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Abstract: In order to improve handling stability performance and active safety of a ground vehicle,
a large number of advanced vehicle dynamics control systems—such as the direct yaw control system
and active front steering system, and in particular the advanced driver assistance systems—towards
connected and automated driving vehicles have recently been developed and applied. However,
the practical effects and potential performance of vehicle active safety dynamics control systems
heavily depend on real-time knowledge of fundamental vehicle state information, which is difficult
to measure directly in a standard car because of both technical and economic reasons. This paper
presents a comprehensive technical survey of the development and recent research advances in vehicle
system dynamic state estimation. Different aspects of estimation strategies and methodologies in
recent literature are classified into two main categories—the model-based estimation approach and the
data-driven-based estimation approach. Each category is further divided into several sub-categories
from the perspectives of estimation-oriented vehicle models, estimations, sensor configurations,
and involved estimation techniques. The principal features of the most popular methodologies are
summarized, and the pros and cons of these methodologies are also highlighted and discussed.
Finally, future research directions in this field are provided.

Keywords: vehicle dynamics; vehicle state estimation; model-based approach; data-driven-based
approach

1. Introduction

To improve ground vehicle handling stability and passenger safety, a large number of advanced
vehicle-active safety dynamic control systems, such as the direct yaw control system (DYC) [1–4],
anti-lock braking systems (ABS) [5,6], four-wheel steering system (4WS) [7,8], active front steering
system (AFS) [2,9], active suspension system (ASS) [9,10], adaptive cruise control (ACC) [11], collision
avoidance system (CAS) [12], and other advanced driver assistance systems (ADAS) towards a
connected and automated driving vehicle have been developed and brought into the market in recent
years [13–15].

However, the practical effects and potential performance in vehicle-active safety dynamic control
systems depend strongly on real-time knowledge of vehicle states. For instance, accurate knowledge
about longitudinal and lateral tire-road forces and vehicle sideslip angle means a better prediction of
the real-time road condition and the potential vehicle trajectories, leading to better vehicle motion
management. Unfortunately, some fundamental vehicle states are difficult to measure directly in a
standard car due to both technical and economic reasons, wherein additional vehicle sensors are too
expensive and measured signals may be lost under complicated driving environments [16–20]. As a
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consequence, these important vehicle states and parameter information (e.g., vehicle velocity, vehicle
sideslip angle, tire-road interactive force, vehicle mass, etc.) must be estimated or observed.

Vehicle system dynamic state estimation has been widely discussed and investigated in the
literature. Different vehicle estimations can be further classified into two categories depending
on whether the vehicle model is required. The first category is the model-based estimation
approach, whereas the second category is the data-driven-based estimation approach. Vehicle
model-based estimation approaches can be further divided into two sub-categories: the vehicle
kinematic model-based estimation approach and the vehicle dynamic model-based estimation approach.
In contrast to the kinematic model-based estimation approach that attempted to estimate vehicle
system state by finding the direct kinematic correlations between measurements and estimated
states, the vehicle dynamic model-based estimation technique utilizes mathematical models to
describe the transient behavior in vehicle system dynamics so that it possesses higher state estimation
accuracy, continuously attracting the increased interest of academics. Different types of vehicle
dynamic model-based approaches, along with different estimation strategies, have been developed
and studied in recent years. More recently, with the rapid development of artificial intelligence,
the data-driven-based estimation approach, artificial neural network (ANN)-based estimations in
particular, have shown promising perspectives in vehicle state estimation applications.

Various published estimation studies are related to fundamental vehicle states that are unmeasured
directly, and these estimated states (shown in Figure 1) mainly include vehicle operating states
(e.g., vehicle lateral and longitudinal velocities Vy, Vx; vehicle sideslip angle β at center of gravity (CG);
etc.) and tire–road interaction (e.g., tire–road lateral and longitudinal forces Fy, Fx; tire longitudinal
stiffness Cs and cornering stiffness Cα; tire–road friction coefficient (TRFC) µ; tire vertical load Fz; etc.).
Meanwhile, r, q, and p are yaw rate, pitch rate, and roll rate, respectively;ω stands for angular velocity
of the wheel; and Mx, My, and Mz are the overturing moment, wheel torque, and aligning moment of
the tire, respectively.
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Thereby, this paper presents a technical survey for development and recent research progress of
fundamental vehicle system dynamic state estimation in terms of vehicle models, estimations, sensor
configurations, and advanced estimation methodologies. The remainder of the paper is organized as
follows: In Section 2, model-based estimation approaches are analyzed and reviewed. In Section 3,
data-driven-based estimation approaches for vehicle dynamic state are introduced and discussed.
Finally, conclusions are offered in Section 4.
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2. Model-Based Vehicle State Estimation

As mentioned above, vehicle model-based estimation consists of vehicle kinematic model-based
estimation approach and vehicle dynamic model-based estimation approach. Vehicle kinematic
model-based estimation is to estimate vehicle dynamic states on the basis of the kinematic relationship
between estimated states and the vehicle-measured data. Several studies relating to this aspect can be
found [16–20]—for instance, in [16], the direct relationship among derivatives about vehicle lateral
velocity, yaw rate, and the lateral acceleration at CG is considered, and then vehicle lateral velocity is
estimated with the integration method

Vy =

∫
.
Vy =

∫
(−Vxrz + ay)dt. (1)

As presented in [17], vehicle sideslip angle β can be estimated by

β̂kin =

∫ .
β̂kindt =

∫
(

ay + gφ
Vx

− rz)dt. (2)

The kinematics-based estimation is a direct integration method of vehicle state estimation that
also integrates the noise signal when integrating the useful sensor signals, whereas the vehicle
sensor has a fixed calibration error and drift error wherein the accumulated error will increase
continuously after a long time integration, and finally the estimation result will be seriously distorted
and the estimated vehicle states will thus be extremely inaccurate. Considering the limitations of the
kinematics-based estimation approaches, the majority of studies tend to research vehicle dynamic
model-based estimation that applies physical and mathematical models to capture the inherent nature
of vehicle system dynamics to estimate vehicle state. Different vehicle dynamics models may be
selected for different estimation applications. Here, typical vehicle estimation models including the
vehicle dynamics model and tire model are introduced.

2.1. Vehicle Dynamics Estimation Model

2.1.1. Vehicle Dynamics Model

1) Longitudinal model. The vehicle longitudinal model shown in Figure 2 is applied to describe the
vehicle longitudinal dynamics of braking and driving maneuvers. When only the vehicle longitudinal
motion is considered, along with the road grade angle, the lateral and other vehicle movements
are negligible. The left and right wheels of a vehicle can be combined into a wheel by ignoring the
difference in motion between the left and right wheels. Then, a vehicle longitudinal model called
the longitudinal two-wheel model, consisting of the vehicle longitudinal dynamics model and the
rotational dynamics of the wheel, can be described as [3,6,12]

m
.
Vx = Fxf + Fxr − Fw − Ff, (3)

Iωi
.
ωi = Tdi − Tbi −ReFxi, (4)

Fw = CdρA f V2
x/2, Ff = µmg, (5)

where m is the vehicle mass; Fxf, Fxr are the longitudinal tire force of front and rear axles, respectively;
Fw, Ff are the aerodynamic drag force and the rolling resistance force, respectively; Cd is an aerodynamic
drag coefficient; ρ, Af are air density and windward area of the vehicle, respectively; Tdi, Tbi stand for
the driving and braking torque and of the specific wheel, respectively; ωi, Iωi are the angular velocity
of the wheel and moment of inertia of the wheel, respectively; and Re is the effective radius of the tire.
Subscripts i = f,r stand for the front and rear, respectively.
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Figure 2. Two-wheel model of vehicle longitudinal dynamics.

2) Single-track model. Different from the longitudinal model, the main application of the single-track
model (also called the bicycle model) is to estimate vehicle lateral states. By considering lateral and
yaw motions, here other vehicle motions such as longitudinal, pitch, roll, and vertical motions are
neglected, and then the vehicle lateral dynamics equations of the widely used single-track model can
be presented as [21–32]

mVx(
.
β+ rz) = Fyr + Fyf cos δ f + Fxf sin δ f , (6)

Izz
.
rz = Fyf cos δ f l f − Fyrlr, (7)

where Izz is the yaw moment of inertia; lf and lr are the distances from the front and rear axle to the CG,
respectively; δf is the front steering angle and it also assumes that steering action only occurs in the
front wheel; and Fyf, Fyr are the lateral tire force of front and rear wheels, respectively.

3) Double-track model. Assume that the vehicle movement is planar motion, and other vehicle
motions such as pitch, roll, and vertical motions are also neglected. When the longitudinal motion is
added and the dynamics for four wheels are also addressed for the single-track model, causing the four
wheel vehicle model to then involve longitudinal and lateral motions and yaw motion, the so-called
double-track model (shown in Figure 3) is often used to estimate longitudinal and lateral states, being
modeled as [27,33,34].
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Figure 3. Double-track model of vehicle lateral dynamics.
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Longitudinal motion:

m(
.
Vx −Vyrz) = (Fxfl + Fxfr) cos δ f − (Fxfl + Fxfr) sin δ f

+Fxrl + Fxrr −CdρA f V2
x/2− µmg

(8)

.
Vx = ax + Vyrz.

Lateral motion:
m(

.
Vy + Vxrz) = (Fyfl + Fyfr) cos δ f + (Fyrl

+Fyrr) + (Fyfl + Fyrl) sin δ f
(9)

.
Vy = ay −Vxrz.

Yaw motion:

Izz
.
rz = (Fyfl sin δ f − Fxfl cos δ f + Fxfr cos δ f − Fyfr sin δ f )bl

−(Fxfl sin δ f + Fyfl cos δ f + Fxfr sin δ f + Fyfr cos δ f )l f
+(Fxrr − Fxrl)br + (Fyrr + Fyrl)lr

(10)

In the above dynamics equations, δfl and δfr are the front steering angles of the left and right wheel,
respectively, and Izz and Mz stand for the vehicle moment of inertia and yaw moment, respectively.

4) Roll dynamics model. The vehicle roll dynamics model shown in Figure 4 is introduced to
estimate roll states. When vehicle roll motion is considered in steering maneuvers, and the following
assumptions are made, lateral and vertical motions of RC are therein ignored, and then the location of
the roll axis is fixed with constant height hRC. Bouncing and pitching movements of sprung mass are
not considered, and roll angle is relatively small. The vehicle roll dynamics model considering the road
bank angle can be established, and it can be derived from the roll moment balance [14,22,31,33,34].

Ixx
..
φv = mshroll(Vy + Vx

.
ϕ) + mshrollg(φv + φr) −Cφ

.
φv −Kφφv (11)

where Kϕ and Cϕ are the roll stiffness and roll damping coefficient, respectively; ms, Ixx are sprung
mass and sprung mass moment of inertia about roll axes, respectively; hroll is the distance from roll
axis to the CG of sprung mass; ϕ, ϕv, and ϕr are the yaw angle, the roll angle, and the road bank
angle, respectively.
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2.1.2. Tire Dynamics Model

1) LuGre tire model. When the vehicle only keeps longitudinal motion, the LuGre tire model can
be used to represent tire longitudinal force for the longitudinal two-wheel model under longitudinal
friction condition [1,3,5,6,12]. The LuGre model incorporates transient behaviors of friction and road
conditions by assuming an internal dynamic state of friction between tire and road interaction, which
can be described as

Fxi = µFzi
µ = (σ0z f + σ1

.
z f − σ2vr)

(12)

where
.
z f = −vr −

σ0 |vr |
f (vr)

ρz f

f (vr) = µc + (µs − µc)e−|vr/vs |
1/2

vr = Reω−Vx

where Fxi, Fzi represent the longitudinal and vertical tire forces of the wheel, respectively. Other
relevant parameters of the LuGre tire model can be found in [1,3,5,6,12].

2) Linear tire model. When the tire slip angles and slip ratios tend to be small, longitudinal and
lateral tire forces can then be linearly approximated by [21–27]

Fxij = Csi jsi j
Fyij = Cαi jαi j

(13)

where Csij and Cαij are tire longitudinal stiffness and cornering stiffness, respectively; and sij and αij are
tire slip ratio and the tire slip angle, respectively. Simultaneously, the tire slip angles can be given as

α f = δ f − l f rz/Vx − β
αr = l f rz/Vx − β

(14)

It is worth noting that the linear tire model is appropriate under normal driving conditions,
whereas when a vehicle experiences extreme handlings where the tire operates in the nonlinear region,
the widely used nonlinear tire models including the Pacejka model, Dugoff model, and Brush model
need to be introduced and used.

3) Pacejka tire model. The Pacejka tire model “Magic Formula” uses the same set of trigonometric
function formulae to uniformly express the longitudinal and lateral forces of the tire. The tire–road
forces with the nonlinear Pacejka tire model [28,30,32–34] are modeled as

Y(x) = y(x) + Sv

y = D sin(Carctan(Bx− E(Bx− arctanBx)))
x = X + Sh

(15)

where Y stands for the lateral tire–road force Fy or longitudinal tire–road force Fx, and X stands for the
tire slip angles α or slip rates s. Then longitudinal and lateral tire forces can be presented as

Fxij = Di j sin
[
Ci j tan−1

{
Bi j

(
1− Ei j

)
si j + Ei j tan−1

(
Bi jsi j

)}]
, (16)

Fyij = Di j sin
[
Ci j tan−1

{
Bi j

(
1− Ei j

)
αi j + Ei j tan−1

(
Bi jαi j

)}]
, (17)

where tire parameters B, C, D, and E can be determined on the basis of tire vertical force and tire–road
friction coefficient [28,30,32–34].
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4) Dugoff tire model. The Dugoff nonlinear tire model synthesizes the tire property into the
parameters of the tire longitudinal stiffness and the tire cornering stiffness, which refers to certain
tire–specific parameters. Longitudinal and lateral tire–road forces can be defined as follows [31,35]:

Fxij =
Csi jsi j

1− si j
f (S), (18)

Fyij =
Cαi j tanαi j

1− si j
f (S), (19)

where

S =
µFzij(1− εrVx

√
s2

i j + tan2 αi j)

2
√

C2
si js

2
i j + C2

αi j tan2 αi j

(1− s2
i j)

f (S) =
{

1 S > 1
S(2− S) S < 1

where εf and εr are the front and rear roll steer coefficients, respectively.
5) Brush tire model. The Brush tire model can also reflect nonlinear characteristics of combined

longitudinal and lateral tire force under the friction ellipse. The tire dynamics in the Brush tire model
can be written as [2]

Fxij =
Csi f (ξi)si

ξi(1 + si)
, (20)

Fyij =
Cαi f (ξi) tanαi

ξi(1 + si)
, (21)

where

f (ξi) =

 ξi −
1

3µFzi
ξ2

i +
1

27µ2F2
zi
ξ3

i i f ξi ≤ 3µFzi

µFzi else

ξi =

√
C2

si(
si

1+si
)

2
+ C2

αi(
tanαi
1+si

)
2

si =
Reωi−Vx

max(Reωi,Vx)

and subscript i stands front f and rear r, respectively.
On the basis of these vehicle dynamics models and tire models, various estimation strategies and

approaches are introduced in this section. The vehicle dynamic model-based estimation approach
is further classified into two main categories consisting of filter-based vehicle state estimation and
observer-based vehicle state estimation. Filter-based vehicle state estimation is further divided into
several sub-categories such as general Kalman filter (KF), extended Kalman filter (EKF), unscented
Kalman filter (UKF), cubature Kalman filter (CKF), and other filter. Observer-based vehicle state
estimation can also be categorized as recursive least squares method (RLS), linear observer, sliding mode
observer, and nonlinear observer. Categorization of vehicle dynamic state estimation methodologies is
shown in Figure 5. The most popular methodologies of the two main categories from the perspective
of methodologies, models, estimations, and sensor configurations for vehicle state estimation are
respectively summarized in Table 1 shown in Section 2.2 and Table 2 shown in Section 2.3.
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2.2. Filter-Based Vehicle State Estimation

2.2.1. Kalman Filter(KF)-Based Estimation

1) General Kalman filter(KF)-based estimation. On the basis of the general KF framework, the stochastic
estimation KF in [21] derived from the two degrees-of-freedom (DOF) bicycle model with the linear
tire model was proposed to estimate the vehicle lateral velocity. Utilizing the combination of global
positioning system (GPS) and other sensor signals, the estimated accuracy of vehicle states can be
improved [22–26]. In [22], a novel KF estimation method with roll dynamics is studied to estimate
vehicle roll angle and vehicle sideslip angle using real-time lateral tire force measured from multisensing
hub (MSHub) units as an external input, and field tests with experimental in-wheel-motor-driven electric
vehicles (IWM-EV) evaluated the effectiveness and accuracy of the developed estimator. The work [23]
developed KF-based fusion technology of multi-sensor fusing from GPS and inertial navigation system
(IMU) measurements to estimate vehicle sideslip angle through GPS and IMU complementing each
other, whereas the study [25] employed the grade inertial sensor and a two-antenna GPS system
to estimate longitudinal velocity, sideslip angle, and other lateral states. In [26], the dual Kalman
filter (DKF) technique with GPS measurements was introduced for identification of tire cornering
stiffness, and its experiments on both flat and banked curve roads validated the effectiveness of the
identification method. A random-walk Kalman filter (RWKF) in [27] was presented for the lateral and
longitudinal tire-force estimation that consisted of vertical tire-force estimation, shaft torque estimation,
and combined tire-force estimation.

Note that the 2-DOF bicycle model with linear tire model-based KF estimation is valid for small
tire slip angles, whereas vehicle dynamic and tire dynamics possess high nonlinearities when the
vehicle undergoes high accelerations under extreme handling conditions. This means that the linear
model-based KF estimator is not sufficiently reliable for all operational maneuvers. To face the
requirement and challenge of system nonlinearities in vehicle dynamics estimation, different nonlinear
Kalman filter estimation methods, such as the extended Kalman filter (EKF), unscented Kalman filter
(UKF), and cubature Kalman filter (CKF), have been developed.
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Table 1. Methodologies, models, estimations and sensor configurations for filter-based vehicle
state estimation.

Methodologies Models Estimations Sensor
Configurations References

KF Single-track + Linear tire model Vy rz, δf [21]

KF + RLS Single-track + Roll + Linear tire model β, ϕ
rz, δf, ax, ay, ωij, Tij,

Fyij, MSU [22]

KF Single-track + Linear tire model β rz, ψ, GPS [23–25]
DKF Single-track + Linear tire model Cα Vx, Vy, ψ, GPS [26]

RWKF Double-track + Linear tire model Fx, Fy rz, ax, ay, ωij [27]
EKF Single-track + Pacejka tire model β rz, ay [28]
EKF Single-track + Linear tire model β, Cα rz, Fyij, MSU [29]
EKF Single-track + Pacejka tire model β Tδf, rz, ax, ay [30]

EKF + SMC Single-track+Roll+Dugoff tire model β, ϕ Vx, rz, ax, ay [31]
EKF Single-track + Pacejka tire model β rz, ay [32]

EKF Double-track + Roll + Pacejka tire
model Vx, Vy, ϕ, Fy, DBE rz, ax, ay, p [33,34]

EKF Double-track + Dugoff tire model β, Fy rz, δf, ax, ay, ωij [35]
VSEKF Double-track + Dugoff tire model β rz, δf, ay [36]

EKF Double-track + Roll + Dugoff tire
model β, Fy, Fz rz, ax, ay, p [37]

EKF Double-track + Pacejka tire model Vx, Vy rz, δf, ax, ay, ωij [38]
EKF + MME Double-track + Pacejka tire model Vx, Vy, Fx, Fy rz, δf, ay [39]

EKF Single-track + Burchhardt tire model β, Fx, Fy, µ rz, δf, ax, ay, ωij [40]
EKF Single-track + Pacejka tire model β rz, ay [41]

EKF Longitudinal model + Pacejka tire
model µ ay, ωij [42,43]

DEKF Double-track + Roll + Pacejka tire
model µ, Fx, Fy, Fz rz, ax, ay, p [44]

EKF Single-track + Roll + Linear tire model β, ϕ rz, δf, ax, ay, ψ, GPS [45,46]

EKF Single-track + Brush tire model β, µ Vx, Vy, ψ, rz, ax, ay,
p, GPS [47]

EKF Single-track + Pacejka tire model Vx, β, θ, Cα,µ rz, δf, ax, ay, ωij [48]
DEKF Double-track + Pacejka tire model β, m, Izz rz, ay, Vx [49]
DEKF Single-track + Roll + Linear tire model β, ϕ, Cα, Izz rz, δf, ax, ay, p [50]
DEKF Double-track +Dugoff tire model β, µ rz, ax, ay [51]

IMM-EKF Single-track + Other nolinear tire
model β, µ rz, ay [52]

IMM-UKF Double-track + Roll + Dugoff tire
model β,ϕ rz, ax, ay, p, ωij [53]

IMM-EKF Single-track + Other nolinear tire
model β, Fx, Fy rz, δf, Vx, ay [54]

UKF Double - track+ UniTire tire model Vx, Vy rz, ax, ay, ωij [55]
UKF Single-track + Linear tire model β ax, ay [56]

AUKF Double-track + Pacejka tire model β ay, rz [57,58]
CUKF Single-track + Random Walk model β, Fy rz, ay [59]

UKF/EKF Double-track + Dugoff tire model β, Fy rz, δf, ax, ay, ωij [60]
UKF Double-track + Dugoff tire model µ ax, ay [61,62]
UKF Double-track + Pacejka tire model Vx, Vy,µ rz, ay, ωij [63]

DUKF Double-track + Dugoff tire model β, m rz, ay, Vy [64]

DUKF Double-track + Roll + Pacejka tire
model β, ϕ, Fy, Fz, DBE rz, ax, ay, p, ωij [65]

CKF Single-track + Linear tire model β δf, ay [66]

CKF Double-track + Roll + Dugoff tire
model β,ϕ, Fx, Fy rz, ax, ay, p, ωij [67]

ACKF Double-track + Pacejka tire model Vx, Vy rz, δf, ax, ay, ωij [68,69]
JCKF, DCKF Double-track + Pacejka tire model Vx, Vy,µ rz, ax, ay [70]
IMM+CKF Double-track + Pacejka tire model Vx, Vy rz, ax, ay [71]

PF Double-track + Dugoff tire model β, Fx, Fy rz, ax, ay [72,73]
UPF Double-track + Pacejka tire model β, Fy rz, ax, ay [74]
MHE Single-track + Pacejka tire model β rz [75,76]

SDRE + EKF Single-track + Random Walk model β rz, ay [77]
EHF Single-track + Linear tire model β, Cα rz, ψ, GPS [78]
MHE Single-track + Pacejka tire model β, Pp rz, Pc, GNSS [79]
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2) Extended Kalman filter (EKF)-based estimation. By using the single-track model coupling with
a simplified Pacejka model identified as FTyrey,i, which can reduce the need of tire parameters and
computational load in estimation processes, the authors introduce EKF to vehicle slip angle estimation
in [28].

.
Fy,i =

Vx

di
(FTyrey,i(αi, Fz, i; ξ) + Fy,i). (22)

In [29], on the basis of the first-order tire dynamics model that aimed at enhancing transient
behavior of tires developed from the linearized tire model and relaxation time constant, EKF was
designed to estimate the vehicle sideslip angle and tire cornering stiffness, and its effectiveness was
evaluated and compared with kinematics-based method through field tests on IWM-EV.

τlag,i
.
Fyi + Fyi = Fyi (23)

where τlag,i is relaxation time constant related to Vx and tire relaxation length. The steering torque
obtained from the simplified EPS instead of steering angle is used in [30] to estimate vehicle sideslip
angle because of the fact that steering torque has a more rapid response when compared to steering
angle. The effects of various vehicle–road system models for EKF estimation of vehicle lateral states and
lateral tire force were investigated in [33,34], which consisted of vehicle models including 2-DOF, 3-DOF,
and 4-DOF, as well as tire models involving linear tire and Pacejka tire. Utilizing the double-track
vehicle model and Dugoff tire model, the vehicle velocities, as well as tire lateral forces, were estimated
and reconstructed [35]. The work [36] discussed vehicle slip angle estimation when the vehicle
lay inside an instability region under extreme steering maneuvers, and a variable structure EKF
(VSEKF) was brought forward to estimate the vehicle slip angle via the modified Dugoff tire model
and vehicle model where load transfer effect is compensated and integrated into the model. Two
principal blocks applying two EKFs in [37] were designed—one that estimated vertical tire forces
considering lateral load transfer and the other that estimated lateral tire–road forces. The research
covered in [38] was a novel scheme to improve the computational performance of vehicle lateral and
longitudinal velocities of EKF estimator through field programmable gate array (FPGA) and system on
programmable chip (SoPC). The minimum model error (MME) criterion-based EKF estimation method
was developed for two-motor-driven vehicles in [39] to obtain lateral and longitudinal velocities
and lateral and longitudinal tire forces by eliminating the estimator error caused from the nonlinear
vehicle modeling error. In [40], a new EKF estimation process was proposed in order to estimate
vehicle sideslip angle, lateral tire forces, and TRFC by combining the single-track vehicle model and
Burckhardt/Kiencke adaptive tire model that takes into account variations in road friction, evaluating it
with two nonadaptive tire-based EKF estimators. An EKF method derived from the Pacejka tire model
or modified Pacejka tire model has been proposed to estimate vehicle lateral states, tire-road forces,
and TRFC [41–44]. By equipping additional GPS sensors [45–47], an EKF-based fusion methodology
integrating in-vehicle sensors and single-frequency double-antenna GPS was developed in [46] to
obtain reliable estimation about vehicle state information, such as vehicle sideslip and roll angle, while
EKF estimation in [47] considered the vehicle sideslip angle and TRFC by fusing measurements of GPS
and IMU. In [48], the EKF with parameter adaption was investigated to estimate vehicle sideslip angle
and cornering stiffness; 262 test drives validated that the estimator can deal with banked corners and
varying friction coefficients.

In order to simultaneously estimate vehicle states and parameters, the dual extended Kalman
filter (DEKF) technique was proposed [43,49–51]. The work [49] first proposed a DEKF technique with
two KFs in parallel, splitting the state and parameter estimation problems, as well as the feasibility
and advantages of the DEKF estimator for combined vehicle states and parameter estimation, such as
vehicle mass and yaw moment of inertia at CG, which are demonstrated in the theory. The DEKF-based
state and parameter estimation for articulated heavy vehicles was discussed in [50], wherein vehicle
states and parameters including height of trailer mass and roll moment of inertia were estimated and
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implemented through experimental tests. DEKF was also applied to estimate vehicle states and TRFC
in [51].

To adapt the complex estimation environment from various vehicle driving conditions,
the interacting multiple model (IMM) approach has been developed to estimate vehicle dynamic
states [52–54,80]. The research in [52] reported IMM-EKF estimation approach of vehicle states and
road conditions, wherein the system model was constructed and modeled via 10 system models
considering tire nonlinearity and different road friction conditions; the system model can be switched
among 10 system models in a probabilistic manner so that states and TRFC can be estimated with high
accuracy. In [53], utilizing real-time measurements from in-vehicle sensors of in-wheel motor-driven
electric vehicles, the IMM estimation method was designed to estimate vehicle sideslip and roll angle,
as well as lateral tire–road forces, by integrating two kinds of different vehicle–road system models to
adapt variable driving conditions. The results show improved estimation accuracy of vehicle-dynamic
parameters and vehicle–road interaction compared with the conventional approach.

3) Unscented Kalman filter (UKF)-based estimation. In contrast to the EKF method, UKF utilizes a
set of sigma points to realize nonlinear transformation, which acts directly on the nonlinear vehicle
dynamics systems to approximate the states. In [55], an unscented Kalman filter (UKF) method
making full use of driving torques from a four-wheel-drive hybrid vehicle was employed to estimate
vehicle velocities on the basis of the UniTire model in different driving modes, and the UKF-based
vehicle sideslip angle was obtained as valued information of lateral stability control for in-wheel
motored electric vehicles [56]. Considering the effect of model non-linearity, uncertainty, and road
friction conditions, an adaptive variable structural UKF (AUKF) was studied in [57] to compensate
the model uncertainty for vehicle sideslip angle estimation. The vehicle state estimation with AUKF
addressed in [58] was a practical road influence of noise variance and covariance on the estimation
accuracy of UKF, whereas the proposed constrained UKF (CUKF) technique in [59] fully took state
boundaries, measurement noise, and nonlinearities in to account to prevent unphysical vehicle sideslip
angle estimation. To address vehicle system un-modeled dynamics and nonlinearities, EKF and
UKF techniques for vehicle sideslip angle and tire–road forces estimation in [60] were proposed
and compared, and road results demonstrated that estimation performances of UKF were far better
than EKF with respect to road variation, which was tested from an experimental car equipped
with noncontact optical correvits. A hybrid UKF estimator connected with two sub-estimators
consisting of a vehicle state estimator and integrated TRFC estimation was developed in [61], and the
mean-square-error-weighted fusion-based UKFs were shown to provide high estimation accuracy of
TRFC by mixing the estimation of the longitudinal and the lateral UKFs [62]. The work [63] presented
the novel UKF to estimate TRFC and vehicle longitudinal and lateral velocities with standard vehicle
dynamics control sensors. The experimental tests showed that the designed UKF clearly outperformed
the EKF in terms of estimation accuracy and robustness.

The dual unscented Kalman filter (DUKF) based on the double track model and Dugoff tire
was introduced to estimate vehicle sideslip angle and the key parameter of vehicle mass at CG [64].
DUKF, together with the double-track model and Pacejka tire model, was designed in order to
simultaneously estimate the side slip angle, tire-road forces, and Pacejka tire parameters; then,
the hybrid of the Levenberg–Marquardt and quasi Newton method was employed to identify the
Pacejka tire coefficients [65].

4) Cubature Kalman Filter(CKF)-based estimation. The work [81] proposed a new nonlinear Kalman
filter called the cubature Kalman filter (CKF) that solved the problem of "nonlinear function × gaussian
density" in Bayesian filtering by using third-order spherical-radial cubature criterion, which can avoid
the high-order Taylor truncation error in EKF and the instability of UKF caused from non-positive
definite covariance in higher order non-linear systems. Several studies have tried to estimate vehicle
states and parameters with the CKF technique [66–71]. The CKF method modeled from the double-track
vehicle dynamics model and Dugoff tire was introduced in [67] to estimate vehicle sideslip angle
and lateral tire forces by utilizing real-time measurements from standard sensors for distributed
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drive electric vehicles, and new adaptive CKF (ACKF) for estimating vehicle lateral and longitudinal
velocities were found to present higher performance of anti-nonlinearity and noise when compared
with the EKF and UKF methods [68]. In [69], the adaptive square-root CKF (ACKF)-based vehicle
sideslip angle estimator was developed to adaptively adjust for the vehicle dynamics nonlinearity and
model uncertainty using the integral estimation with the zero-point-reset method. To obtain vehicle
states as well as unknown road condition [70], the dual cubature Kalman filter (DCKF) and joint
cubature Kalman filter (JCKF) were designed to estimate vehicle lateral and longitudinal velocities and
TRFC at each wheel. A novel IMM approach investigated in [71] was the hybrid estimator formed
by fusing the square-root CKF and horizon Kalman filter with the square-root cubature method to
estimate vehicle sideslip angle.

2.2.2. Other Filter-Based Estimations

1) Particle Filter (PF)-based estimation. It is worth noting that the basic assumption of the
aforementioned different types of Kalman filters is that the process noise and measurement noise of
the system belongs to the Gaussian distribution. Whereas the real driving conditions and vehicle
environments are complex, the Gaussian assumption-based Kalman filter is not always correct in
practice. To address this issue, several other filters have been developed to estimate vehicle states.
On the basis of the Monte Carlo and importance sampling assumptions, a new particle filter (PF) [72,73]
with non-Gaussian distribution by using numerous particles was proposed for vehicle dynamic sideslip
angle and tire lateral and longitudinal forces estimation, providing better precision when compared
with EKF from experimental validations. To make up the shortage of sample impoverishment in PF,
the unscented particle filter (UPF) was reported in [74] to estimate IWM vehicle states, such as vehicle
sideslip angle and lateral tire force, in the high-order nonlinear vehicle dynamic system.

2) Other filter-based estimations. A moving horizon estimation (MHE) for vehicle sideslip angle
has been introduced under corrupted measurement noise [75]. The online implementation problem
of the MHE methodology in complex vehicle dynamics was also optimized using nonlinear finite
impulse response (NFIR) filters [76]. The approach adopted in [77] was that of the state-dependent
Riccati equation (SDRE)-based nonlinear filter on sideslip angle estimation to fully consider vehicle
dynamic nonlinearities and measurement noise. In [78], the EKF and EHF filters under minimizing
separate criteria were studied as estimators of vehicle sideslip angle and tire cornering stiffness.
The performance of two estimators were compared according to the criterion of mean squared error and
steady-state error. The work [79] proposed nonlinear constrained MHE to estimate mainly the vehicle
position Pp and vehicle sideslip angle for future autonomous vehicles; the delayed measurements
from the global navigation satellite system (GNSS) and road boundary constraints can be directly
incorporated into MHE, and real-world experiments show that the proposed MHE possesses improved
estimation performance in comparison to the EKF.

2.3. Observer-Based Vehicle State Estimation

2.3.1. Recursive Least Squares Method

The recursive least squares (RLS) method was applied to identify wheel slip corresponding
to the peak of the TRFC in [82] and individual wheel TRFC estimation in [83], studied in order to
provide real-time information for braking systems, traction control, and yaw stability control. RLS with
forgetting factors were developed for implementing estimation of tire cornering stiffness and vehicle
sideslip angle for IWM electric vehicles using onboard sensors [84,85], and a resonance frequency-based
RLS was presented to estimate TRFC by considering the frequency response of the IWM drive system
dynamics [86]. The linearized recursive least squares (LRLS) method in [87] identified the TRFC and
tire cornering stiffness by the combined lateral and longitudinal tire model, making full use of frictional
limits, and the proposed TRFC estimator with RLS [88] was based on measured 6-DOF vehicle body
accelerations and accelerations at the tire.
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Table 2. Methodologies, models, estimations and sensor configurations for observer-based vehicle
state estimation.

Methodologies Models Estimations Sensor
Configurations References

RLS Longitudinal model + Burchhardt tire
model µ ωij, ax [82]

RLS Longitudinal model + Dugoff tire
model µ, Fx Vx, ax, GPS [83]

RLS Single-track +Linear tire model β, Cα
rz, δf, ax, ay,ωij, Tij,

Fyij, MSU [84]

RLS + NLO Single-track + Linear tire model β, Cα rz [85]

RLS Longitudinal model + Linear tire
model µ Vx, Tm, ωij [86]

LRLS + KF Double-track + Brush tire model β, Fx, Fy, Fz, µ, Cα,
Cs

rz, ax, ay, ωij [87]

RLS Double-track + Suspension model µ ax, ay, az [88]
LO Single-track + Linear tire model β rz, ay [89]

SOLEO Longitudinal model + Burchhardt tire
model µ ωij, Tb [90]

HO/RO Single-track + Linear tire model β rz [91,92]
COO Double-track + Suspension model Cα, Fz ay, rz, p [93]

TFO Longitudinal model + Pacejka tire
model µ, Fx ωij, Vx [94]

FDO, RAO Single-track + Brush tire model µ Fy [95,96]

SMO + RLS Longitudinal model + Brush tire
model µ, Fx ax,ωij, Tm [97]

SMO Double-track + Roll + Dugoff tire
model β,ϕ , Fx, Fy, Fz Vx, Vy, rz, ax, ay, p [98]

SMO Rotational model of wheel + LuGre
tire model µ ωij [99–102]

SMO Rotational model of wheel + LuGre
tire model µ, Vx ωij, Tm [103]

SOSMO Rotational model of wheel + Pacejka
tire model Cs ωij [104]

SOSMO Longitudinal model + LuGre model µ ωij [105]
VSSMO Single-track + Linear tire model Fx, Fy rz, ax, ay [106]
ROSMO Double-track + UniTire tire model β, Fy, Fz rz,ωij [107]

HOSMO Rotational model of wheel + LuGre
tire model µ ωij, Tm [108]

HOSMO Double-track + Pacejka tire model β, Fx rz,ax, ay [109]
HOSMO Single-track + Roll + Linear tire model Fz az [110]

NLO Double-track + Dugoff tire model Vx, Vy rz, δf, ax,ay,ωij [111]
NLO Double-track + Pacejka tire model Vx, Vy rz, δf, ax, ay,ωij [112]

RNLO Double-track + UniTire tire model Vx, Vy rz,ωij, δf [113]

ANLO Double-track + Parametrized friction
model β rz, δf, ax, ay, ωij [114]

HNLO Single-track + Pacejka tire model β rz, δf, Vx, ay [115]

NLO Single-track + Other nolinear tire
model β rz, δf, Vx,ay [116–119]

UIO Roll model ϕ,θ Vx, Vy, rz, zij,p [120]
NLO Single-track + Linear tire model β Vg, ay [121]

SNLO Double-track + Dugoff tire model Vx, Vy, µ rz, ax,ay,ωij [122,123]

NLO Single-track + Other nolinear tire
model Vx, Vy ωij, Tm,ax,ay [124]

NLO Rotational model of wheel + LuGre
tire model µ, Fx ωij, Tm [125]

NLO Single-track + Brush tire model µ, Cα ωij, Tm [126]
NLO Brush tire model µ ay, WPS [127,128]

2.3.2. Linear Observer

The work [89] studied Luenberger observer for estimating vehicle sideslip angle and lateral states;
its estimation accuracy was experimentally tested using a laboratory car equipped with the non-contact
optical sensor "Correvit S-400". A second order linear extended state observer (SOLEO) from braking
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dynamic was proposed in [90] to estimate TRFC, utilizing braking torque of front and rear wheels
as excitation. The study in [91] designed an optimal sideslip angle observer via finite-frequency H∞
approach (HO) considering the frequency of the front-wheel steering angle measured from an IWM
electric vehicle-equipped navigation system, wherein a robust sideslip angle observer (RO) established
from a singular vehicle model was developed by applying the uncertain singular method for model
uncertainty [92]. The controller output observer (COO) in [93] that derived the observer model with
inputs was designed to estimate vehicle tire cornering and normal forces. A tire traction forces observer
(TFO) that was robust with respect to variations of vehicle parameter uncertainties and road conditions
was presented for guaranteeing desired traction forces in vehicle control systems [94]. Four different
TRFC observers (FDO) with different lateral and longitudinal excitation conditions were integrated to
improve robustness of observers by expanding the working range [95], whereas the research in [96]
found that vehicle tire slip angle was highly coupled with TRFC, a robust adaptive observer (RAO) was
decoupled for vehicle tire slip angle estimation coupled with TRFC, and its robustness and convergence
can be guaranteed using Lyapunov theorem.

2.3.3. Sliding Mode Observer

General sliding mode observers (SMO) [97–103], second order sliding mode observer
(SOSMO) [104,105], variable gain sliding mode control observer (VSSMO) [106], reduced-order sliding
mode observer (ROSMO) [107], and higher-order sliding mode observer (HOSMO) [108–110] have been
widely investigated for vehicle dynamic model-based state and parameter estimation, and experiments
have confirmed that the proposed SMO can provide higher estimation accuracy when compared with
EKF [100,109]. General SMO using the so-called equivalent control technique in observer is developed
to estimate longitudinal forces [97], full tire forces and roll angle [98], and TRFC [99–102]. The SMO
of combined vehicle velocity and TRFC estimation was designed by exploiting the low frequency
component of the observer error dynamics [103]. The SOSMO using robust observer of supertwisting in
nominal model was developed to identify tire stiffness and effective wheel [104], as well as TRFC [105].
VSSMO for estimating tire–road forces as unknown inputs was presented through on-board low-cost
sensors from CAN-bus in heavy duty vehicles [106]. To reduce the implement load and chattering
in vehicle lateral dynamics estimation, ROSMO in [107] was developed for vehicle slip angle and
tire-road force estimation considering vehicle load transfers. On the basis of quarter vehicle dynamics
integrated from LuGre friction tire, HOSMO in [108] was designed to observe TRFC as unknown
input estimation, which was established with convergence of the estimation error under Lipschitz
conditions and solved in terms of the supertwisting algorithm. The HOSMO presented in [109] was
used to estimate vehicle sideslip angle and longitudinal force of IWM electric vehicles, and it was
reconstructed by model decoupling and the electric driving wheel model, whereas vertical forces that
can calculate the load transfer ratio (LTR) of heavy-vehicles for rollover risk prediction was observed
by the HOSMO, and its performance was validated experimentally within many scenarios [110].

2.3.4. Nonlinear Observer

In order to directly deal with nonlinear problems in vehicle dynamics state estimation, concerns
about nonlinear observer (NLO) tend to increase, and sufficient conditions for this type of observer are
derived by making use of different stability theories [111–128]. Experimental tests have shown that the
estimated performance of the NLO is generally better than that of the EKF [111,113,115]. On the basis
of the input-to-state stability (ISS) theory [111–113], nonlinear observer of longitudinal and lateral
velocities have been proposed. NLO that uses the error between measured and estimated lateral
and longitudinal accelerations as the feedback term was developed in [111,112], and the work [113]
constructed the reduced-order NLO (RNLO) wherein yaw rate was selected as a function of vehicle
velocities, and the dynamics system error, including mass and CG variation, was considered as additive
disturbance inputs of the ISS system. In [114], the adaptive vehicle sideslip angle NLO (ANLO)
that is uniformly globally asymptotically stable and locally exponentially stable was designed using
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Matrosov theorem under some technical assumptions and a parametrized road–tire friction model,
and high-gain NLO (HNLO) of vehicle sideslip angle for adapting tire–road friction was presented by
input–output linearization [115]. With the help of mean value (MV) theorem [116–119], vehicle sideslip
angle NLO design described with uniformly bounded error vehicle dynamics was asymptotically
stable by simplifying the nonlinear tire model [116], whereas the vehicle sideslip angle NLO in [117]
was treated as a differentiable nonlinear system with a globally bounded Jacobian through modifying
the MV theorem. In [120], the road bank was estimated with an unknown input observer (UIO) that
was based on the roll dynamics implemented via dynamic fault thresholds algorithm. Using the
singular values of this observability matrix, tire cornering stiffness was identified from vehicle sideslip
angle NLO [121]. The research [122,123] introduced novel-switched NLO (SNLO) to estimate vehicle
sideslip angle and TRFC simultaneously using the simplified Pacejka tire model or rational tire model
through Lyapunov function. With extended information and architecture of four-in-wheel-motor-drive
electric vehicles [124–127], the concept of effective inertia considering in-wheel-motor information was
constructed to estimate the vehicle state of an electric vehicle [124]. On the other hand, a slip-based
NLO with known motor torque in [125] was designed to estimate the tire longitudinal force and TRFC
with Lyapunov stability theory, whereas tire cornering stiffness and TRFC estimation that was based
on longitudinal force difference between the left and right wheels of in-wheel-motor-drive electric
vehicles was proposed via algebraic techniques [126]. There are also some TRFC estimation methods
that utilize tire lateral deflection measured from additional sensors embedded inside the wireless
piezoelectric sensor (WPS) through the contact patch, for example, in [127,128].

3. Data-Driven-Based Vehicle Estimation

Data-driven estimation approaches are designed and constructed to estimate vehicle state and
parameters on the basis of data that consists of historical and online I/O datasets in the vehicle dynamics
system, and they gain inherited knowledge in capturing vehicle dynamic characteristics through
processing these datasets [129–131]. In contrast to the aforementioned vehicle model-based estimations,
the data-driven methods do not depend on the reference vehicle models, and they have been proven
to possess the ability to avoid issues in vehicle dynamics estimation [129–131]. Among advanced
data-driven approaches, artificial neural network (ANN)-based artificial intelligence (AI) is the most
popular data-driven method for estimating vehicle state [129–132], the schematic of artificial neural
network (ANN) estimation process is shown in Figure 6, which shows promising perspectives in various
estimation applications such as energy estimation of ground vehicles [133], underwater vehicles [134],
hypersonic vehicles [135], and unmanned aerial vehicles [136]. The main data-driven-based vehicle
state estimations are summarized in Table 3.
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Table 3. Methodologies, estimations and trained inputs for data-driven-based vehicle state estimation.

Methodologies Estimations Trained Inputs References

ANFIS Vx, Pp Pc, GPS, IMU [137]
NN ϕ rz, ax, ay, p [138]
NN Pp Pc, GPS, IMU [139,140]
DL Pp Pc, GPS, IMU [141]

ANFIS β rz, δf, ax, ay [142,143]
GRNN β rz, ay [144]
IEMM β rz, δf, ay [145]

NN β rz, δf, Vx, ay [146]
DL β rz, δf, ax, ay,ωij [147]
NN ϕ rz, ax, ay, p [148–150]

FNN Fy ax,α [151]
NN Fx Vx, ax,ωij [152]

PNN Fz az, zm [153]
NN-GD Fy α, Pt, Fz [154]

NN B, D, E Fx, Fy,α, s [155]
DL µ rz, δf, ax, ay, azα,s,ωij [156]
NN Mx Fx, Fy, Fz, δf [157]

MPNN µ Fx, Fy, Fz,α,s [158]

In [137], the adaptive neuro-fuzzy inference system (ANFIS) with input delay technique was
developed to estimate vehicle velocity and position through the fusion of datasets from the GPS and
inertial navigation system (INS); experimental results have demonstrated that ANFIS can provide
improved estimation accuracy when compared with the EKF method. The NNs have also been
employed to estimate vehicle states by fusing multi-sensors [138–140,159]. The integration of GPS/INS
through NNs considered in [139] was done to process the GPS signal in case of INS signal loss so that
it can obtain accurate position and data, whereas the neural network-based MMF in [140] was adopted
in order to obtain accurate and reliable position estimation of autonomous vehicles by combining GPS
and on-board sensors. The deep learning (DL)-based GNSS network was also structured to improve
the GNSS absolute positioning accuracy of automatic navigation of vehicles by combining various
sensors [141].

Different ANN methods have been designed for estimating vehicle sideslip angle [142–146].
The works [142,143] presented ANFIS methodology to estimate pseudo-sideslip angle through
measured parameters from steering wheel and inertial sensors, and experimental results showed that
ANFIS can learn behaviors of vehicle sideslip angle reliably without difficulty, supplying more reliable
estimations of sideslip angle than Kalman filters. Deneral regression neural network (GRNN) estimator
that derived from the RBF neural network using enhanced output of radial basis layer in [144] has
been proposed; its homogeneous design is used to optimize the training samples of the driver–vehicle
closed-loop system, wherein vehicle experiments verified the validity of GRNN where test amplitudes
for mean of error are within 10%. On the basis of the feed forward and dynamic NN, the improved
Elman neural network (IEMM) in [145] was introduced by adding the context nodes; it can be more
sensitive to the historical data under self-linking between the hidden nodes of input and output in
NN; thereby, IEMM possesses increased processing capability for dynamic information for vehicle
sideslip angle estimation. The research in [146] addressed influences of vehicle velocity variations and
various tire–road adherence conditions on NN performance of vehicle sideslip angle estimation; it is
designed so that the NNs with 1 hidden layer of 10 neurons and a single output neuron where vehicle
velocity, yaw rate, lateral acceleration, and steering angle are used as inputs, and the training sets
of NNs are characterized by different clockwise and anti-clockwise maneuvers under high and low
friction roads to increase its reliability; then, performance and robustness of the NNs are subsequently
studied with experimental datasets. In [147], a deep learning network-based sideslip angle observer
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was introduced, and professional road tests show that observer can accurately estimate the sideslip
angle against various handling conditions.

To predict the lateral load transfer and roll stability vector in roll stability control system,
the NN-based roll angle estimations in [148–150] were taken into account using IoT low-cost devices
and IMU where longitudinal and lateral accelerometer, yaw rate, and roll rate can be easily measured
as training set, and the NN embedded in IoT low-cost devices can handle real-time constraints. Herein,
the experimental result verified that the NN can obtain improved accuracy during the estimating
process of vehicle roll angle with respect to KF [150].

Aiming the estimation of tire–road forces and interaction between the tire and road, the feedforward
NN (FNN) in [151] was used to estimate the lateral tire forces of nonlinear tire behavior without the
tire–road friction model, whereas the multilayered perceptron NN (MPNN) with backpropagation
algorithm estimated traction forces in [160] by using experimental datasets. The neural network-based
tire–road friction force estimators emphasized in [152] were to improve estimation sensitivity of friction
forces for friction adaptiveness. A novel progressive NN (PNN) was trained to determine vertical
suspension force factors on the basis of the dynamic response of the tire and road interaction [153].
In [154], a neural network with the gradient descent method (NN-GD) was developed to represent
lateral forces of tire dynamics, and the NN with 13 hidden neurons used a range of tire pressures,
slip angles, normal forces, and inclination angles as trained inputs with 100,000 tire data points
under combined slip conditions, which can generate lateral forces similar to the empirical models.
By considering bounds or constraints of the input data, such as slip angle and other input data, ANNs
and the Nelder–Mead-based method in [155] were compared and studied to estimate coefficients of the
magic formula tire model. The deep learning method composed of the convolutional neural network
and recurrent neural network was proposed to enhance the reliability of estimating the TRFC under
different driving situations [157].

The ANN approach in [161] has also been reported as a solution to estimate the road profile in
order to replace laser sensors or response-type road roughness measurements in vehicle dynamic
systems, and the multi-input and multi-output feed forward wavelet neural network (WNN) wherein
wavelet basis functions are utilized as activate function in hidden layer and back propagation (BP)
algorithm applied in the training process was further developed for road profile estimation [162].
To predict the limit and margin of vehicle in road safety, this work [163] was done to develop NN
methodology to identify the tire–road maximal friction coefficient by estimating forces and aligning the
torque of tires. An ANN was introduced to detect the road condition through estimating the optimal
slip [157]. Multilayer perceptron neural network (MPNN) was presented to obtain the road friction
coefficient, which was trained using known parameters from the magic formula tire model on the basis
of other estimated states, such as vehicle lateral and longitudinal velocities and lateral and longitudinal
tire forces [158].

Aside from this, NNs have been extended to other vehicle dynamic estimations [164–166].
For instance, trained NNs in [164] were employed to identify three body-dominated motion-modes
consisting of roll, bounce, and pitch motion-modes, which can avoid the requirements of measurement
for full vehicle states and road inputs when compared with the motion-mode energy-based identification
method. ANNs with multi-layer feedforward network (MLFN) and GRNN have been introduced to
improve evaluation stability of vehicle handling that is always difficult to be assessed using determined
impact factors [165]. The multilayer perceptron NN with a single hidden layer presented in [166] was
used to estimate driver activity regardless of the vehicle and tire models.

4. Conclusions

In this paper, a comprehensive survey of developments and latest advances for vehicle dynamics
state estimation is presented. Different aspects of estimation strategies and methodologies in the most
recent literature are reviewed and classified into two main categories consisting of the model-based
estimation approach and data-driven-based estimation approach. The development of the most popular
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estimation models, techniques, and approaches, which are widely used to estimate vehicle dynamics
states, are discussed and analyzed. These estimation approaches and methodologies discussed in this
paper will help researchers to obtain an overview for further research in this field. Although numerous
achievements for vehicle dynamic state estimation have been provided in the literature, there are
still some open research questions that should be further considered in future works. Two topics are
highlighted and discussed here.

1) The range of estimation can be extended towards connected and automated driving vehicles. Emerging
connected and automated driving vehicles have appeared as promising vehicle architectures based on
several advantages in terms of good safety, high energy efficiency, and road traffic efficiency [13–15].
The connected autonomous vehicles require understanding of vehicle-to-human interaction and human
driver behavior for human–machine sharing control; thus, it is essential to identify driver driving
behavior (e.g., driver distraction, fatigue) and driver intention towards increasing automated driving
levels of vehicle. Because driver driving behavior and driver intention can be influenced by a large
number of factors, such as inter-responses of the drive and the external stressing conditions, the process
of accurately recognizing driver driving behavior and driver intention on the basis of vehicle operating
states is a promising challenge. ANN-based machine learning may be a good option, as it possesses the
knowledge processing and learning capability of the human brain that can adapt to identify complex
driver driving behavior and driver intention [167,168].

2) The nonlinear challenge of vehicle system dynamic state estimation. Vehicle dynamics system is
an inherently nonlinear system—vehicle and tire dynamics present high nonlinearities especially
when a vehicle undergoes high accelerations under extreme handling conditions. How to deal with
nonlinear estimation problems in vehicle dynamics is still an open research challenge. There are two
typical types of nonlinear estimation techniques found in the previously discussed literature—one that
uses linearization methods such as Taylor truncation in EKF to linearly approximate the nonlinear
vehicle dynamics estimation system, and the other that directly designs a nonlinear observer to deal
with a nonlinear problem of the vehicle dynamics estimation system. It is worth noting that despite
the observability of the linearization-based estimations being easily demonstrated using the linear
system stability theory, the estimation accuracy of the method for vehicle state needs to be further
improved. Perhaps the nonlinear observer provides an acceptable estimation accuracy, whereas the
global observability of a nonlinear observer is generally difficult, and local observability for this type
of observer also faces some challenges. With the rapid development of nonlinear estimation theory,
input-to-state stability theory [111–113], Matrosov theorem [114], and other stability theories [116–119]
this problem is gradually being solved. Moreover, the data-driven-based estimation possesses the
potential to enhance vehicle dynamics state estimation, and the additional attention on developments
and applications of data-driven-based estimation should be paid to further improve performance for
vehicle dynamics estimation systems in the future.
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