t
1

−

(α∆t− 1 + e−α∆t)/α2

(1− e−α∆t)/α
e−α∆t


.

The discrete acceleration is obtained from Equation (18) as follows:

ab
nb(k+1) = e−α∆tab

nb(k) + (1− e−α∆t)a(k) + wa(k), (19)

where a is the “current” mean of maneuvering acceleration, which is acquired by calculating the mean
value of both sides of Equation (19), as shown below.

a(k + 1) = E
{
ab

nb(k+1)

∣∣∣∣zk
}
= e−α∆tE

{
ab

nb(k)

∣∣∣∣zk
}
+ (1− e−α∆t)a(k) = e−α∆tâb

nb(k) + (1− e−α∆t)a(k), (20)

where zk is the sequence of all measurements up to the current time, and âb
nb(k) is the acceleration

estimate of the previous moment. Equation (20) shows that a(k + 1) is not only related to the current
information âb

nb(k), but also to the past information a(k).
Since the CS model assumes that the maneuvering acceleration at an arbitrary time obeys the

modified Rayleigh distribution, the variance of body acceleration can be obtained as follows:

σ2
a =

 4−π
π [amax − â(k− 1)]2 0 < â(k− 1) < amax

4−π
π [amax + â(k− 1)]2 a−max < â(k− 1) < 0

. (21)

As can be seen from Equations (13) and (18), the position vector r and the body velocity vector vb
nb

are affected by the CS Singer acceleration model. Consequently, combining the 3D kinematic trajectory
model in Section 2.1 and the CS Singer acceleration model in Section 2.2, the discrete system equations
of kinematic trajectory can be derived as follows:

r(k + 1) = r(k) + Ce
n(k)

{
∆tCn

b(k)v
b
nb(k)

+
[
(α∆t− 1 + e−α∆t)/α2

]
Cn

b(k)a
b
nb(k)

+
[

∆t2

2 − (α∆t− 1 + e−α∆t)/α2
]
Cn

b(k)a(k) + Cn
b(k)wa(k) + ∆t3

6 Cn
b(k)j

b
nb(k)

} , (22)

vb
nb(k+1)

=

[
I3×3 − ∆t

[
ωb

nb(k)
×

]
+ ∆t2

2

[
ωb

nb(k)
×

]2
]
vb

nb(k)
+

[
(1− e−α∆t)/α

]
ab

nb(k)

+
[
∆t− (1− e−α∆t)/α

]
a(k) + wa(k) + ∆t2

2

[
vb

nb(k)
×

]
.
ω

b
nb(k) +

∆t2

2 jb
nb(k)

, (23)

ab
nb(k+1) = e−α∆tab

nb(k) + (1− e−α∆t)a(k) + wa(k). (24)

The discrete system equations of the attitude and body angular rate are directly given as follows:

θ(k + 1) = θ(k) + ∆tC3×3ω
b
nb(k) +

∆t2

2
C3×3

.
ω

b
nb, (25)

ωb
nbx(k+1) = e−∆t/Txωb

nbx(k) + wωx, (26)
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ωb
nby(k+1) = e−∆t/Tyωb

nby(k) + wωy, (27)

ωb
nbz(k+1) = e−∆t/Tzωb

nbz(k) + (1− e−∆t/Tz)ωb
nbz(k−1) + wωz. (28)

The discrete system equations of the systematic errors of three different low-cost IMUs are
individually modeled as follows:

bgi(k + 1) = bgi(k) + wbgi , (29)

bai(k + 1) = bai(k) + wbai , (30)

sgi(k + 1) = sgi(k) + wsgi , (31)

sai(k + 1) = sai(k) + wsai , (32)

where i represents the sequence number of the IMU with i = 1, 2, 3, ∆t = tk+1 − tk is the time interval,
Tx, Ty, Tz are the time correlation coefficients of the first-order Markov model, wωx, wωy, wωz are the
independent white noises for triaxial angular rates, And wbg, wsg, wba, and wsa are the white-noise
vectors for the biases and scale factor errors of gyroscopes and accelerometers, while subscripts 1, 2,
and 3 are sequence numbers of three different IMUs. jb

nb is treated as process noise for the position

vector, velocity vector, and acceleration vector,
.
ω

b
nb is the angular acceleration as process noise for the

velocity vector, acceleration vector, and attitude vector, and Cn
b is the DCM. C3×3 is the coefficient matrix

as in Equation (14). Ce
n, the position cosine matrix, can be obtained through the position information

as follows:

Ce
n =


− sinλ − sinϕ cosλ cosϕ cosλ
cosλ − sinϕ sinλ cosϕ sinλ

0 cosϕ sinϕ

,
whereinϕ and λ are the latitude and longitude, respectively, calculated by the coordinate components
of the position vector r in Se.

3.3. The Measurement Model of IMU

Generally, the IMU raw outputs include specific forces from three orthogonal accelerometers
and angular rates from three orthogonal gyroscopes. We should derive three groups of measurement
equations because there are three IMUs in the integration system. Figure 3 shows the structure diagram
of IMUs, where Figure 3a is the general view of the vehicle, and Figure 3b represents the partial
enlarged details.
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Figure 3. The structure diagram of multiple inertial measurement units (IMUs). (a) Vehicle’s general
view; (b) partial enlarged details for internal structure.

The measurement equations for low-cost IMUs could be simplified depending on specific
needs [15,19]. Considering that IMUs cannot be located at the same point on the body, the measurements
from different IMUs must be transformed to the same reference frame so as to perform the fusion
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algorithm [29]. Here, the central IMU is selected as the reference. Three groups of measurement
equations for angular rate and specific force are respectively derived as shown below based on the
particular structure.

ωb
ib−imu1 = (I + Sg1)ω

b
nb + bg1 + ∆g1, (33)

ωb
ib−imu2 = (I + Sg2)ω

b
nb + bg2 + ∆g2, (34)

ωb
ib−imu3 = (I + Sg3)ω

b
nb + bg3 + ∆g3, (35)

fb
ib−imu1 = (I + Sa1)(ab

nb −Cb
ngn) + ba1 + ∆a1, (36)

fb
ib−imu2 = (I + Sa2)(ab

nb −Cb
ngn) +ωb

ib × (ω
b
ib × r2) + ba2 + ∆a2, (37)

fb
ib−imu3 = (I + Sa3)(ab

nb −Cb
ngn) +ωb

ib × (ω
b
ib × r3) + ba3 + ∆a3, (38)

where gn is the local gravity vector in Sn, ωb
nb, ab

nb are the rotation rate and acceleration vectors of Sb
with respect to Sn, Sg, Sa are 3× 3 scale factor error matrices for gyros and accelerometers, bg, ba have
the same meanings as mentioned in Section 3.1, and ∆g,∆a are Gaussian white noises for the angular
rate vector and specific force vector. The lever arm parameters of the remaining IMUs relative to the
central one are r2 = [−0.5, 0, 0]T and r3 = [0.5, 0, 0]T.

3.4. The Measurement Model of the GPS

In this study, not only do the raw observables of IMUs participate in measurement updates, but
so do those of the GPS. The GPS, as another sensor distinct from the IMU but with equal status in
the system, offers two types of observables (carrier phase and pseudo-range). However, only the
pseudo-range is adopted to complete the specific navigation task. The pseudo-range observation
equation is generally given as

PRj
A = ρj

A + C(δtA − δtj) + dj
A−trop + dj

A−ion + εPRj
A

, (39)

where j = 1, 2, · · · , n denotes the j − th satellite, and ρj
A =

√
(Xj
−X)

2
+ (Yj

− Y)
2
+ (Zj

−Z)
2

is the
distance between satellite j and receiver A, where (Xj, Yj, Zj) is the geocentric coordinate of satellite j,
calculated by the relevant parameters provided in the satellite navigation message, c is the light speed,
δtA,δtj are the clock errors of receiver and satellite, respectively, dj

A−trop, dj
A−ion are the tropospheric

and ionospheric delays, and ε
PRj

A
is the random noise.

4. The Implementation of the Kalman Filter

On the basis of the system model proposed above, the KF is structured straightforwardly. The state
Equations (22)–(32) and measurement Equations (33)–(39) are separately generalized by the discrete
nonlinear system and measurement models as shown below.

Xk+1 = f(Xk) + Bkuk + ΓkWk, (40)

Zk = h(Xk) + ∆k, (41)

where Xk is the state vector as determined in Section 3.1, Zk is the measurement vector as described
in Sections 3.3 and 3.4, f() and h() are nonlinear mathematical functions, and they are constructed
from Equations (22)–(32) and Equations (33)–(39), respectively, Bk and Γk are coefficient matrices, uk is
the system input, uk = a(k), ∆k is the measurement noise vector, and Wk is the process noise vector
including the jerk vector, the derivative of the angular rate vector, and so forth. Specifically, Bk, Γk,
and Wk are given as
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Bk =


[

∆t2

2 − (α∆t− 1 + e−α∆t)/α2
]
·Ce

n ·C
n
b[

∆t− (1− e−α∆t)/α
]
· I3×3

(1− e−α∆t) · I3×3

042×3


51×3

,

Γk(51×48) =



Ce
n ·C

n
b

∆t3

6 Ce
n ·C

n
b 03×3

I3×3
∆t2

2 I3×3
∆t2
·[vb

nb×]

2
I3×3 03×3 03×3

03×3 03×3
∆t2

2 C3×3

012×39

039×9 I39×39


,

Wk = [(wa)
T, (jb

nb)
T

, (
.
ω

b
nb)

T
, wωx, wωy, wωz, (wbg1)

T, (wbg2)
T, (wbg3)

T,
(wba1)

T, (wba2)
T, (wba3)

T, (wsg1)
T, (wsg2)

T, (wsg3)
T, (wsa1)

T, (wsa2)
T, (wsa3)

T]T

As is well known, the Kalman filter performs the prediction of the state vector through two
information update processes: time update and measurement update. Specifically, the one-step
prediction and the variance propagation of the state vector proceed from epoch k to k + 1 during the
time update.

X̂k+1/k = f(X̂k) + Bkuk, (42)

Pk+1/k = Φk+1,kPkΦT
k+1,k + ΓkQkΓT

k , (43)

where Pk is the mean square error matrix of the state vector, and Qk is the a priori variance–covariance
matrix of the process noise vector. Φk+1,k is the Jacobian matrix of the nonlinear system model

in Equation (40), with Φ[i,j] =
∂f[i]
∂X[j]

(i, j represent the serial numbers; f[i] represents the i-th system

equation; X[j] represents the j-th component of state vector X), as follows:

Φk+1,k =



I3×3 ∆t ·Ce
n ·C

n
b

∂rk+1/∂ak 03×3 03×3

03×3 ∂vk+1/∂vk ∂vk+1/∂ak 03×3 ∂vk+1/∂ωk

03×3 03×3 e−α∆t
· I3×3 03×3 0

03×3 03×3 03×3 ∂θk+1/∂θk ∆t ·C3×3

03×3 03×3 03×3 03×3 ∂ωk+1/∂ωk

015×36

036×15 I36×36


,

with

∂rk+1/∂ak = (α∆t− 1 + e−α∆t) ·Ce
n ·C

n
b/α

2
, ∂vk+1/∂vk = I3×3 − ∆t

[
ωb

nb(k)×

]
+

∆t2

2

[
ωb

nb(k)×

]2
,

∂vk+1/∂ak = (1− e−α∆t) · I3×3/α, and ∂vk+1/∂ωk = ∆t
[
vb

nb(k)×

]
+

∆t2

2
Mk, where

Mk =


vb

nbyω
b
nby + vb

nbzω
b
nbz −2vb

nbxω
b
nby + vb

nbyω
b
nbx −2vb

nbxω
b
nbz + vb

nbzω
b
nbx

vb
nbxω

b
nby − 2vb

nbyω
b
nbx vb

nbxω
b
nbx + vb

nbzω
b
nbz −2vb

nbyω
b
nbz + vb

nbzω
b
nby

vb
nbxω

b
nbz − 2vb

nbzω
b
nbx vb

nbyω
b
nbz − 2vb

nbzω
b
nby vb

nbxω
b
nbx + vb

nbyω
b
nby

,
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∂θk+1/∂θk =


1 − sinγωb

nbx∆t + cosγωb
nbz∆t 0

(sinγωb
nbx − cosγωb

nbz)(sec P)2∆t 1 + (cosγωb
nbx + sinγωb

nbz)(tan P)∆t 0
(sinγωb

nbx − cosγωb
nbz)(sec P)(tan P)∆t (cosγωb

nbx + sinγωb
nbz)(sec P)∆t 1

,
∂ωk+1/∂ωk =


e−∆t/Tx 0 0

0 e−∆t/Ty 0
0 0 e−∆t/Tz

.
Subsequently, the measurement update is performed as follows when the measurements at epoch

k + 1 are available, thus accomplishing the state estimation:

X̂k+1 = X̂k+1/k + Kk+1(Zk+1 − h(X̂k+1/k)), (44)

Kk+1 = Pk+1/kHT
k+1(Hk+1Pk+1/kHT

k+1 + Rk+1)
−1

, (45)

Pk+1 = (I−Kk+1Hk+1)Pk+1/k, (46)

where Kk is the Kalman filter gain matrix, And Rk is the a priori variance–covariance matrix of
the measurement noise vector. Hk is the Jacobian matrix of the nonlinear measurement model in

Equation (41), with H[i,j] =
∂h[i]
∂X[j]

(i, j represent the serial numbers; h[i] represents the i-th measurement

equation; X[j] represents the j-th component of state vector X), as follows:

Hk =



09×12

∂ωb
ib1(k)
∂ωk
∂ωb

ib2(k)
∂ωk
∂ωb

ib3(k)
∂ωk

I9×9 09×9

∂ωb
ib1(k)

∂sg1(k)
03×3 03×3

03×3
∂ωb

ib2(k)
∂sg2(k)

03×3

03×3 03×3
∂ωb

ib3(k)
∂sg3(k)

09×9

09×6

∂fb
ib1(k)
∂ak
∂fb

ib2(k)
∂ak
∂fb

ib3(k)
∂ak

09×3

03×3
∂fb

ib2(k)
∂ωk
∂fb

ib3(k)
∂ωk

09×9 I9×9 09×9

∂fb
ib1(k)
∂sa1(k)

03×3 03×3

03×3
∂fb

ib2(k)
∂sa2(k)

03×3

03×3 03×3
∂fb

ib3(k)
∂sa3(k)

∂PRk/∂rk 01×48
...



,

with
∂ωb

ib1(k)
∂ωk

= I3×3 + Sg1,
∂ωb

ib2(k)
∂ωk

= I3×3 + Sg2,
∂ωb

ib3(k)
∂ωk

= I3×3 + Sg3,
∂ωb

ib1(k)
∂sg1(k)

=
∂ωb

ib2(k)
∂sg2(k)

=
∂ωb

ib3(k)
∂sg3(k)

= diag(ωb
nbx,ωb

nby,ωb
nbz),

∂fb
ib1(k)
∂ak

= I3×3 + Sa1,
∂fb

ib2(k)
∂ak

= I3×3 + Sa2,
∂fb

ib3(k)
∂ak

= I3×3 + Sa3,

∂fb
ib2(k)
∂ωk

=


ωb

nbzr2(3) +ωb
nbyr2(2) ωb

nbxr2(2) − 2ωb
nbyr2(1) −2ωb

nbzr2(1) +ωb
nbxr2(3)

−2ωb
nbxr2(2) +ωb

nbyr2(1) ωb
nbzr2(3) +ωb

nbxr2(1) ωb
nbyr2(3) − 2ωb

nbzr2(2)

ωb
nbzr2(1) − 2ωb

nbxr2(3) −2ωb
nbyr2(3) +ωb

nbzr2(2) ωb
nbxr2(1) +ωb

nbyr2(2)

,
∂fb

ib3(k)
∂ωk

=


ωb

nbzr3(3) +ωb
nbyr3(2) ωb

nbxr3(2) − 2ωb
nbyr3(1) −2ωb

nbzr3(1) +ωb
nbxr3(3)

−2ωb
nbxr3(2) +ωb

nbyr3(1) ωb
nbzr3(3) +ωb

nbxr3(1) ωb
nbyr3(3) − 2ωb

nbzr3(2)

ωb
nbzr3(1) − 2ωb

nbxr3(3) −2ωb
nbyr3(3) +ωb

nbzr3(2) ωb
nbxr3(1) +ωb

nbyr3(2)

,
∂fb

ib1(k)
∂sa1(k)

=
∂fb

ib2(k)
∂sa2(k)

=
∂fb

ib3(k)
∂sa3(k)

= diag(Nx, Ny, Nz), wherein,
[
Nx, Ny, Nz

]T
= (ab

nb −Cb
ngn),
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∂PRk/∂rk =
[

(X−Xj)k/ρj
A(k) (Y− Yj)k/ρ

j
A(k)

(Z−Zj)k/ρj
A(k)

]
.

5. Road Test and Results

The proposed algorithm model under the unconventional integration strategy was adopted to
process the navigation data from multiple low-cost IMUs and a GPS-integrated system on a land
vehicle. Several road tests were performed by our ground-based vehicle navigation system with a
Harxon Mini Survey Antenna GPS500 and three IMUs (FOS/05M, ADIS16405BMLZ, and Crossbow
IMU440CA), as shown in Figure 4. Table 1 shows the performance parameters of the three IMUs.
The experimental results are given in this section from one of our road tests. The used dataset was
collected in Harbin, China, from which an 8-min data fragment of the data source was selected for
demonstration purposes. Figure 5a reveals the environment where the measurements were made.
As can be seen from Figure 5a, the chosen test environment was an urban highway, with the Songhua
River and buildings nearby. Figure 5b,c depict the trajectory and velocity profile of the test vehicle.
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Table 1. Performance parameters of the inertial measurement units (IMUs). USD—United States dollars.

Specifications of Gyroscope Specifications of Accelerometer Cost (USD)

FOS/05M
In-run bias stability ≤7.2◦/h

Angular random walk ≤5.5◦/
√

hr
In-run bias stability ≤1.0 mg

Velocity random walk ≤1.0 m/s/
√

hr
1500

ADIS16405BMLZ
In-run bias stability ≤25.2◦/h

Angular random walk ≤2.0◦/
√

hr
In-run bias stability ≤0.2 mg

Velocity random walk ≤0.2 m/s/
√

hr
600

Crossbow
IMU440CA

In-run bias stability ≤10.0◦/h
Angular random walk ≤4.5◦/

√
hr

In-run bias stability ≤1.0 mg
Velocity random walk ≤1.0 m/s/

√
hr

1200
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(3D) trajectory; (c) velocity profile.

In order to obtain the ground truth as the reference, we equipped a high-grade Fiber-Optic
Gyroscope (FOG) inertial navigation system (INS) (gyroscope: constant drift less than 0.01◦/h, random
noise less than 0.001◦/h; accelerometer: constant bias less than 100 µg, random noise less than 10 µg)
developed by our research group on the test vehicle, as shown in Figure 4a. Hence, the benchmarks for
attitude, velocity, and position could be provided by fusing the measurements of the high-grade INS
and the GPS.
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5.1. Further Insights into the Unconventional Integration Mechanism

The distinctions between the conventional integration mechanism (left side) and the
unconventional counterpart (right side) are shown in Figure 6: (1) the embedment of the prediction of
the kinematic states, (2) the introduction of IMU measurements, and (3) the navigation parameters
directly used in the state vector.

The acceleration vector and angular rate vector are only regarded as inputs of the mechanization
in the conventional error state-based Kalman filter, while the realistic measurements of the IMU directly
participate in the measurement update process in the unconventional Kalman filter. In principle, the
Kalman filter is equivalent to a sequential least square with a time-variant state vector and the process
noises [30]. That is to say, the system model is composed of a group of virtual measurements for the
state vector and reflects the connections between the state vectors from epoch to epoch. These extra
virtual measurements mean that the measurement redundancies in the unconventional Kalman filter
for the body acceleration vector ab

nb and the body angular rate vector ωb
nb are evidently better than

those in the conventional Kalman filter. Therefore, the accuracy of ab
nb and ωb

nb in the unconventional
KF for multiple low-cost IMUs and a GPS-integrated system will be undoubtedly improved because
they are not only predicted but also measured. The prediction for ab

nb and ωb
nb in the system model

can be used as a rigorous reference to check on the performance of the IMU without increasing the
complexity of the filtering structure. Furthermore, the system equations of the unconventional KF can
act as the dynamic constraints for the navigation parameters, for example, assuming that vb

nbz = 0
and/or vb

nbx = 0.
Generally speaking, the most significant feature of the unconventional integration mechanism lies

in the improvement of the overall measurement redundancy of the system through the system model
based on the 3D kinematic trajectory model.
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As discussed above, it is expected that the accuracy of the navigation solutions shall be improved by
using the rigorous trajectory model as the system model in the unconventional KF. As the components
of the state vector, the acceleration and angular rate vectors in the body frame (Sb) will also profit from
the unconventional KF time updates for the same reason. For better visual effects, Figures 7 and 8
show the comparisons between the raw IMU outputs and filtered signals.

As can be seen from Figure 7, the overall variation of the IMU raw angular rates is slightly
larger than that of the filtered angular rates. However, it is apparent from Figure 8 that the overall
fluctuation of the filtered accelerations is significantly lower than that of the IMU raw specific forces.
The improvement is due to the introduction of the novel system model in the unconventional Kalman
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filter. It is worth mentioning that the raw output of the accelerometer in the vertical direction includes
acceleration due to gravity, while the corresponding filtered acceleration does not. That is why there is
a large difference (about 10 m/s2) between the raw and filtered acceleration values along the vertical
axis in Figure 8; here, we only compare the fluctuating ranges of the two curves.

The comparison results from Figures 7 and 8 confirm the fact that the influences of the IMU
measurement noises on the final navigation solutions are effectively mitigated due to the participation
of the IMU outputs in the KF measurement updates.Sensors 2019, 19, 4274 19 of 26 
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5.2. Verification of the Proposed Algorithm Model under the Unconventional Integration Strategy

Figures 9–12 exhibit the solution accuracies for the kinematic trajectory parameters and attitude
using the proposed algorithm model under the unconventional integration strategy.Sensors 2019, 19, 4274 20 of 26 
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Figure 9 shows the solution accuracy comparisons for 3D position using the basic 3D kinematic
trajectory model or the practical model based on the “current” statistical Singer acceleration model
(CSSAM). The overall 3D position accuracy using the proposed algorithm model is under 5 m, which
is a great improvement compared with the accuracy (10 m) using the basic one. Figure 10 shows that
the estimation errors for the velocity state vector in the three axial directions of the body frame using
the proposed algorithm model are within −0.05 ∼ 0.15 m/s, ±0.2 m/s, and ±0.2 m/s, respectively.
The velocity error in the direction of travel is obviously reduced compared with that using the basic
model. Figure 11 shows that the estimation errors for acceleration state vector in the three axial
directions of the body frame are within ±0.5 m/s2, ±1 m/s2, and ±2 m/s2, respectively. As can be seen,
the accuracy of the acceleration estimation is apparently improved by using the proposed algorithm
model. As shown in Figure 12, the accuracies for attitude (pitch, roll, and heading) are within ±2◦,
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−0.2 ∼ 0.6◦, and −1 ∼ 3◦, respectively. It is to be observed that the pitch angle has an apparent
fluctuation from 3–4.5 min. The trajectory curve in Figure 5b illustrates that the vehicle experienced
ups and downs in the test duration, which could affect the estimation of attitude angles (especially for
pitch angle). It also indicates that the attitude estimation model still needs improvement so that it can
be applied to more complex motion forms.

Apparently, the navigation parameters during the 8-min vehicle motion were estimated within
acceptable ranges by adopting the proposed algorithm model under the unconventional integration
strategy. Furthermore, the reason why the 3D position error using the basic trajectory model did not
diverge is that the output of the central accelerometer with real-time calibration was utilized to regulate
the acceleration estimation error when significant acceleration maneuvers occurred.

5.3. IMU Systematic Error Estimation

Since the systematic errors of these IMU arrays, i.e., biases and scale factor errors of gyroscopes
and accelerometers, are individually modeled in Kalman filtering, the systematic error estimations of
each IMU can be obtained separately, as illustrated in Figures 13–16. As an example, this manuscript
only shows the systematic errors of the central IMU due to space limitations. The common existing
approach under the conventional inertial navigation mechanization adopts a set of common shared
errors for all IMUs and, sometimes, these error parameters are from initial calibration results or
technical specifications [7,28]. However, in fact, the a priori error model defined for a static low-cost
MEMS inertial sensor needs to be checked and compensated for in the dynamic working environment
as the vibration on a low-cost IMU might cause significant changes in its scale factors and noise level
compared to those in the static case [31].
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As can be seen from Figures 13–16, in contrast to the a priori constant systematic error with the
common existing approach, the systematic error estimations with the individual modeling method
vary with time, which conforms better with the real situation. In other words, the individual modeling
method under the unconventional integration strategy can adjust the systematic error estimations of
each IMU according to the real-time measurements from each IMU. This technique can firstly verify if
those IMUs really share the same systematic errors quantitatively, even if they are the common errors
physically; then, they can be modeled either separately or combined, laying the groundwork for future
research such as auto calibration and fault detection. While applying the individual modeling method
for the IMU array, in spite of its characteristic properties, one must confront the following problem:
high computation load caused by high-rate measurement updates in the Kalman filter, e.g., with
IMUs whose measurement rate may be at 100 Hz. Although the modern computation capability is
considerably improved, one cannot stand such a high measurement update rate, especially one so
unreasonable, which renders it useless in real time. How to appropriately reduce the high-rate KF
measurement updates without compromising the valuable information embedded in the high-rate
measurements will become a topic for further study.

6. Conclusions

This research fused the information from one GPS receiver and three low-cost IMUs by applying
an unconventional multi-sensor integration strategy. The enhanced and improved parts involved
establishing a more practical 3D kinematic trajectory model based on the “current” statistical Singer
acceleration model as the core of the system model, and individually modeling the measurements and
systematic errors of these IMU arrays in Kalman filtering. The processing results of the experimental
data demonstrated the success of the proposed algorithm model under the unconventional integration
strategy with satisfactory solution performance and reliability. Future work will involve developing a
more precise fusion algorithm by using the carrier phase information from the GPS.
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