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Abstract: In this paper, we study the issue of out-of-sequence measurement (OOSM) in a multi-target
scenario to improve tracking performance. The OOSM is very common in tracking systems, and it
would result in performance degradation if we used it inappropriately. Thus, OOSM should be
fully utilized as far as possible. To improve the performance of the tracking system and use OOSM
sufficiently, firstly, the problem of OOSM is formulated. Then the classical B1 algorithm for OOSM
problem of single target tracking is given. Next, the random finite set (RFS)-based Gaussian mixture
probability hypothesis density (GM-PHD) is introduced. Consequently, we derived the equation for
re-updating of posterior intensity with OOSM. Implementation of GM-PHD using OOSM is also
given. Finally, several simulations are given, and results show that tracking performance of GM-PHD
using OOSM is better than GM-PHD using in-sequence measurement (ISM), which can strongly
demonstrate the effectiveness of our proposed algorithm.

Keywords: out-of-sequence; multi-target tracking; random finite set; gaussian mixture probability
hypothesis density

1. Introduction

Multi-target tracking has been studied widely in recent years. It has attracted a lot of attention and
is a major research hotspot in the field of target tracking. Multi-target tracking is not a simple extension
of single-target tracking; it involves many situations that will not occur in single-target tracking.
For example, in a multi-target tracking scenario, the number of targets is time-varying because new
targets may appear and original targets may die. Therefore, a multi-target tracking algorithm needs to
estimate the number of targets and the state of each target, at the same time. Because of the existence
of clutter, it cannot guarantee that every measurement comes from a real target.

Multi-sensor measurements at each sampling time correspond to many different targets
(or clutters). The problem of correlating measurements with targets is called data association, which is
the key point and difficulty of a multi-target tracking algorithm and has been the focus of multi-target
tracking research. Today, joint probability data association (JPDA) and multiple hypothesis tracking
(MHT) are regarded as representative algorithms to solve data association problems [1-4]. There are
also many improved algorithms based on JPDA and MHT. For example, [5] studied the JPDA filter
with unknown detection probability and clutter rate, and [6] studied the problem of passive sonar
tracking using MHT algorithm. It is noted that key developments of MHT over the past 40 years have
been already reviewed in [7].

Probability hypothesis density (PHD) filter is a multi-target tracking algorithm based on random
finite set (RFS) that has emerged in recent years. It was first proposed by Mahler in the literature [8].
This algorithm avoids the problem of data association. Thus, it can effectively solve the problem of
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a large amount of computation in a classical data association algorithm. A comparison of the RFS
approach and traditional multi-target tracking methods has been given in [9]. Under the framework
of RFS, the set of states of targets is regarded as a set-valued state, and the set of observations is
regarded as a set-valued observation. Thus, RFS is the natural representation of the states of targets
and observations of the targets. After the state and observation are modeled as RFS, a multi-target
tracking problem can be formulated in Bayes filtering. Because multi-target Bayesian filtering involves
multiple integrals, it will result in computational intractability. The PHD filter can alleviate the
computational intractability because it operates on the single-target state space. However, there is no
closed-form solution for PHD filter, so it is a common way to use the sequential Mento Carlo method
to approximate it [10]. Another common implementation of PHD is Gaussian mixture probability
hypothesis density (GM-PHD) [11], in which multiple Gaussian components are used to approximate
PHD. Under the assumption of the linear Gaussian multi-target model, the analytical solution of
GM-PHD can be obtained. This filtering algorithm is also adopted in this paper. In addition, these
three multi-target tracking approaches mentioned above have been widely used in sonar [12,13],
autonomous vehicles [14,15], fusion [16-18], visual target tracking [19,20], and sensor networks [21,22].
There are also some multi-target tracking algorithms and related work in the framework of a particle
filter; for example, [23] introduced an efficient particle filter for multi-target tracking which solved
the problem of the curse of dimensionality, [24] proposed two sampling techniques based on group
importance sampling, and the problem of model selection in the framework of particle filter is studied
in [25,26].

In a multi-target tracking system, target information measured by sensors is transmitted to
the fusion center by the wireless network. However, due to network delay and other reasons, it is
inevitable that some of measurements may arrive at the fusion center later. In this situation, we call it
out-of-sequence measurement (OOSM). OOSM is a widely studied problem, and the main difficulty
is how to use past measurements to update the current state. The research of one-step-lag OOSM in
single target tracking is mature. The representative works based on Kalman filter framework are Al,
B1, and C1 algorithms [27-29], where A1l is the optimal algorithm, and B1 and C1 are sub-optimal
algorithms. In recent years, a particle filter has been widely used in the tracking system. Thus, OOSM
based on a particle filter framework has also been extensively studied. Y-bar Shalom gives the optimal
algorithm based on a particle filter [30]; however, this method requires excessive computational
resources. To overcome this drawback, an efficient particle filter using OOSM is proposed in [31].

Although the OOSM problem and the multi-target tracking problem may appear in the tracking
system simultaneously, there is little related work on the combination of them. Moreover, to the
best of our knowledge, there is no related work about multi-target tracking based on RFS using
OOSM that has been before. Obviously, in the actual tracking system, using OOSM in multi-target
tracking is very common. In view of this, a novel multi-target tracking algorithm based on RFS using
OOSM is proposed. When OOSM arrives, it is used to re-update the current state, instead of being
discarded directly.

The structure of this paper is as follows. Section 2 gives the formulations of the B1 algorithm
which is used to solve the problem of single-target tracking when OOSM arrives, and the PHD filter
is also introduced in this section. Section 3 presents the main contribution of this paper, namely the
formulation of re-update of GM-PHD filter using OOSM. And the implementation of GM-PHD filter
using OOSM is also given in this section. To demonstrate the effectiveness of our proposed algorithm,
several simulation results are given in Section 4. Finally, the analysis and conclusion are given in
Section 5.

2. Problem Formulation

This section is arranged as follows. At first, the model of the system is given. Next, the problem
of OOSM is formulated. Finally, the RFS based GM-PHD filter is summarized.
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2.1. System Model

Consider a dynamic system as follows:
Xp1 = FiXp + Wy, )

where F; is state transition matrix to time f;,1 from time #;, xi is the state vector, and wy is the
process noise for this interval. The F; has different forms when the target adopts different motions,
and specific Fy related to our experiment is given in the Section 4. The state of target at time f; is given
by x¢ = [x,0x, Y, Uy]T, where (vy, vy,) represent the velocities in the x,y coordinate, and (x,y) is the
target location. And the process noise wy is always assumed as zero-mean, white Gaussian noise:

Wy ~ N<0/ Qk)/ ()
where Q; = E{w,w] }. The measurement equation of system is given as follows:
zr = Hyxp 4+ vy, 3)

where Hj is the measurement matrix of sensor; it also has different forms when sensors are different,
and vy is the measurement noise which is always assumed as zero-mean, white Gaussian noise:

O ~ N(O, Rk)/ (4)
where R = E{v0v]}.

2.2. OOSM B1 One-Step-Lag Algorithm

The OOSM'’s problem can be formulated as follows. At time ¢, we use the measurement Z; to
update the target state to get x;; subsequently, an earlier measurement’s Z; with time stamp t; arrives,
which satisfies the following in Equality (5), where Z; is called an one-step-lag OOSM. The goal is to
re-estimate the current state x; with OOSM Z;.

teq < tg < stg. (5)
Applying Equation (1), we can get the backward transition equation as follows:
X = Fraxa + Weq, (6)

where x, is the state of target at time d, F(k,d) is the state transition matrix to time f; from time t4,
and wy 4 is the process noise during this interval. And then, we can get the backward transition
equation from (5):

xXg = Fax(xx — wya), @)
where F; is the backward transition matrix, and it is also the inverse matrix of F; ;, which means

Fir = Fk_dl' For a one-lag measurement problem, in which t;,_; < t; < t;, the schematic diagram is
shown in Figure 1.
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Figure 1. Out-of-sequence measurement (OOSM).

Based on the LMMSE criterion, using the basic equation of linear estimation, we can get the
backward prediction of the state from f; to t; as follows:

2k = Fra (R — Dreapr). ®)

where @y ;. is the estimation of process noise of backward prediction, and it is assumed to be zero in
the sub-optimal B1 algorithm, which means under this situation @y 4, = 0, and based on this point,
we can get the following equation:

Rajk = FioaXx k- )

Then the covariance matrix of backward state prediction can be calculated as follows:
Paie = FealPae + Pl = P = (Piae) 1 Fa: (10)

The related covariance matrix in the Equation (10) can be calculated as follows:

P = Qras (11)
P = Qud — Pe—1H{ S ' HiQuas (12)
Py = Pejk—1 — Peje—1H{ S " HicPje_1- (13)

Here, we just give the equations of the B1 algorithm, and the derivation of the equations in detail
can be found in [27]. The covariance matrix of the measurement of backward state prediction is

Sq = HyPyHJ + Ry. (14)
The covariance matrix between state x; and measurement z; is
P = (P — P,gg"k)ﬁ{ CHI (15)
Then we can calculate the filter gain as follows:
K = Py (Sa) ™" (16)
therefore, the re-update of current state £;; using the OOSM z,; is

Rhja = R + Ka(za — Hafya)- 17)
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2.3. GM-PHD Filter

As mentioned in the previous section, the multi-target tracking algorithm based on random sets
effectively avoids the problem of data association. Moreover, it does not need to know the number of
targets in advance. In a word, it brings a new idea to solve the problem of multi-target tracking.

In multi-target tracking scenarios, the birth and death of the target should also be considered
except from the target motion. Thus, it is necessary not only to estimate the state of multiple targets,
but also to estimate the number of targets. This means that the number of elements in the multi-target
state set and measurement set is variable. So, in a multi-target situation, the states of targets and
measurements can be represented by the following:

X = {x}, .., x'®} € F(Ey), (18)

Zi = {2}, .. 2"} € F(Ey), (19)

where (k) and m (k) are the number of targets and the number of measurements at time t;, respectively,
and F(E;) and F(E,) are the multi-target state space and measurement space.

In the multi-target scenario, the birth and death of the target should also be considered separately
from the target motion. At time t;_;, each target either survives at time t; with the probability p;, or
dies with probability 1 — p, ;. At time t;, a new target may arise either by newborn or by spawning
from a target at time t;_;. Therefore, the multi-target state of next time t; can be modeled by the
following RFS:

Xk = Sk(Xg—1) U Bp(Xg—1) U Tk (Xi—1), (20)

where S(X)_1) is the RFS of multi-target state at time t;, which evolves from time t;_1, Bg(Xy_1) is
the RFS of the newborn target, and Ty (Xj_1) is RFS of targets spawned from the previous state. Due to
the existence of clutters in measurement, the RFS of measurement can be modeled as:

Zy = Or(Xp—1) UK(Xp_1), (21)

where O(X;_1) is the RFS of measurement of targets, and Ki(Xy_1) is the RFS of measurement
of clutters.

The PHD filter is a typical RFS-based multi-target tracking algorithm. However, there is no closed
form solution to PHD recursion, in general. But the PHD recursion has a closed-form solution in
a certain class of situation, in which the multi-target model satisfies the linear Gaussian assumption. In
this situation, the Gaussian mixture is used to approximate the intensity.

For clarity, the Gaussian mixture PHD (GM-PHD) filter is summarized in this paper, and readers
can find more details in [11]. Under linear Gaussian assumption, the intensity at time t;,_; can be
represented by the following equation:

(S M o)
v1(x) = Y wp? N (gm” P, (22)
i=1

Then, the predicted intensity is given as follows:

Okk—1 (%) =05 kpe—1(%) + g kpe—1(x) + 04 gx—1(x)
Jijk=1 (23)

_ (i) oy (D) (i)
= ; wkl\kfl‘/\/’(x’mkl\kfl’PIqZkfl)’
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where v iji_1(x), g kjk—1(x), Uy k-1 (x) represent intensity of survival target, intensity of new target
spawned by the previous target, and intensity of newborn target, respectively. These three intensities
are also Gaussian mixture, and their specific expressions can be found in [11]. Next, we can get the
posterior intensity, which is given as follows:

op(x) = (1= ppi)okk—1(x) + Y vpi(x;2), (24)
ZEZk
e (i) pli)
vpi(xz) = Y wy (Z)N(x;mklk,Pk|k), (25)
i1

where pp  is the probability of detect, vp i (x;z) is the update item of predicted intensity, and the
(i) (i) pli)

expression of w,’(z), My P
and readers can also find the details in [11]

can be found in [11]. Finally, the pruning and merging is performed,

3. Multi-Target OOSM Tracking Algorithm

In the above two sections, the problems of OOSM and multi-target tracking based on RFS were
discussed. In fact, these two issues have been widely studied. And the issue of multi-target tracking
using OOSM has also attracted a lot of attention recently. However, to the best of our knowledge,
there is no relative work about RFS-based multi-target tracking using OOSM. In the following, a novel
multi-target tracking algorithm based on RFS is proposed, in which OOSM is used to re-update the
posterior intensity. As we can see from Equations (9) and (12), predicted covariance Py ;_; is needed
to calculate the retrodiction covariance P;;. However, in the GM-PHD algorithm, after pruning
and merging, there is only posterior information left in the Gaussian component. In this situation,
OOSM cannot be used to re-update the posterior intensity. Therefore, when measurement arrives,
the judgment of whether the measurement is a delay should be executed first. If the timestamp of
measurement shows that the measurement is in sequence, the update process of the GM-PHD filter
is performed. On the contrary, if the measurement is a delay, our proposed algorithm is performed
to re-update the multi-target state at time ;. The flowchart of the proposed algorithm is given in
Figure 2. Recalling the update equation of GM-PHD filter, substituting Equations (23) and (25) into
update Equation (24), then the update equation can be rewritten as follows:

Jijk—1

op(x) = (1= pp)vgp—1(x) + Y ), “’l&i) ()N (x; ml(cl\%(Z)’PlEIi’z)
267; i=1 (26)

et @ o) Pl 0 pli)
=1-ppy) Y. W N (mg Py 1) + Y, w N (x;my, Pyp).
i=1 i=1

where the |Zi| is the number of elements of set Z;. In Equation (26), the first item in the right side is
the prior intensity, which is associated with the estimated state £;;_;. It also represents targets which
are not detected, and we refer to it herein a “prior target’. The second item represents detected targets,
which we refer to herein as "posterior target’.

The ’prior target’ is the target which is not detected at time t;, but when OOSM arrives, it may
contain information about the ‘prior target’. Therefore, when OOSM arrives, the estimated state 5,4
associated with “prior target’ should be updated. Analogously, the "posterior target” is also needed
to re-update using OOSM, and the weights of Gaussian components also need to be modified. The
diagram of the classification processing algorithm using OOSM is shown in Figure 3.
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Figure 2. Flowchart of proposed algorithm. GM-PHD = Gaussian mixture probability hypothesis density.
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Measurement | " correction |
A |
| 2 |

| k] |

|

Figure 3. OOSM.
In the following, the derivation of the proposed algorithm is given.

3.1. Backward State Prediction

For simplicity, we assumed that there is no targets newborning and spawning from exist
targets during time f; to t;, which means the number of targets at time ¢; and time ¢; are the same.
The multi-target state at time f; can be represented by the following;:

Xq = U Sd\k(x)/ (27)

x€X-1YUXpi
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where Sy (x) is the RFS of multi-target state at time #; which evolve from time #;, X ;_; is the RFS of
undetected targets’ state, and Xp x is the RFS of detected targets’ state. The intensity at time f; can be
divided into two items. One is retrodicted from the undetected intensity (1 — pp x)vgx—1(x). The other
is retrodicted from the detected intensity }_.c 7 vp x(x;z). Applying retrodiction Equations (9) and (10)
of the B1 algorithm, the intensity retrodicted from the undetected intensity is given as follows:

Jilk—1

Og-1(x) = 05 g1 =Psa(l = ppx) Y @i N(omy P )
i=1

(28)
S @ pld
= Z wd\k N d|k—1’Pd|k—1)’
where
W' @ 0 _ (i)
d|k 1 (1 — Pp, k)PS dwklk 17 d\k 1 =k kmk|k 17 (29)
(i) ( i) ww(i) xw (i) xw (i)
Pak—1 = FarlPeje1 + Peai’s = Peap—1 — Peap— DTIEL (30)
where P wl) is the ith Gaussian component’s covariance of process noise from time t; to time #,

kdlk—1
and P]f ;}|§<) is the ith Gaussian component’s cross-covariance between state and process noise. They
can be represented as follows:

PIZJZ\JIEZ = cov{wea|Z 1} = Qua, (31)
wa(i) _ cov{wk,d, xk\Zk_l}

k,d|k—1

= E{wyalxk — L) 1251}

= E{wya[FraXa + kg — £k|k71}T|Zk_l} (32)
= E{wiqwi 412571}
= Q-

Substituting Equations (31) and (32) into (30), we can rewrite Equation (30) as follows:

P(i) _ de[P(i) + P;”;IJ() _ wa( i) _ (wa( )) ]de

dlk—1 k\k 1 k=17 “kdlk kd|k (33)
:de[ k\k 1 de]de
Analogously, we can easily get the intensity retrodicted from the detected intensity:
| Zk | Tije—1 0 0
0k (X) = Vs gk =Psd Z wk\kN X1 s Pd|k)
(34)

\Zk|]k|k1 ) pl
= Z “’d|k d|k’Pd\k)

where

W;L = Ps,dw,g,)(, mg& = Fd,km,(f&, (35)
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P = Fag[P{ + Py — Pt — (Br) I (36)

where PIE\IZ' P]:,U ;T;C(i), nd P]f ZI)\IEI) can be derived from Equations (10)-(12). And the pseudo-code for

backward state prediction is given in Algorithm 1.

Algorithm 1 Backward state prediction

() 0 p Y ke 0 Jkk-1 ) )2kl kk—1
Input {w,’,m; ", P } {wk|k 1 M1/ k|k l} U{wk‘k, e k\k} , and the out of

sequence measurement Z;
Step 1. Backward prediction
fori = 1, 2, veey ]k\k—l do

:Sl]|3<71 = (1= ppa)ps, dwﬁi 1'mg|3<71 = Fdrkml(cl\ifl

(i) - (i) ww, (i) xw, (i) xw,(i) \T10T
Pd\k—l _Fdrk[Pk|k—1+Pkd|k 1 Pkd\k 1 (Pk,d\k—l) ]Fd,k

end for

w

fori = 1,..., ‘ZkUk\kfl do

() @ ) _ (i)
wd]|k Ps,dWy e My = Fa kg

(i) _ (i) ww, (i) xw, (i) xw,(i)\T1 T
Pd\k de[Pk\k+Pkd|k Pk,d\k _(pk,d|k ) ]Fd,k
end for
(i) Jkk—1 ) ) Zelkik—1
OUtPUt{wd\k 1 M1/ d\k Ay U{wd\k’ dlk d\k}

3.2. Re-Update with OOSM

It has been mentioned in Equation (26) that intensity v(x) can be divided into two items.
Therefore, when OOSM arrives, it is used for re-updating these two items, respectively, by using
OOSM, and we can get the following re-update equation:

ok (x) =(1 = ppa){[1 — ppxlvgr—1(x) + Zz opi(x;2)} + Zz {opkpk=1,4(%;2) + vp kpa(x:2) }

=(1 = pp,a)okk + Y, {0 xk-1,4(%:2) + Vp ra(;2)}
ZGZd

(37)

where the first item represents the undetected intensity at time f;, and the second item represents the
detected intensity at time t;. And intensities vp yx_1,4(x; ), Up kx4 (¥; 2) are given by:

=
(i) (i)
UD k1,4 (%;2) 2 wk\k 1N (% M- 1d’Pk|1k 14)7 (38)
(i) S C)) (i) (@)

My 1a = Moy + K1 (z = Hamgy ), (39)

(i) (i) z,(i) (i) \=1/p¥z(i) \T
Pk|k 1,d Pk|k 1 Pkd\k 1(5,1“(_1) (Pk,d|k_1) ’ (40)

1 Zic kk—1

Upkjka(X;2) = ; W,Ei,)cld/\/( ,E‘ZI,P,S‘;) (41)



Sensors 2019, 19, 4315 10 of 19

mygy = migy + Kgp(z = Hamy), 42)
@) _ p) A1) ( (i) ()
Peka = P — lffzuc (Sd|k) i Ifjl|k ) (43)

can be derived from the Equations (13) and (15). The pseudo-code

(i)
k|k—1,d

(i) (i) (i) (i)
where Kdlk 1’Sd|k 1 Kj Zk and Sd|k

is given in Algorithm 2. And weights w w!!)

K[kd AT€ given in the next section.

Algorithm 2 Re-update using OOSM

(i) }]k\k 1

(i) }leUk\k 1
dlk—17 k-1 d\k 1

Input the output of backward state prediction {w U {w dlie Ml d\ i

Step 1. PHD update components
fori = 1, 2, ceey ]k‘k*l do

xz,(i) T 4T
Pkd\k 1= (Prk—1 — Qua)Fj  Hy

@ _ (i) T
Sd|k 1 Hdpd|k 1Hi + Ry
(i) _ pxz(i) (i) -1
Ky dj—1 Pkd|k 1(Sg-1)
end for

fori = ]k\kfl +1,.., |Zk|]k\k71 do

kd\k = Qrd — k\k HE (S S¢) T HiQxa
szr( i) _ (P(l) pXY (i ))FdiHT

k,d|k Kk ~ Thdk
(i) (i) 5T
Sd|k Hde|kH + Ry
(i) _ pxz(i) i)
Kk Ak = Pl (Sd\k)
end for

Step 2. Re-update using OOSM
for! =0,1,...,|Z;] —1do

fOI‘j = 1,2,..., ]k|k—1 do

“’151{“13{]; =Pp d“’éﬁle( (1), Hdmil\gc 1'5511& 1)
k\l]ﬂ({,}i : l(cj\l)c 1 +K1§];\k 1(Z*Hdm‘(1|3< 1)
Poacia” = Bl = P Sfher) )T
end for
forj=1,2,..,|Z|Jxx—1 do
= ol )
NZTiea+7) _ () (i) (i)
T . S
Pra = The ™ Pk (Sd\k) (Pk,d\k )
end for
end for
Output {wk|k 1d/m1(ci;< ld’Pk(\k 1d}IZNk‘k 1U{ k|kd’ ml(czacd’ k\kd}‘ZdHZkUk‘k 1
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3.3. Weights Correction

In the above section, we get the intensities that are re-updated with OOSM. These two intensities
are re-updated using the same measurement Z;, which is different from Equation (39). Weights of the

intensities need to be corrected, and corrected weights are given as follows:
Prior target:

(i) pDkw,E”?{ 1‘76(1)( )
“klk-14 = Jxk-1 oW g0 1ZklTkge—1 (1) (1) ’ (44)
Kk(z)+PD,k(Z] 1 Yk 1qd\k @)+ X Teka+1 wk|dqd‘k(2))
Posterior target:
; Pp kw,ﬁjﬁqfﬁ (z)
w’g")"d - Juk-1, () () ZlTgx=1 (1) (D) 1\ (45)
x(2) + o (T2 wiiy a4y 1 (2) +EC T+ @apda(2)
where
q;‘}c (&) =Nz Hdmg‘i 1,Hdp§|,2 HI+Ry), (46)
W N(zHm'Y, 1, PVHT + R 47)
qd\k( z) = N(z dM g B g g + Ry).
For completeness, the pseudo-code for GM-PHD using OOSM is given in Algorithm 3.
Algorithm 3 Weight correction
o) k=1 )y 12kl Tkjk—1 (i) (i) 1Za|Tkjk—1
Input {wk|k 17 Mejk—17 k|k 1} U{wk\k’ k\k’ k\k} U{wk|k 14" M- ld’Pk\k 1atim1
(i) 1Zal| Zk T
{wklkd’mk\kd’ k\kd}
Step 1. Weight Correction
for! =0,1,...,|Z;] —1do
fori=1,2,.., Jijx_1 do
w(l]k\k—1+i) B l(c\}c 1d
klk— Z G ZZ 1 G
k=14 Kk(ZHZz":qu‘k 1“’1(<|?<71,d z“:klH ki 1“’15\1)@11
end for
fori = 1,2,..., |Zk|]k|k—l do
(Zel e 1 +i) oy
k|k,d - Zgl)) i 1Z N Zgl k-1 (i
| K (2)+ Zz 1 . 1‘*’/(41)(71,{1 i:}; i laiﬂwz
end for
end for
(i) (i) Tk @ 0 p )1 12kl
Output (1 - Pb, d) wk|k 1’mk\k 17 k\k 1} u {1 - Pp d)wk|k’mk\k’ k\k}
(i) (i) 1Zal Tipe—1 o) 1Zal| Zkl Jipe—1
{wk\k 14" M- ld’Pk\k 1atim1 U{ k|kd’ Mk Tk \kd}
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Algorithm 4 RFS-based multi-target tracking using OOSM

Input
Jilk—1

{wl((i),ml((i),PIE )}]k\k

measurement Zg

U {w,(cjk, @ Pﬂi}'zkw‘k !, and the out of sequence

{ k|k l’mk\k 1 k\k 1} Mk Lk

? 1 %afsz}rd predlctlon

klk—1d
_ (1) —F o)
Pde = Fapm
W ! d&’f Yt (i
nd%r de[Pk|k 1+Pkd|k L= Praeor — (Pajen) T1EL
forj=1,. |Zk|]k|k 1 do
(] F
Pl (‘V‘ 5w (i) kau" pr0 i\ T T
g k\k d|k kd\k _( kd|k )] dk
§te_p ]1’,151,3 u k(%catle &omponents
\k 1 de deH
i
=P ( d\k 1) !

ndkfdk 1 kd|k 1
§0f]*]k|k 1+ 1 0 | Zk|Jg—1 do
ot
Ifs}\k H kd\k )Fd,kH
S%VS Holygtta 3
xz 1
K = Pkd|k (Sd\k)

§t(;:3 3. lée upd&te|u51i1§ OOSM
d
fOI']—l 2 Ik|k 1d0

g1+ ) '

w, k=1 de(u;li N(z U+, H m;‘) 1,5;]‘3( 1)
Hk\k 1+7) ) () IE]

m&\f—mﬂ i +K k) 1( Hdmdk 1)

p Wik 1 ] P(] (Sd]\k 1) 1(pxz(]) )T

klk—1 kd\k 1 kdlk—1
?(I’Ird;%g L2, ..., |Zk|Jxx-1 do
(N2 Tie— 1+]) (])N( (+1), g, ) S(j))

w = PDd%g [k” = d|k
m’f"fmk ) _ ) +K) (2 — Hym fk)
i _ i

ks ) T
?or Kk Plf,il\k (Sd]\k) (Pkil\k])

§te‘9 £ 8V%1ght|50frectlgo
forj=1,2,.., Jyx_1 do
()

(kk=1+i) _ Drlk-1,d _
ndkf|]:)rl A Ki(z )+Z‘ Fale wl(cl\l)cfl,d-"_zz":ﬁ“ e wlil\;f,d
forj=1,2,. s | Z|Jik—1 do
(12l r+) _ ha
k|k,d xi(z )+Z\ Zgllkjk—1 “’;El“;)(,ld ZleZdUk‘k,l w;((i;)(,d

cﬂ%for 4 ] | 4 ‘Z U

o) |ZdUk\k 1 (z’) |ZdHZkUk\k 1
{wk\k 14" Mkjk— 1d’Pk\k 1d} U{ k|kd’mk|kd’ k\d}

4. Simulations

In this section, the distance which is used to measure the performance of multi-target tracking
is introduced first. Then another two algorithms are given to compare with the proposed algorithm.
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Finally, several simulation scenarios are given to prove the effectiveness of our proposed algorithm.
And simulation results show that the proposed GM-PHD using OOSM has almost the same
performance as the GM-PHD using in-sequence measurement (ISM).

4.1. Distance

It is also an important issue to measure the tracking performance properly, which directly leads
to the choice of the tracking algorithm. Improper criterion will result in tracking accuracy that cannot
meet the requirement. Root mean square error (RMSE) is used to measure the distance error between
estimate position and real position in a single-target tracking situation. Analogously, in a multi-target
tracking scenario, RMSE is also an indicator of tracking performance. However, there is more criterion
than that. For example, the accurate rate of the track associate is also an important indicator, but it does
not work because the GM-PHD filter based on RFS avoids using the data association technique. Thus,
Mabhler [32] and Vo [33] proposed three general criteria to measure the effectiveness of multi-target
tracking. The essence of these criteria for multi-target tracking performance is to measure the distance
between the real state set and estimate state set.

Optimal subpattern assignment (OSPA) distance is an improvement of Wasserstein distance. The
definition of OSPA distance is given as follows:

1 1X| 1
(- (minzer, Y 4 (i, ym )P+ P (Y] = |XD))7, m<n
i=1
d—;c) (X’ Y) = _(C)

dp (Y/ X)/ m>n
0, m=n=020

0, m<mn

d_gg)(X, Y) = minnenﬂmaxlgignd_(c)(xi,yn(l.)), m=n

0, m#mn,

where d(©) = min(c, ||x — y||), || - || represents the Euler norm, c is the truncation distance, |X| is

the cardinality of set X, and I, represents all permutations of {0,1,---,n}. The OSPA distance
can be divided into location error and cardinality error which, respectively, correspond to first item
and second item of d%pc) (X,Y). Thus, it can evaluate the performance of multi-target filtering more
comprehensively. It also serves the shortcomings of Wasserstein distance. And it has definition even
when one of the two sets is empty or all the two sets are empty. Parameter c and p affect the weights of
cardinality error and location error. How to choose the values of c and p can be refer to [33]. In general,
the OSPA distance is currently recognized as an indicator of multi-target filtering.

4.2. Compared Algorithm

To prove the effectiveness of the proposed algorithm, two other algorithms are given here
for comparison.

The first is GM-PHD using ISM. Under this circumstance, the order of arrival of two sensors at the
fusion center is the same as that of sampling. Then, the sequential fusion of asynchronous measurement
based on the GM-PHD filter is performed in fusion center. In another situation, the OOSM is discarded
directly. Estimation of targets’ states is performed using only in sequential measurements. This
situation is called Frame Drop here. The representations of these two situations are shown in
Figures 4 and 5.
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Time stamp of measurement: VAN >
N Y N \
Measurement arrives at fusion .

center:

Yy

In sequence me asurement

A /\ Respectively represent measurements of sensor 1,2

Figure 4. Measurements arrive at fusion center in sequence.

Time stamp of measurement: —, A B
ke—2 Ly ti—1
Measurement arrives at fusion % ' 8¢ >
center:
Discarding OOSM

A /\ Respectively represent measurements of sensor 1,2

Figure 5. Discard OOSM when it arrives.

4.3. Simulations Results

The simulation scenario designed here is in the 2-D plane. In the detection area of [—800,800] m
x[—800,800] m , there are four targets appearing, all of which adopt the constant velocity (CV) model.
We recall the dynamic equation as follows:

X1 = Fkxk + Wy,

when the motion of target is CV, the transition matrix and the covariance of process noise are given as
follows, respectively:

T3/3 T%2/2 0 0
T2/2 T 0 0

_ 2
Q= | 0 T3/3 T2/2
0 0 T?/2 T

F =

o O O =
o O =N
o = O O
- - o o

where g, = 1(m/s?), T is sampling time, and we set it to 5s. Each target has survival probability
psx = 0.99, and each target is detected with probability pp; = 0.98. The observation model has
been given in Equation (3). The measurement matrix and covariance of measurement noise are given

g_|1 000 o2 0
0 o2

0 010
where 0y = 0y = 5 m . Measurements are immersed in clutter, and the clutter can be modeled as

as follows:

, Ry =

a Possion RFS K} with intensity:
ke (z) = AVu(z),

where u(z) is the uniform density over the surveillance area, V is the volume of the surveillance region,
and A, is the average number of clutter returns per unit volume.
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The algorithm uses the Gaussian component pruning method in the GM-PHD filter. Pruning
threshold is T;,, = 107>, merging threshold is U = 4 m, and the maximum number of Gaussian
component is [y = 200. Gaussian component with weights over 0.5 is considered as the estimation
of state of target.

Simulation results are averaged by 100 Monte Carlo experiments. The real trajectory of each
simulation is the same while measurements are regenerated each time. The real trajectory of targets
and measurements of 100 simulations are shown in Figure 6. The tracking results of three algorithms
are shown in Figure 7. It is obvious that the tracking performance of GM-PHD using OOSM
and GM-PHD using ISM is nearly the same, while the performance of Frame Drop GM-PHD has
decreased significantly.

Measurement and Trajectory

R T RSN 800 T T T T T
. Measuremem * Measurement
z Trajectory 600 - rajectory B
1 = -
£ g il < ,i.
= s 400 - ]
E E 200 1
[0} [0}
© ©
c c
3 3 o 1
o o
o o
5] 5]
- > -200 - 1
-400 - J
-600 1
X ¢, 2 Py & x| -800 L L L L L L L
800 600 400  -200 0 200 400 600 800 800 600 400  -200 0 200 400 600 800
x coordinate/m x coordinate/m
(a) In the presence of clutter. (b) In the absence of clutter.
Figure 6. Measurements and trajectories of multi-target.
800 Tracking result 00 Tracking result
P PG s S o e R = = T T T T T T T
% %W AR E ik O
?ﬁ fﬁ & 12&3:; Y% 4| * Estimation of ISM-GMPHD * Estimation of ISM-GMPHD
600 ,% * Py #] O Estimation of OOSM-GMPHD 600 - O Estimation of OOSM-GMPHD ]
N ;}ﬁgy gk x P ¥ Estimation k4 imation of Frame Drop-GMPHD
AN oy ¥
77 B
400 2 400 1
£ 200 £ 200 - 1
@ @
© ©
c c
3 3 o 1
o o
Q Q
o o
> -20( > -200 1
-400 -400 1
k-l
-600 -600 1
hag

-600 -400 -200 0 200 400 600 800

x coordinate/m

(a) In the presence of clutter.

-800
-800

-600

-400 -200 0 200 400 600 800

x coordinate/m

(b) In the absence of clutter.

Figure 7. Tracking results of multi-target.

A detailed analysis of the performance of tracking algorithms is given below. The real number of
targets at different times and the number of targets estimated by different algorithms in the presence
of clutter are given in Figure 8a. And the estimated number and real number in the absence of clutter
is given in Figure 9a.
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Figure 8. Estimated number and standard deviation in the presence of clutter.
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(a) Estimated number and real number of targets.

From Figure 8a we can see that in the presence of clutter, the result of target number estimation of
GM-PHD using OOSM is even more accurate than GM-PHD using ISM. Meanwhile, the estimation of
the number of GM-PHD discarding OOSM has a great deviation. And as time goes by, the algorithm
even begin to diverge. The more detailed data can be seen in Figure 8b. From Figure 9, we can see that

Standard deviation

o

Mean standard deviation

1N
~

o
w

o
)

0.3

0.2

0.1

Standard deviation of estimated target number

K
—— ISM-GMPHD
—6—00SM-GMPHD
—*— Frame Drop-GMPHD
0 5 10 15 20 25 30 35 40
Time/Frame
Estimation of mean standard deviation of target number
L 0.7 0.26 0.29 4
ISM OO0SM Frame Drop

(b) Standard deviation of estimated number.

Figure 9. Estimated number and standard deviation in the absence of clutter.

these three algorithms have almost the same performance in the estimation of number.

The simulation results of OSPA distance used to measure the results of multi-target tracking are

also given as follows.
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OSPA Distance OSPA Distance

— ISM-GMPHD — ISM-GMPHD
E 15[ | —e—00SM-GMPHD 1 E 4ol | ¥ 0OSM-GMPHD
8 —%— Frame Drop-GMPHD f 2 —*— Frame Drop-GMPHD
s 5
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0 . . . . . . . 0 . . . . . . .
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Distance/m
(&)
n
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(a) Optimal subpattern assignment (OSPA) distance in (b) OSPA distance in absence of clutter.
presence of clutter.

Figure 10. OSPA distance between real state and estimated state.

From Figure 10b, we can see that under OSPA distance criteria, our proposed algorithm which
can process OOSM has almost the same performance as that of GM-PHD using ISM in the absence
of clutter. However, as we all know, the clutter exists in most tracking scenario. From Figure 10a,
we can see that our proposed algorithm using OOSM has better performance than GM-PHD using
ISM in the presence of clutter. At the same time, in the presence of clutter situation, the performance of
GM-PHD has decreased evidently when OOSMs are discarded directly. It is easy to understand
that discarding OOSM directly leads to a reduction of information and consequently results in
performance degradation. Compared with GM-PHD using ISM, GM-PHD using OOSM can be
seen as doubling the sampling interval while the sampling information of each sample double. Due to
targets are all adopting CV model, the maneuverability is not strong. Therefore, compared with the
increase of information obtained by each sampling, the increase of sampling interval has little effect
on the estimation accuracy. Thus, our proposed algorithm which re-updates intensity using OOSM
outperforms GM-PHD using ISM in performance.

Table 1. Tracking performance comparison of different algorithms.

Algorithm
OSPA Distance (m) ISM OOSM Frame Drop
clutter =0 4.24 4.31 4.82
clutter = 4 6.01 523 9.41

Where clutter = 0 represents there is no clutter in the tracking region, and clutter = 4 represents that the average
number of clutter in tracking region is 4 at each sampling time. The detailed data is shown in Table 1 which can
adequately demonstrate the effectiveness of our proposed algorithm.

5. Conclusions

The issue of OOSM appears frequently in tracking systems. To better use the OOSM in multi-target
tracking scenarios, a novel algorithm was designed in this paper. Firstly, the GM-PHD filter is
introduced, and then the B1 algorithm which can solve the OOSM problem in a single-target tracking
scenario is also given. Based on this, we used OOSM to re-update the posterior intensity of GM-PHD.
Under the framework of the Kalman filter, we derived closed-form recursion for the intensity which is
re-updated by the OOSM. Implementation of GM-PHD using OOSM was also given. Finally, several
simulations were given to show that the tracking performance of our proposed algorithm is almost
the same as that of GM-PHD using ISM in the absence of clutter, and the tracking performance of our
proposed algorithm is even better than GM-PHD using ISM in the presence of clutter. This strongly
proves the effectiveness of our algorithm.
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