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Abstract: Recently, many related algorithms have been proposed to find an efficient wireless sensor
network with good sustainability, a stable connection, and a high covering rate. To further improve
the coverage rate of movable wireless sensor networks under the condition of guaranteed connectivity,
this paper proposes an adaptive, discrete space oriented wolf pack optimization algorithm for a
movable wireless sensor network (DSO-WPOA). Firstly, a strategy of adaptive expansion based
on a minimum overlapping full-coverage model is designed to achieve minimum overlap and
no-gap coverage for the monitoring area. Moreover, the adaptive shrinking grid search wolf pack
optimization algorithm (ASGS-CWOA) is improved to optimize the movable wireless sensor network,
which is a discrete space oriented problem. This improvement includes the usage of a target–node
probability matrix and the design of an adaptive step size method, both of which work together to
enhance the convergence speed and global optimization ability of the algorithm. Theoretical research
and experimental results indicate that compared with the coverage algorithm based on particle
swarm optimization (PSO-WSN) and classical virtual force algorithm, the newly proposed algorithm
possesses the best coverage rate, better stability, acceptable performance in terms of time, advantages
in energy savings, and no gaps.

Keywords: wireless sensor network; coverage rate; wolf pack algorithm; optimization; probability
matrix; adaptive step size

1. Introduction

The wireless sensor network (WSN) is one of the most promising technologies for some real-time
applications because of its size, cost-effectiveness, and easily deployable nature [1]. For decades, with
the rapid development of the Internet of Things, artificial intelligence, and other advanced technologies,
the use of wireless networks as a basic technology has been studied a great deal by researchers, such as
in [2], in which Dai et al. proposed a novel multichannel network with infrastructure support (called
the MC-IS network), which has not been studied in the literature. To solve the problems of large-scale
wireless networks, with their wide variety, high volume, real-time velocity data and huge value,
which leads to unique research challenges that are different from existing computing systems, in [3],
researchers presented a survey of state-of-the-art big data analytics (BDA) approaches for large-scale
wireless networks and the technical solutions to challenges in BDA for large-scale wireless networks
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according to each stage in the life cycle of BDA. They also discussed open research issues and outlined
future directions in this promising area.

In particular, WSNs are being used for more and more applications, such as in military
reconnaissance, environmental monitoring, smart homes, and medical health, and so on; for example,
in [4], Thakur et al. reviewed the applicability of wireless sensor networks in precision agriculture
to identify various WSN technologies adopted for precision agriculture and the impact of these
technologies on achieving smart agriculture. In [5], Li et al. presented a forest fire detection system
framework based on WSN and its implementation scheme, then they discussed some key problems,
focusing on forest fire forecast modeling, WSN node deployment, WSN nodes and forest fire positioning,
and wireless communication control protocol. In [6], WSN was used to monitor the water environment
and automatically collect information on the ecological environment, meteorological environment,
water pollution, and so on. In [7], because existing opportunity networks can hardly satisfy the
requirements of disaster scenarios for low-latency messaging, Fu et al. developed a new opportunistic
network framework, the WSN-assisted opportunistic network (WAON), and proposed a forwarding
mechanism, net spray for WAON, which supports mobile-to-mobile, static-to-mobile, mobile-to-static,
and static-to-static operations.

However, in a complex and changeable working environment, WSNs need a large number of
sensor nodes to cooperate with each other to complete detection and sensing tasks [8]. For various
monitoring areas, a reasonable arrangement of sensor nodes is conducive to improving the working
efficiency and reducing the energy consumption of WSNs. Mobile nodes are used to dynamically
reconstruct the network structure, expand the network coverage rate, and optimize performance; thus,
they have become one of the key technologies of WSNs [9].

Accordingly, in recent years, researchers have put forward many effective methods for solving the
location optimization problem of wireless sensor nodes from different perspectives. In [10], Zhou et al.
proposed an improved algorithm based on virtual force where the WSN was divided into grids and
nodes, which were redeployed under the adaptively chosen resultant force to enable WSN to gain
the best coverage. In [11], in order to solve the coverage problem, Zhang et al. proposed a coverage
algorithm based on virtual forces including an enhanced coverage algorithm, a connectivity-preserved
method for neighboring nodes, and a coverage algorithm for the relevant area. In [12], Yarinezhad et al.
proposed a fixed parameter tractable (FPT) approximation algorithm with an approximation factor of
1.2 for the load-balanced clustering problem (LBCP) and an energy-efficient, balanced routing algorithm,
which effectively solved the load-balanced clustering problem and maximized the network’s lifetime
by reducing the energy consumption. In [13], Chen et al. proposed a novel wireless sensor network
with energy-efficient coverage that achieved a good balance between target coverage and energy
consumption by fusing the genetic algorithm (GA) and WSN. In [14], Somaieh et al. proposed the
distributed energy-aware hexagon-based clustering algorithm to improve coverage (DEHCIC), which
considers energy and topological features such as the number of mobile neighbor nodes and number
of neighbor nodes to elect cluster heads and attempts to cover holes as much as possible by static
sensor nodes, while the closest mobile node is used to cover holes if this is not possible; furthermore,
the proposed algorithm retains sensor nodes in an active mode that covers interest points and puts
others into a low-power sleep mode. In [15], Alavi et al. proposed a distributed event-triggered control
strategy for DC microgrids, based on the publish–subscribe model over industrial wireless sensor
networks, to efficiently stabilize grid voltage and to further balance the energy level of energy storage
systems. In [16], Sajwan et al. proposed a novel routing algorithm for wireless sensor networks,
which achieved uniform energy depletion across all nodes and, thus, led to a prolonged network
lifetime. In [17], to improve network coverage, So-In et al. proposed a novel distributed deployment
algorithm, the coverage hole-healing algorithm (CHHA), to maximize area coverage. In [18], Wang et
al. proposed “parallel particle swarm optimization-based mobile sensor node deployment in wireless
sensor networks” by adopting particle swarm optimization (PSO) in a parallel mechanism to optimize
the deployment of mobile sensor nodes.
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Unfortunately, all of these algorithms have their own shortcomings, in that some coverage rates
are insufficient, some can only be used in specific environments due to constraints, and so on.

In 2007, Yang and co-authors proposed the wolf swarm algorithm [19], which is a new swarm
intelligence algorithm. Because of its excellent performance, some special variants of the wolf pack
optimization algorithm have been proposed to gain optimal solutions. For example, in [20], Wang et al.
proposed “an adaptive distributed size wolf pack optimization algorithm using the strategy of jumping
for raids” in order to enhance performance. In [21], by introducing the position order coding method
in the initialization phase, Huang et al. studied the path optimization problem in discrete domains
and introduced a secondary search in the iterative process to improve the speed and accuracy of
the algorithm to determine the optimal solution before the maximum number of iterations. In [22],
Wu et al. proposed a discrete wolf pack algorithm by redesigning the position of artificial wolves and
intelligent behaviors to solve the traveling salesman problem. In combination with the probabilistic
nearest neighbor method, the proposed algorithm preserved the cooperative searching feature based
on the job distribution of the wolf pack and was able to balance both the breadth and depth of the
searching ability. In [23], a novel, discrete GWO was proposed where a random leader selection was
performed, and the probability for the main leader to be selected increased at the detriment of the
other leaders across iterations. In [24], a new model based on the discrete wolf pack search (DWPS)
algorithm was proposed to maximize the number of satisfied passengers, the total number of transfers,
and the total travel time of all served passengers for a transit network design problem.

Consequently, the low coverage of WSN and good performance of the wolf pack optimization
algorithm allow us to attempt to fuse the coverage problem between the two. Therefore, on the premise
of ensuring adequate coverage and absolute connectivity, this paper proposes a method to find the
shortest path to minimize the energy consumption of the whole sensor network.

2. Related Works

2.1. Adaptive Shrinking Grid Search Wolf Pack Optimization Algorithm (ASGS-CWOA) [25]

The ASGS-CWOA was proposed in 2018 by Wang et al. in [25], and it is an efficient variant of
the wolf pack optimization algorithm in the optimization field aimed at solving application problems
efficiently. Its key improvements are as follows.

• Method of Adaptive Shrinking Grid Search (ASGS)

According to the principle of ASGS, during the process of migration or siege, the location of
the current wolf is taken as the center of the search in D directions at the same time (here, D is the
dimension of the solution space). The diagram can be seen in Figure 1.

Sensors 2019, 19, x FOR PEER REVIEW  3 of 15 

 

In 2007, Yang and co-authors proposed the wolf swarm algorithm [19], which is a new swarm 
intelligence algorithm. Because of its excellent performance, some special variants of the wolf pack 
optimization algorithm have been proposed to gain optimal solutions. For example, in [20], Wang 
et al. proposed “an adaptive distributed size wolf pack optimization algorithm using the strategy of 
jumping for raids” in order to enhance performance. In [21], by introducing the position order 
coding method in the initialization phase, Huang et al. studied the path optimization problem in 
discrete domains and introduced a secondary search in the iterative process to improve the speed 
and accuracy of the algorithm to determine the optimal solution before the maximum number of 
iterations. In [22], Wu et al. proposed a discrete wolf pack algorithm by redesigning the position of 
artificial wolves and intelligent behaviors to solve the traveling salesman problem. In combination 
with the probabilistic nearest neighbor method, the proposed algorithm preserved the cooperative 
searching feature based on the job distribution of the wolf pack and was able to balance both the 
breadth and depth of the searching ability. In [23], a novel, discrete GWO was proposed where a 
random leader selection was performed, and the probability for the main leader to be selected 
increased at the detriment of the other leaders across iterations. In [24], a new model based on the 
discrete wolf pack search (DWPS) algorithm was proposed to maximize the number of satisfied 
passengers, the total number of transfers, and the total travel time of all served passengers for a 
transit network design problem. 

Consequently, the low coverage of WSN and good performance of the wolf pack optimization 
algorithm allow us to attempt to fuse the coverage problem between the two. Therefore, on the 
premise of ensuring adequate coverage and absolute connectivity, this paper proposes a method to 
find the shortest path to minimize the energy consumption of the whole sensor network. 

2. Related Works 

2.1. Adaptive Shrinking Grid Search Wolf Pack Optimization Algorithm (ASGS-CWOA) [25] 

The ASGS-CWOA was proposed in 2018 by Wang et al. in [25], and it is an efficient variant of 
the wolf pack optimization algorithm in the optimization field aimed at solving application 
problems efficiently. Its key improvements are as follows. 

• Method of Adaptive Shrinking Grid Search (ASGS) 

According to the principle of ASGS, during the process of migration or siege, the location of 
the current wolf is taken as the center of the search in D directions at the same time (here, D is the 
dimension of the solution space). The diagram can be seen in Figure 1. 

  
(a) (b) 

Figure 1. (a) The searching situation of wolves in adaptive shrinking grid search (ASGS-CWOA) 
when the number of dimensions is 2; (b) the situation when the number of dimensions is 3, where 
the step size of migration is as follows: step_a = 10, or the step size of siege, step_c = 10; and the 
searching number is K = 2 (the red point means the current location of the wolf, while the black ones 
mean the searching locations of the wolf). 

Figure 1. (a) The searching situation of wolves in adaptive shrinking grid search (ASGS-CWOA) when
the number of dimensions is 2; (b) the situation when the number of dimensions is 3, where the step
size of migration is as follows: step_a = 10, or the step size of siege, step_c = 10; and the searching
number is K = 2 (the red point means the current location of the wolf, while the black ones mean the
searching locations of the wolf).
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From Figure 1, it is easy to see that a large number of points is distributed around the current wolf
in some special way, and that means the best solution should be found in the local neighborhood space
centered on the current wolf at the end of this process.

Generally, the strategy of ASGS enhances the performance of exploitation.

• Strategy of Opposite–Middle Raid (OMR)

The main idea of this is that the opposite location from the current wolf relative to the lead
wolf should be inspected first; if the opposite wolf has better fitness than the current one, then the
current wolf will move to the opposite one. Otherwise, 2D points (D means the dimension number
of the solution space) around the current point and the middle point (regarding the current wolf
and the leader wolf) should be inspected. Thus, the point with the best local fitness can be found,
which becomes the new location of the current wolf at the end of this process.

In short, this enhances the performance of exploration.

• Adaptive Standard Deviation Updating Amount (ASDUA)

ASDUA is a dynamic number that reflects the dynamic situation of the wolf pack during any
iteration, which means the population of the wolf pack and the standard deviation of its fitness
determine how many wolves there are and who will be eliminated and regenerated. The standard
deviation can be obtained by Equation (1):

σ =

√
1
N

∑
N
i=1(xi − µ)

2 , (1)

where N means the size of the wolf pack; xi means the fitness of the i-th wolf; and µ is the mean value
of fitness. Then, ASDUA is gained by the following formula.

ASDUA
{

ASDUA + 1, i f f itness(xi) < (µ− σ/2)
Do nothing, i f f itness(xi) ≥ (µ− σ/2)

(2)

Aiming at the problem of solving the maximum, ASDUA is zero when the iteration begins; next,
the difference between the mean value and the SD regarding the fitness of the wolf pack should be
computed, and if the fitness of the current wolf is less than the difference, ASDUA increases by 1;
otherwise, nothing changes. Thus, the value of ASDUA is obtained, and ASDUA wolves are eliminated
and regenerated.

In brief, this enhances the performance of the exploration as well as the OMR.

2.2. Some Covering Models

Generally speaking, a wireless sensor network hopes to cover all the monitered area and include
a few sensors that are as far apart as possible. Several classical covering models are listed as follows.

A: Inscribed Rectangular – Full Covering Model (IRFCM)

As seen in Figure 2a, in IRFCM, the area of the maximum inscribed rectangle about the sensing
circle is the effective covering area of the corresponding sensor, and it is under this model that
the covering rate of the wireless sensor network (WSN) is high and is easy to expand; however,
the overlapping rate is too high, and its value reaches (π − 2)/π (π means the circular constant).
This model requires that Rc is greater than or equal to

√
2 ∗ Rs.
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Figure 2. (a) The diagram of the inscribed rectangular full covering model; (b) the diagram of the
minimum overlapping full covering model; and (c) the diagram of the tangent covering model of the
adjacent boundary (the black point means the current location of the sensor, while the black circle
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B: Minimum Overlapping Full Covering Model (MOFCM)

As seen in Figure 2b, in MOFCM, the area of the overlapping parts of any two intersecting circles
can be calculated according to the radius and the distance between their centers, and the overlapping
area is Rs2 ∗ (2 ∗ π − 3

√
3)/6. Thus, the overlapping rate is (2 ∗ π – 3

√
3)/(6 ∗ π), which is lower than the

value (π − 2)/π from IRFCM, as detailed in Figure 2 (b). Under this model, the covering rate of the
WSN is high, as under IRFCM, and it has the possibility to expand. This model requires that Rc is
greater than or equal to

√
3 ∗ Rs. A detailed discussion can be found in [17].

C: Tangent Covering Model of Adjacent Boundary

As seen in Figure 2c, under this model, the overlapping rate is zero, which is the best state hoped
for, while the coverage is unsatisfactory, in that there are obvious coverage vulnerabilities. This model
requires that Rc is greater than or equal to 2 ∗ Rs.

2.3. Assumptions

Put simply, some assumptions are as follows regarding the characteristics of this paper.
A: The wireless sensor network should have an intelligent control and management center that

can communicate with all wireless sensor nodes and obtain their positions by some methods, including
the BEIDOU (Beidou Navigation Satellite System) and GPS (global positioning system), and so on.
This intelligent center should own the map of the whole space which the wireless sensor network is
intended to monitor.

B: The intelligent center should have optimized computing power in order to obtain the global
optimal solution according to the methods in this paper.

C: Wireless sensor nodes should be movable and able to go to the designated location.
D: All the sensor nodes should have same the sensing radius Rs and communication radius Rc,

centered on themselves respectively. The Euclidean distance is adopted in this paper.

3. Proposed Method

To adopt ASGS-CWOA with good performance to address the low coverage of WSN, we made
improvements in the following aspects.
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3.1. Adaptive Expansion Based on the Minimum Overlapping Full Covering Model (AE-MOFCM)

Compared to the other covering models mentioned above, MOFCM makes wireless sensor
networks have high coverage and easy deployment as well as an acceptably low overlapping rate.
Thus, this model is selected as the basic covering model for the WSN (Figure 3).

Target1 = [(rangemax − rangemin)/2, (rangemax − rangemin)/2]; (3)

Targeti+1 = Targeti + [DISTANCE, 0]
Targeti+2 = Targeti +

[
DISTANCE/2, DISTANCE ∗

√
3/2

]
Targeti+3 = Targeti +

[
−DISTANCE/2, DISTANCE ∗

√
3/2

]
Targeti+4 = Targeti + [−DISTANCE, 0]
Targeti+5 = Targeti +

[
−DISTANCE/2, −DISTANCE ∗

√
3/2

]
Targeti+6 = Targeti +

[
DISTANCE/2, −DISTANCE ∗

√
3/2

]
I f Targeti < [rangemin, rangemax], Targeti = Targeti+1,

(
i = 1, 2, . . . , NTarget

)
,

(4)

where rangemax and rangemin are the upper and lower limit of the solution space, respectively;
DISTANCE means

√
3R, and R is the sensing radius of a single sensor; and NTarget means the number of

the target locations.



AssistTarget j = (Targetcurrent + [R, 0]), I f (Targetcurrent + [DISTANCE, 0]) <
[range_min, range_max ] and (Targetcurrent + [R, 0]) ∈ [range_min, range_max ]

AssistTarget j = (Targetcurrent +
[
R
√

2/2, R
√

2/2
]
), I f (Targetcurrent +

[
DISTANCE/2, DISTANCE ∗

√
3/2

]
)

< [range_min, range_max ] and (Targetcurrent +
[
R
√

2/2, R
√

2/2
]
)

∈ [range_min, range_max ]

AssistTarget j = (Targetcurrent +
[
−R
√

2/2, R
√

2/2
]
), I f (Targetcurrent +

[
−DISTANCE/2, DISTANCE ∗

√
3/2

)
< [range_min, range_max ] and (Targetcurrent +

[
−R
√

2/2, R
√

2/2
]
)

∈ [range_min, range_max ]

AssistTarget j = (Targetcurrent + [−R, 0]), I f (Targetcurrent + [−DISTANCE, 0])
< [range_min, range_max ] and (Targetcurrent + [−R, 0]) ∈ [range_min, range_max ]

AssistTarget j = (Targetcurrent +
[
−R
√

2/2,−R
√

2/2
]
), I f (Targetcurrent + [−DISTANCE/2, −DISTANCE

∗
√

3/2]) < [range_min, range_max ] and (Targetcurrent +
[
−R
√

2/2,−R
√

2/2
]
)

∈ [range_min, range_max ]

AssistTarget j = (Targetcurrent +
[
R
√

2/2,−R
√

2/2
]
), I f (Targetcurrent + [DISTANCE/2, −DISTANCE∗

√
3/2]) < [range_min, range_max ] and (Targetcurrent +

[
R
√

2/2,−R
√

2/2
]
)

∈ [range_min, range_max ]

( j = 1, 2, 3, . . .).

(5)

First of all, the first target can be generated by Equation (3), and then the others can be obtained by
Equation (4). It is important to note in particular that the array of target locations should not take in the
targets that are out of [rangemin, rangemax], which should be processed by another array according
to Equation (5). Another array named AssistTarget-locations is related to special treatment of the
boundary of the solution space. A demo diagram of the AE-MOFCM is shown in Figure 4.
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(j = 1,2,3,……).                  (5) 

Figure 3. Diagram of the adaptive expansion based on the minimum overlapping full-coverage model
(AE-MOFCM). The red point is a single given location; the red dashed line means the sensing radius of
sensors, and the value is Rs; while the black points are subsequent points that can be obtained by the
corresponding formula.
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Figure 4. Here, rangemax = 100 and rangemin = 0, while the sensing radius of a single sensor is 4.
The black point means a target location, the black circle means the sensing space boundary of a single
sensor, and the red area means the whole sensing space of the wireless sensor network, while the very
small white areas are vulnerabilities in monitoring. (a) The diagram without special treatment of the
boundary and (b) with special treatment.

3.2. Improvement of ASGS-CWOA

The adaptive shrinking grid search wolf pack optimization algorithm is oriented to the continuous
solution space, and the path planning of WSN refers to the discrete solution space, which enables
ASGS-CWOA to not be used directly for the coverage problem of WSN. Therefore, we proposed a new
variant of the wolf pack optimization algorithm by absorbing some ideas of ASGS-CWOA and making
some necessary improvements according to the special conditions of optimization problems oriented
to discrete space. The new variant includes two improvements, which are detailed as follows.
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3.2.1. Target–Node Probability Matrix

N targets and N sensor nodes are in the WSN, meaning that according to the one-to-one
correspondence between sensor nodes and target points, there are (N!) matching options. To choose
the optimal, shortest overall path length, some matrices have been designed.

DisMatrix−k = [Distance(target[k], node(1)), Distance(target[k], node(2)), . . . , Distance(target[k], node(N_Node)); (6)

DisTotalReverse−k =
N_Node∑

i=1

1/DisMatrix−k[i]; (7)

ProbabilityTarget−kdisperse
= [1/DisMatrix−k[1], 1/DisMatrix−k[2] . . . , 1/DisMatrix−k[N_Node]]/DisTotalReverse−k; (8)

ProbabilityTarget−k[i] =
i∑

j=1

ProbabilityTarget−kdisperse
[ j] (i = 1, 2, . . . , N_Node); (9)

ProbalityMatrix[k] = Target[k] − [ProbabilityTarget[1], ProbabilityTarget[2], . . . , ProbabilityTarget[N_Node]
(k = 1, 2, . . . , N_Node);

(10)

where N_Node is the number of wireless sensor nodes, and N_Target is the number of destinations
that wireless sensor nodes will move to. DisMatrix-k indicates the matrix consisting of the distances
of each sensor node to the k-th target location. DisTotal_Reverse-k indicates the reciprocal sum of all
elements of the distance matrix about the k-th target. ProbabilityTarget-k_disperse indicates the probability
matrix consisting of the possibilities of each node moving to the k-th target location. ProbabilityMatrix[k]
is another expression of ProbabilityTarget-k_disperse with a continuous space between 0 and 1, and it is
conducive to the use of Roulette for computing.

Min−DisMatrix = sort(DisMatrix, ascend), (11)

where Min-DisMatrix means the ascending index arranged according to values of DisMatrix; sort(DisMatrix,
ascend) will return an index, which is arranged as ascending according to values of DisMatrix.

In order to describe the practical application of the target–node probability matrix in the wolf
pack optimization algorithm, an example is shown as follows.

Put simply, the range of the solution space is set as [0, 100], and the sensing radius of a sensor is
30. Thus, the targets can be obtained by AE-MOFCM, and the sensors can be obtained randomly by
Equations (13) and (14).

Targets = (50, 50); (75.9808, 95); (24.0192, 95); (24.0192, 5); (75.9808, 5); (80, 50); (20, 50); (97.1940,
73.7868); (2.8060, 73.7868); (2.8060, 26.2132); (97.1940, 26.2132).

Sensors = (9.4925, 68.6594); (77.9807, 98.643); (18.8638, 98.5761); (0.9487, 45.6081); (41.0077, 34.8011);
(14.1326, 98.2914); (53.2759, 48.587); (55.776, 31.5094); (69.344, 38.1385); (87.6369, 1.801); (1.9635, 50.3632).

The DisMatrix can be obtained by Equation (6), ProbabilityTarget-Disperse can be obtained by Equations (7)
and (8), ProbabilityTarget can be obtained by Equations (9) and (10), and Min-DisMatrix can be obtained by
Equation (11), detailed as follows.



Sensors 2019, 19, 4320 9 of 16

DisMatrix =

43.7789 51.1520 23.4172 48.5644 41.0088 45.2269 43.7371 59.0807 22.8023 52.4575 52.6837
89.5848 102.7955 34.1164 96.6705 82.3390 96.4476 58.4000 110.9124 65.4490 57.7990 75.2081
94.5011 93.0703 57.3921 69.9634 50.2953 77.6262 14.6844 93.4426 43.7937 6.5906 28.7570
34.7525 8.1325 73.0260 27.7816 44.5392 13.7408 76.2582 8.9160 46.4362 86.9647 72.7660
17.3990 44.3956 56.5939 72.2643 78.9547 58.8652 94.9223 60.4114 67.2458 104.2120 100.6190
47.8966 67.9433 14.7869 76.3406 70.9614 69.5489 68.2461 80.3224 52.7804 74.5351 80.3976
57.7849 49.1607 51.7501 26.2510 11.3107 32.4638 31.1182 48.2635 7.3564 41.8103 29.7889
76.9987 97.0132 29.4629 101.4065 92.0827 96.7314 78.2804 108.6867 73.4754 80.9460 93.6696
87.0215 77.1456 68.8263 46.8968 27.5488 58.3573 18.0068 72.9921 33.1871 23.7224 1.2631
59.0808 37.5188 76.2551 4.4587 21.6885 17.8927 57.3080 27.4667 35.0345 67.3609 48.6140
42.9721 69.7695 44.1116 90.0214 90.5024 79.1930 95.3299 85.0845 74.3281 102.6011 105.5259

ProbabilityTarget-Disperse =

0.0397 0.0316 0.0307 0.0360 0.1003 0.0295 0.4967 0.0915 0.0781 0.0290 0.0369
0.0361 0.6205 0.0451 0.0287 0.0370 0.0416 0.0499 0.0387 0.0450 0.0275 0.0298
0.0798 0.0444 0.3827 0.0441 0.0384 0.2305 0.0438 0.0338 0.0330 0.0213 0.0482
0.0793 0.0479 0.0553 0.1109 0.1510 0.0552 0.0987 0.1252 0.0923 0.0813 0.1027
0.0439 0.0432 0.0369 0.0474 0.0880 0.0361 0.0823 0.1213 0.1197 0.3346 0.0466
0.0523 0.0784 0.0489 0.0482 0.0912 0.0467 0.1426 0.1252 0.2393 0.0782 0.0489
0.1403 0.0397 0.0618 0.1537 0.1159 0.0618 0.0902 0.0746 0.0592 0.0362 0.1666
0.0653 0.1827 0.0699 0.0572 0.0839 0.0663 0.1133 0.0970 0.1269 0.0790 0.0585
0.3359 0.0357 0.0958 0.1002 0.0519 0.1048 0.0502 0.0418 0.0375 0.0254 0.1208
0.0964 0.0397 0.0559 0.2127 0.1058 0.0568 0.0751 0.0778 0.0613 0.0469 0.1715
0.0525 0.0683 0.0480 0.0521 0.0900 0.0465 0.1038 0.1225 0.1689 0.1952 0.0521

ProbabilityTarget =

0.0397 0.0713 0.102 0.138 0.2384 0.2678 0.7645 0.856 0.9341 0.9631 1.0000
0.0361 0.6566 0.7017 0.7304 0.7674 0.809 0.859 0.8977 0.9427 0.9702 1.0000
0.0798 0.1242 0.507 0.551 0.5894 0.8199 0.8636 0.8975 0.9305 0.9518 1.0000
0.0793 0.1273 0.1826 0.2935 0.4445 0.4997 0.5984 0.7237 0.816 0.8973 1.0000
0.0439 0.0871 0.124 0.1714 0.2594 0.2955 0.3778 0.4992 0.6188 0.9534 1.0000
0.0523 0.1307 0.1796 0.2278 0.319 0.3657 0.5083 0.6335 0.8729 0.9511 1.0000
0.1403 0.18 0.2419 0.3956 0.5114 0.5732 0.6634 0.738 0.7973 0.8334 1.0000
0.0653 0.248 0.3179 0.3751 0.459 0.5253 0.6386 0.7356 0.8624 0.9415 1.0000
0.3359 0.3716 0.4675 0.5677 0.6195 0.7244 0.7746 0.8163 0.8538 0.8792 1.0000
0.0964 0.1361 0.192 0.4047 0.5106 0.5674 0.6424 0.7203 0.7816 0.8285 1.0000
0.0525 0.1208 0.1688 0.2209 0.3109 0.3575 0.4613 0.5838 0.7527 0.9479 1.0000

Min-DisMatrix =

7 5 8 9 1 11 4 2 3 6 10
2 7 3 9 6 8 5 1 11 4 10
3 6 1 11 2 4 7 5 8 9 10
5 8 4 11 7 9 10 1 3 6 2

10 8 9 5 7 4 11 1 2 3 6
9 7 8 5 2 10 1 11 3 4 6

11 4 1 5 7 8 3 6 9 2 10
2 9 7 8 5 10 3 6 1 11 4
1 11 6 4 3 5 7 8 9 2 10
4 11 5 1 8 7 9 6 3 10 2

10 9 8 7 5 2 1 4 11 3 6
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3.2.2. Adaptive Step Size


stepa = stepabasic ∗ (1/ceil(3 ∗ t/T)), stepabasic = ceil(NNode/2)
stepb = stepbbasic ∗ (1/ceil(3 ∗ t/T)), stepbbasic = ceil(NNode/3)
stepc = stepcbasic ∗ ceil(3 ∗ t/T), stepcbasic = ceil(NNode/3),

(12)

where stepabasic is the original step size of migration, stepbbasic is the step size of summon, and stepcbasic
is the step size of siege; t is the number of the current iteration, and T means the maximum number of
iterations; and ceil() is a function that can round a number up.

During the early stage of optimization, for migration, it is hoped that a search for large areas can
be conducted to find potential global optima, while the search for small areas should be conducted to
accelerate the speed of convergence in the later stage.

For summon, it is in the former stage that a larger step size is needed to enable other wolves to
move quickly towards the location of the best wolf, so that the rate of convergence can be enhanced,
while a smaller step size can stop the algorithm from falling into a local optimum in the later stage.

Finally, for siege, a smaller step size makes the algorithm converge quickly in the early stage,
while a larger one can prevent the algorithm from falling into the local optimum in the later stage.

4. Main Steps

In order to clearly show the details of the new proposed algorithm, specific implementation steps
are given as follows.

Step 1: Initialization

Initially, all the movable sensor nodes will be randomly and unorderly scattered in the monitored
area, just as wolves are distributed randomly and unorderly in the solution space. Thus, the locations
of sensor nodes can be represented by the wolf population generated by Equation (13).

wi = (wi1, wi2, . . . , wid, . . . , wiD)(i = 1, 2, . . . , N; d = 1, 2, . . . , D), (13)

where wid is the location of the i-th wolf in the d-th dimension. N means the size of the wolf population.
D is the maximum dimension number of the solution space. The initial location of each wolf can be
produced by Equation (14).

wid = rangemin + rand(0,1)*(rangemax - rangemin), (14)

where rand (0, 1) is a random number distributed uniformly in the interval [0, 1]; rangemax and
rangemin are the upper and lower limits of the solution space, respectively.

Step 2: Migration

In this process, each wolf takes its own location as the center to search and moves along D
directions, meaning that new locations will be generated, and the best one should be the destination
that the current wolf is devoted to. The formula is as follows:

wol fnew = [wol f (1), wol f (2), . . . wol f (RAND), . . . , wol f (N_Node)]; (15)
wol f (RAND) = i, ProbabilityMatrix[RAND][i− 1] < rand(1, 1) <

ProbabilityMatrix[RAND][i], (i = 2, 3, . . . , N_Node)
wol f (RAND) = 1, rand(1, 1) < ProbabilityMatrix[RAND][1];

(16)

where RAND is a randomly generated positive integer between 1 and N_Node, and rand(1,1) generates
a random number between 0 and 1.
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If the new wolf has better fitness than the current wolf, the latter should move to the new location
and update the corresponding fitness. Otherwise, it continues to loop until the number is out of stepa,
which is the step size of migration and is obtained by Equation (12).

Step 3: Summon–Raid


wol f new = [wol f (1), wol f (2), . . .wol f (index(i)) . . . , wol f (RAND− 1), bestwol f (RAND), bestwol f (RAND + 1),

. . . bestwol f (RAND + stepb− 1), wol f (RAND + stepb), . . .wol f (NNode))

wol f (index) = bestwol f (RAND : (RAND + stepb − 1)), index(i) < [RAND, (RAND + stepb − 1)]
(RAND <= NNode– stepb + 1), (i = 1, 2, . . . , stepb)

(17)

The current wolf moves towards the lead wolf with the best fitness with the step size “stepb”
according to Equation (17); if the fitness of the new location is better than the current one, the wolf
should move to the new location and update the corresponding fitness. Otherwise, it stays at the old
position; here, stepb means the step size of summon–raid, which can be obtained by Equation (12).

Step 4: Siege{
wol fnew = [wol f (1), wol f (2), . . . , wol f (i), . . . , wol f (NNode)] (i = 1, 2, . . . , NNode)

wol f (i) = Min−DisMatrix[i][ j] ( j = 1, 2, . . . , stepc)
(18)

During this process, each wolf performs small-scale, fine-grained searches for potential global
optima; that is, for each dimension of each wolf, several searches will be conducted according to the
step size stepc (which can be obtained by Equation (12)) and a shorter distance matrix, whose name
is Min-DisMatrix, as stated above. The new location to which the current wolf tries to move to can
be obtained by Equation (18), and if the fitness of the new location is better than the current fitness,
the current wolf should move to the new position; otherwise, it stays at the old one. At the end of this
process, the new wolf has a new fitness that is no less than its original fitness.

Step 5: Updating Population

After siege, some wolves with poorer fitness will be eliminated, while the same number of wolves
will be regenerated, and this amount can be obtained by Equation (2).

Across the whole process of this newly proposed algorithm, the purpose is to find the shortest
path under a high coverage rate to reduce energy consumption and improve the sustainability of the
whole network as much as possible. The process is shown briefly in Figure 5.
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5. Experiments

To evaluate the performance of the proposed algorithm, several comparative experiments were
conducted with the Ubuntu 16.04.4 operating system, Intel(R) Core(TM) i7-5930K processor, 64G
memory and MATLAB-2017b. We also used algorithms such as the random algorithm, virtual force
algorithm (VFA), and coverage algorithm based on particle swarm optimization (PSO-WSN). In this
paper, the range of the solution space was [0,1000]; for all related algorithms, the number of sensors
was 77, the sensing radius of a sensor was 80, and the communication radius of sensors was more than
80*
√

3. The PSO-WSN was conducted based on the idea behind the paper [18], while the VFA was
based on the basic concept of VFA [10,11,26,27], and the steps to implement DSO-WPOA followed
those described in Section 4. Furthermore, the main parameters of DSO-WPOA were the following:
the size of the wolf population was 50, the initial step size of migration was stepa = 39, the initial step
size of summon–raid was stepb = 26, and the step size of siege was stepc = 26.

Firstly, focusing on Table 1, seen from the perspective of the best coverage rate, the value of the
new algorithm could reach 100%, which means all the monitoring area was covered. Although the
two other algorithms had good coverage rates that reached 93.83% and 99.645%, respectively, some



Sensors 2019, 19, 4320 13 of 16

white area existed in the monitoring area, as shown in Figures 6b and 7b, which means that some
area was uncovered, while no white gap existed in Figure 8b. Thus, DSO-WPOA possessed the best
coverage rate.

Table 1. Results of experiments. PSO-WNS: particle swarm optimization-wireless sensor network;
VFA: virtual force algorithm.

Algorithm
Initial

Coverage
Rate

Best
Coverage

Rate

Mean
Coverage

Rate

Worst
Coverage

Rate
Variance Mean

Time
Moving
Distance

PSO-WSN 77.71% 93.83% 91.228% 89.74% 12593.36 2124.0355 36575.491
VFA 76.10% 99.645% 99.476% 98.149% 1.7324e-06 23.2982 11094.4339

DSO-WPOA 76.53% 100% 100% 100% 0 57.8892 7662.2987
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Moreover, after repeating 100 times, both the worst and mean coverage rates of DSO-WPOA
reached 100%, and its variance was zero, while the terms of the two other algorithms were less than
the former. Therefore, although the variance of VFA was very small, DSO-WPOA had better stability
in general.

Furthermore, focusing on the mean time, the PSO-WSN required the most time, and the time
the newly proposed algorithm required was on the same order of magnitude as that of VFA. Thus,
DSO-WPOA possessed an acceptable time performance.

Finally, the mean moving distance according to the rules of DSO-WPOA was smallest; the value was
7,662,2987, while the values of the other two algorithms were 3,6575,491 and 1,1094,4339, respectively,
which means the new algorithm enabled the WSN to spend less energy. Consequently, DSO-WPOA
possessed advantages in saving energy.

In summary, DSO-WPOA had the best coverage rate, better stability, acceptable performance in
terms of time, and advantages in saving energy.

6. Discussion and Conclusions

To further improve the coverage rate of a movable wireless sensor network under the condition of
guaranteed connectivity, we proposed an adaptive, discrete space oriented wolf pack optimization
algorithm for a movable wireless sensor network. Firstly, a strategy of adaptive expansion based
on the minimum overlapping full-coverage Model was designed to achieve minimum overlap and
no-gap coverage of the monitoring area. Moreover, the ASGS-CWOA was improved to optimize the
movable wireless sensor network, which is a discrete space oriented problem, and the improvement
included the usage of a target–node probability matrix and the design of an adaptive step size method,
both of which worked together to improve the convergence speed and global optimization ability of
the algorithm.

Theoretical research and experimental results indicated that, compared to the PSO-WSN algorithm
and classical virtual force algorithm, the newly proposed algorithm, named DSO-WPOA, possessed
the best coverage rate, better stability, acceptable performance in terms of time, advantages in energy
saving, and no gaps. As detailed in Table 1, Figure 4b, and Figure 8b, the newly proposed algorithm
enabled the WSN to cover the whole monitored area (no gaps) with the smallest number of sensors
as distant as possible from each other. However, it performed weaker in some aspects; for example,
DSO-WPOA spent more time on iterations than VFA, as shown in Table 1. The coverage rate of
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DSO-WPOA may not be superior to other coverage algorithms when not enough sensor nodes can be
supplied, such as in this paper where the number of sensors was 77, which just satisfied AE-MOFCM.
Assuming that the number of sensors is less than 77, the advantages of DSO-WPOA may be gone.

Our future work will continue to perfect the performance of DSO-WPOA in all aspects and apply
it to specific projects as well to expand its scope of application.
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