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Abstract: This paper presents a sensor-orientated approach to on-orbit position uncertainty generation
and quantification for both ground-based and space-based surveillance applications. A mathematical
framework based on the least squares formulation is developed to exploit real-time navigation
measurements and tracking observables to provide a sound methodology that supports separation
assurance and collision avoidance among Resident Space Objects (RSO). In line with the envisioned
Space Situational Awareness (SSA) evolutions, the method aims to represent the navigation and
tracking errors in the form of an uncertainty volume that accurately depicts the size, shape, and
orientation. Simulation case studies are then conducted to verify under which sensors performance the
method meets Gaussian assumptions, with a greater view to the implications that uncertainty has on
the cyber-physical architecture evolutions and Cognitive Human-Machine Systems required for Space
Situational Awareness and the development of a comprehensive Space Traffic Management framework.

Keywords: Space Traffic Management; Cyber-Physical Systems; Resident Space Object; Space-Based
Surveillance; Radar Performance; Gauss–Helmert Method; Space Situational Awareness; Uncertainty
Quantification; Covariance Realism; Cognitive Human-Machine Interaction

1. Introduction

The ever-increasing number of Resident Space Objects (RSO) is strongly highlighting the need for
an evolution from traditional Space Situational Awareness (SSA) capabilities towards Space Domain
Awareness (SDA) [1,2]. Analogous to its atmospheric counterpart (i.e., Air Domain Awareness) SDA
aims to elevate current SSA capabilities through the dissemination of confidence-building measures,
necessary to reliably estimate the future states of RSO’s with the aim of optimal coordination and
accommodation in a future Space Traffic Management (STM) system. Confidence-building measures
ideally encapsulate the functional characteristics of an RSO (e.g., shape and size), and, when possible,
mission objectives and planned operational activities of active spacecraft. Even so, an increase alone
in the available data will not solve the current issues of RSO ambiguity and collision avoidance
subjectivity – contextualizing information must be used together with transparent and traceable Time
and Space Position Information (TSPI) reflective of sensor performance. Cooperative RSO equipped
with TSPI enabling systems such as GNSS and data sharing capabilities equivalent to Automatic
Dependent Surveillance Broadcast (ASD-B) system will be an important aspect in managing uncertainty
in the on-orbit environment. Nonetheless, due to the inherently high threat of space debris, it is
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imperative that the notion of transparent and traceable TSPI information extends to classification of
non-cooperative RSOs. In most cases, the position of large orbiting object (>10 cm) can be predicted
with reasonable uncertainty, based upon data accrued by the SSA Space Surveillance and Tracking
(SST) segment and other non-government owned ground-based sensors (Table 1).

Table 1. Overview of Space Surveillance and Tracking (SST) ground-based radar systems {Choi, 2017 #55}.

Ground-Based
Radar System Devices Description Location

AN/FPS-85 UHF Phased-array radar
Maximum peak power: 30 MW, it

can detect 1.0 m2 objects in
geosynchronous orbits

Florida, USA

Globus II X-Band mono-pulse radar with
27 m parabolic dish antenna

Track spacecraft of all type up to
range of 4000 km Vardo, Norway

TIRA L-band and Ku-band radar using
34 m parabolic reflector

Radar images of space objects at a
distance up to 20,000 km

Watchberg,
Germany

Although ground-based systems will continue to be a vital aspect in filling the SST role, the
feasibility of Space-Based Space Surveillance (SBSS) is being explored to monitor the Low Earth Orbit
(LEO) [3] and Geosynchronous Orbit (GEO) regions [4,5].due to the advantage of persistent coverage of
smaller sized RSOs (<10 cm) elusive to traditional ground-based systems. Understandably spaceborne
tracking of RSOs is not a trivial matter [6,7] – effective coverage of the space environment will require
constellations of SBS platforms each under complex tasking regimes to overcome performance and
physical constraints [8]. Given that true collisions are a rare space event, the cost of platforms devoted
to debris detection may exceed their benefit given that there would be minimal power available
for mission-oriented payloads. This is especially the case for spaceborne radar due to the higher
power requirements associated with this sensor. For future SBSS platforms to be commercially and
economically viable, it is imperative that a low size weight, power, and cost (SWaP-C) approach must
be taken. Regardless of the sensor suite chosen, SBSS platforms will be subject to dynamic positional
errors from onboard TSPI/Navigation systems, in contrast to traditional ground-based systems that
perform observations from accurately surveyed locations. As such, there is a strong case for analysis
on the effect of initial RSO position estimation based on both navigation and tracking system errors.
Nevertheless, in both ground-based and SBSS applications, a sensor-focused approach must be taken
to establish an unambiguous initial estimate of RSO uncertainty.

In the context of SSA, realistic orbital uncertainty directly underpins the effectiveness of operational
activities that include the following: RSO Orbit determination, data or track association/correlation,
maneuver detection, the computation of the probability of collision for conjunction assessment and
sensor management [9,10]. Within the SSA/STM research community, Sensor Management is comprised
of Sensor Tasking (ST) and Sensor Scheduling (S2). ST is defined as the generation of a set of tasks
that a sensor or sensor network is intended to accomplish. On the other hand, Sensor Scheduling
(S2) refers to the specific decisions involved in the tasks, to include the exact definition of when and
where a sensor is to be used. ST and S2 are typically the constituting elements of an optimal control
problem to dynamically assign the available sensor resources (ST) to accomplish specific SSA tasks
(S2) [10]. Most importantly, these processes require the knowledge of how the uncertainty of RSOs will
propagate over time subject to orbital dynamics and perturbations from residual atmospheric drag,
solar radiation pressure, non-spherical Earth, and other celestial bodies. Largely, Orbital uncertainty
propagation methodologies can be grouped under either Linear and Non-Linear Methods [11]. Typical
Non-Linear methods include Unscented Transformations, Polynomial Chaos Expansions, and Fokker
Plank Methods. Undoubtedly, these methods can capture well the non-linear growth of RSO uncertainty
subject to orbital dynamics, however, can be computationally burdening due to the high dimensionality
of the problem especially for longer propagation periods. The mathematical derivation of these
methods is beyond the scope of this paper, the reader is referred to reference [11]. A popular alternative
is to construct a linearized model of the dynamics so that the uncertainty about an RSO can be
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propagated in a computational efficient manner. However, linearized propagation methods are not
without shortcomings -which if not explicitly quantified have significant implications on the realism of
subsequent analysis made based on the estimated uncertainty. Uncertainty quantification is defined as
follows: “The process of determining the various sources of errors and uncertainties, properly characterizing
these errors and uncertainties, and the roll up of these in the prediction of the quantities of interest” [10]. In the
context of linearized uncertainty propagation methods, two fundamental assumptions are made:

1. A linearized model sufficiently approximates the dynamics of neighboring trajectories with
respect to a nominal trajectory.

2. The uncertainty can be completely characterized by a Gaussian probability distribution.

To quantify the uncertainty, we are interested in testing the uncertainty realism, which under
Gaussian assumptions (linear), coincides with covariance realism – the characterization (size, shape, and
orientation) of the (gaussian) uncertainty of the RSO in question. Various covariance realism tests and
metrics have been used to assess realism with a primary focus on determining the length of Gaussian
validity, i.e., the amount of time (commonly described in orbital periods) a linearized uncertainty
propagation method can be used to confidently and accurately describe the estimated position
uncertainty of an RSO. Nonetheless, by reiteration of the above assumption, linear propagation methods
are only valid if the initial RSO uncertainty (input) is in fact Gaussian. This presents the necessary case
of applying covariance realism testing to the sensor level with the aim of quantifying tracking and
navigation system performance characteristics that support, or not, a linearized (Gaussian) method to
describe initial RSO position uncertainty. By taking a sensor level perspective to model tracking and
navigation system uncertainty, this paper addresses two SST representative case studies.-traditional
ground-based radar and proposed Millimetre Wave (MMW) Space-Borne Radar (SBR) for the tracking
of space debris aboard larger spacecraft platforms such as the International Space Station (ISS) and
future space transportation vehicles [6,12].

Fundamental Role of Uncertainty in SSA and STM Human-Machine System Integration

The accurate and timely quantify uncertainty about cooperative and non-cooperative RSOs will
be a key driver in determining a baseline for cyber-physical system autonomy within an SSA and
greater STM framework. In other words, the trustworthiness of the machine to perform tasks under
an explicit level of collective uncertainty can be understood. Equally, the SSA and STM decision
space should not bias automation over the human, where explicit considerations regarding continued
situational awareness, attention, vigilance as well as expected cognitive ability of the operator must
be made. To realize the concept of a fully integrated Human-Machine cyber physical system, and in
turn achieve an optimal teaming between STM ground station operators and system autonomy, future
decision support systems must build upon traditional representations of uncertainty towards the use of
extended methods [13,14] that meet well-defined mission goals as well as adopting an architecture that
supports Cognitive Human-Machine Interfaces and Interactions (CHMI2) [15]. The concept of CHMI2

capitalises and builds upon the considerable advances in aerospace avionics human factors [16,17],
which was presented in detail in [18,19]. Nonetheless, the importance of human machine integration is
now gaining well-deserved attention in the Space sector [20–24] due to the mission and safety critical
tasks performed by space analysts. Figure 1 illustrates the concept of variable automation space
(dashed black, red and green lines) throughout four stages of human cognitive processing based on
the Parasuraman et al. task-based profile: Data Acquisition, Data Interpretation, Decision Selection
and Action Selection [25]. The automation level line lies at the boundary between human (dark
yellow) and machine (grey) involvement. Another important aspect represented is the magnitude of
uncertainty (blue solid line), which in this example is depicted as monotonically growing across the
four stages. By providing the feedback loop between the operator and the system through a suite of
physiological sensors, the CHMI2 concept enables the automation curve to be dynamically adjusted
based on the operator cognitive state. The automation space is dictated by the degree of collective
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uncertainty in the environment and can be classified under two categories: Aleatory and Epistemic
uncertainty (Table 2) [26].The focus of this article is on addressing aleatory uncertainty within the
orbital environment, namely parameter value(measurement uncertainty) and model-based uncertainty
(covariance realism).
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Table 2. The categorisations of collective uncertainty for autonomous systems.

Category Type of Uncertainty Description

Aleatoric
uncertainty

Parameter Value Uncertainty Uncertainty in scenario Inputs (Independent variables)
Model-Based Uncertainty Uncertainty in the underlying models that process inputs

Epistemic
uncertainty

Uncertainty of Focus Uncertainty due to a known lack of knowledge about the
environment

Complexity of Uncertain
Factors

When the environment is sufficiently complex a machine
cannot overview the set off all possible true states

2. Methods and Models

Firstly, radar tracking (TRK) and navigation (NAV) error models are developed, including common
transformations required to represent the uncertainty in a convenient frame. Attention is then turned
to methods to assess the “realism” of the uncertainty under Gaussian assumptions using two common
approaches - the Average Mahalanobis Distance (AMD) statistic metric and Cramer–von Mises (CVM).
A Monte-Carlo framework is then presented to obtain the required Empirical Distribution of both
tracking and navigation uncertainty.
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2.1. Tracking and Navigation System Error Models

The SNR (Signal to Noise Ratio) of the radar is a key measure of its performance, which is defined
as the ratio of signal power to noise power at the output of the radar receiver.

SNR =
Pr

Pn
=

PpGtσArτ

(4π)2R4kFT0L
(1)

where:

Pp: Peak transmitted power [W]
Gt: Radar transmit antenna gain (power ratio)
Ar: Radar receive antenna effective aperture area [m2]
σ: Target radar cross-section (RCS) [m2]
R: Range from radar to target [m]
F: Noise figure of the receiver subsystem
L: Radar system losses
T0: Standard Temperature [290 K]

k: Boltzmann’s constant [1.38064852 × 10−23 m2Kg s−2K−1]
τ: Radar pulse duration [sec]

Target state vector information is measured relative to the radar site in a spherical coordinate
system in range, elevation and azimuth (rRDR, ηRDR, εRDR respectively) (Figure 2a) The measurements
in each of the elements are prone to specific error sources that include the following [27]:

σrRDR
2 = σ2

RN + σ2
RF + σ2

RB (2)

where σRN is an SNR dependent random range measurement error, which can be calculated as:

σRN =
c

2B
√

2(SNR)
(3)

where, B is waveform bandwidth, c is the speed of light and signal to noise ratio (SNR). σRF is a random
measurement error having fixed standard deviation, due to noise sources in the latter stages of the
radar receiver. σRB is a range bias error associated with the radar calibration and measurement process.
We assume the Zero-mean condition, so. σRB and σRF are equal to zero.

Radar angular measurements are commonly made using monopulse receive antennas that provide
a difference pattern characterized by a deep null on boresight. The difference pattern formed by
these beams may be used to measure target angular position with a single signal transmission. The
measurement accuracy in each angular coordinate is characterized by the RMS of the SNR dependent
random angular measurement error, angular bias, and random measurement error. As with the range
error, we assume angular bias and random measurement error to be 0 under the Zero-mean condition

σεRDR
2 = σ2

ANε
+ σ2

AFε
+ σ2

ABε
(4)

σηRDR
2 = σ2

ANη
+ σ2

AFη
+ σ2

ABη
(5)

As with the range errors, the SNR dependent error dominates the radar angle error:

σAN =
ϑ

km
√

2(SNR)
(6)

where: ϑ is the radar beamwidth in the angular coordinates and km is the monopulse pattern
difference slope.
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Figure 2. Generic Tracking (a) and Navigation (b) RSW coordinate systems detailing corresponding
error geometry.

The RSW satellite coordinate system is chosen to express position uncertainty of RSO. At the time
of observation, we assume that the nominal spacecraft position (SP) is centered at the origin of the
RSW axis The Radial (R) axis always points from the earth centre along the radius vector towards the
satellite. The S-Axis is pointed tangentially to the track’s direction, where, in the case of elliptical orbits,
it is only parallel to the velocity vector at apogee and perigee. The W (cross-track) axis is normal to
the orbital plane and completes the right-hand triad (Figure 2b). The coordinate system can then be
constructed through the following unit vector approach [28]:

R̂ =
RECI

|RECI |
(7)

Ŵ =
RECI ×VECI

|RECI ×VECI |
(8)

Ŝ = Ŵ× R̂ (9)

The transfer matrix(s) between the RSW and ECI coordinate systems is then following:

MRSW→ECI =
[
R̂ Ŝ Ŵ

]
(10)

MECI→RSW =
[
R̂ Ŝ Ŵ

]T
(11)

Positional errors from the on-board navigation system are then expressed as deviations, δXNAV,
from the origin of the axis, defined as the difference between the true state, XNAV, and the nominal
state XNAV under the zero mean

δXNAV = XNAV −XNAV (12)

XNAV =


RT

ST

WT

, XNAV =


RN

SN

WN

 (13)

Navigation uncertainty is assumed to be Gaussian, and can then be expressed in terms of
covariance, where the assumption of zero main is made:
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QNAV
RSW = E

[
δXNAVδXNAV

T
]
=


σRNAV

2 0 0
0 σSNAV

2 0
0 0 σWNAV

2

 (14)

Similarly, tracking measurement errors are expressed as measurement deviations in the spherical
dimension, δXTRK, defined as the difference between the true state, XTRK, and the nominal state XTRK

of the RSO [29].
δXTRK = XTRK −XTRK (15)

XTRK =


rT

εT

ηT

, XTRK =


rN

εN

ηN

 (16)

The tracking error of the radar is then expressed in terms of covariance:

QTRK
RDR
SPH = E

[
δXTRKδXTRK

T
]
=


σrTRK

2 0 0
0 σεTRK

2 0
0 0 σηTRK

2

 (17)

2.2. Transformation of Uncertainty to Common Coordinate System

To combine NAV & TRK uncertainty from the spacecraft and tracked RSO both covariance matrices
must belong to the same coordinate frame. In this case, a transformation from the spherical to the
Cartesian system must be performed. Position and velocity measurements (and uncertainty) should
be expressed in a reference frame that is most convenient to the user, where in this case a Cartesian
Earth-Centered Inertial (ECI) frame is chosen. As such, the navigation covariance matrix must be
transformed to the Cartesian Earth-Centred inertial (ECI) frame. As this is a linear process (cartesian to
cartesian), a simple coordinate transformation can be applied to the covariance matrix. Following the
derivation of the RSW to ECI transformation matrix previously described we can write:

QNAV
ECI
CART = MRSW→ECI QNAV

RSW
CART·MRSW→ECI

T (18)

QNAV
ECI
CART =


σxNAV

2 σxyNAV σxzNAV

σyNAV
2 σyzNAV

sym σzNAV
2

 (19)

In contrast, the tracking covariance matrix is expressed in a spherical coordinate system within
the radar frame. This requires both a transformation from spherical to Cartesian system and then
a translation to the ECI frame. As the transformation between these systems is nonlinear, a basic
coordinate transformation is not sufficient, and mathematical tools such the Jacobian of the spherical to
Cartesian transformation matrix must be calculated to linearize the process. The spherical to Cartesian
Jacobian (D) is expressed as the following, where c, s and represent the cosine and sine of the radar
angular measurements.

D =


−c εTRK c ηTRK rTRK c εTRK s ηTRK rTRK s εTRK c ηTRK

c εTRK s ηTRK rTRK c εTRK c ηTRK −rTRK s εTRK s ηTRK

s εTRK 0 rTRK c εTRK

 (20)

The transformation from spherical tracking error matrix in Radar coordinate system to the
Cartesian ECI is then given by the following:

QTRK
ECI
CART = (MRDR→ECI·D)·QTRK

RDR
SPH ·(MRDR→ECI·D)T (21)
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QTRK
ECI
CART =


σxTRK

2 σxyTRK σxzTRK

σyTRK
2 σyzTRK

sym σzTRK
2

 (22)

where MRDR→ECI is the transformation matrix from the chosen Radar (TRK) coordinate frame to the ECI
frame. The covariance matrix of both the navigation and tracking can now be expressed geometrically
as an ellipsoid centered about the nominal position in the ECI Frame. Due to the transformation and
translations between the Radar Spherical and Cartesian coordinate systems to the ECI frames, the
covariance terms within the error matrix (off-diagonal) are now non-zero. The geometric interpretation
of QTRK

ECI now requires that the ellipsoid considers both the variances about the principal axis but
also the rotation within the cardinal system (ECI).

2.3. Assessing Covariance Realism at the Sensor Level

Within the SSA/Astrodynamics community, the assessment of covariance realism (also known as
covariance consistency) has been predominately focused upon identifying the point at which Gaussian
assumptions in the propagation of orbital uncertainty breakdown. As discussed, this paper interested
at applying this approach to the sensor level and in turn validating when gaussian assumptions of
navigation and tracking error break down. In doing so, 2 commonly used statistical metrics and
goodness of fit tests have been adopted. The Mahalanobis distance [30] provides a convenient metric
for testing covariance realism, where a set of empirically generated points, xmc, from the measurement
model are tested to see if it corresponds to the gaussian distribution defined by a covariance matrix P
centered about the truth state, xtruth, of the target. The squared Mahalanobis distance between the
estimated orbit state and the truth target is defined as:

M((xmc, xtruth, P) = (xmc − xtruth)
TP−1(xmc − xtruth) (23)

The expected value ofM is n, where n is the dimension of the state vector xtruth, which in the case
of a cartesian coordinate system corresponds to 3. As an uncertainty realism metric, one can consider
the values ofM, averaged over at each observation condition. LetM(i) be the uncertainty realism
metric computed in the i-th Monte Carlo trial. Let k be the total number of independent trials.

M =
1

nk

k∑
i=1

M
(i) (24)

A stronger test for uncertainty realism is to consider the statistical distribution determined from
the measurement model in the form of a physics-based Monte-Carlo simulation. As such, the second
covariance realism metric test used is the Cramer–von Mises goodness of fit test statistic [9,10]. This test
permits to verify the consistency of the sample and test how well the theoretical Gaussian distribution
fits the empirical distribution. The Cramer–von Mises (CVM) test is based in a statistic of the type

Qk =

∫ +∞

−∞

[Fn(x) − F∗(x)]2ϕ(F(x))dF∗(x) (25)

where F∗(x) is the cumulative distribution function (CDF) of the Mahalanobis distanceM and Fn(x) is
the Empirical CDF of the AMD representing the n degree of freedom system being analyzed. Where
the results are from a Monte Carlo simulation of the measurement error model with N samples.
Specializing to ϕ(F(x)) = 1, the CVM test is then calculated by:

Qk =
1

12N

N∑
i=1

[2i− 1
2N

− F
(
M

(i)
)]2

(26)
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Sorting the Mahalanobis squared distance of the samples, M(i), from the smallest to largest,
F
(
M

(i)
)

can be obtained by:

F
(
M

(i)
)
= er f


√
M(i)

2

−
√

2M(i)

π
e−
M

(i)
2 (27)

Given a significance level α, one can derive a two-sided 100(1 − α)% confidence interval for the
distributionM(n). As with the averaged Mahalanobis distance (AMD), the acceptable degree of the
CVM metric is determined by defining a confidence level. Table 3 outlines the acceptable ranges of the
CVM and AMD for a commonly selected confidence level for measurement models of dimension 3.

Table 3. Confidence interval for Cramer–von Mises (CVM) [12] and Mahalanobis Distance (MD) for
∞ samples.

90% 95% 99% 99.9%

AMD [0.9655,1.0457] [0.9578,1.0534] [0.9427,1.0685] [0.9106,1.1006]
CVM [0,0.3430] [0,0.46136] [0,0.74346] [0,1.16204]

As described the Squared Mahalanobis Distance Metric and the Cramer–von Mises distribution
matching test require the generation of an Empirical Distribution. In doing so, a measurement model
using the calculated uncertainty of the radar and tracking error models is constructed, generating N
observation samples about the nominal measurement. Under the assumption that each measurement
variable is independent (non-correlated):

The navigation Error contribution, (considered only for SBSS platform), is given by:
RN = σRNAV N
SN = σSNAV N

WN = σWNAV N

 (28)

The tracking contribution is given by:
rT = r0 + σrTRK N
εT = ε0 + σεTRK N
ηT = η0 + σηTRK N

 (29)

The total uncertainty about the object when tracked from the space-based platform is then
described by: 

RT = RN + rTcos(ηT) cos(εT)

ST = SN + rTcos(ηT) sin(εT)

WT = WH + rTsin(εT)

 (30)

Under the assumption the position of observation is well known and therefore the error is
negligible, the total uncertainty from the ground station is:

ST = rTcos(ηT)cos(εT)

ET = rTcos(ηT)sin(εT)

ZT = rTsin(εT)

 (31)

3. Ground-Based Tracking Scenario

The aim of the first case studies is to apply the above framework for the typical scenario of RSO
tracking from a radar ground station for the practical purpose of identification and assessment of a
potential collision with an operational spacecraft (Figure 3). Typically ground-based tracking stations
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utilize the South East Zenith Topocentric Horizon Coordinate frame (SEZ). The SEZ coordinate system
is defined for a given longitude and latitude at a local sidereal time and rotates with the site where
the local horizon forms the fundamental plane. The S axis points due South from the site, The E axis
points East from the site and the Z axis (Zenith) points radially outward from the site along the site
position vector from the ECI origin.Sensors 2019, 19, x FOR PEER REVIEW 10 of 23 
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The coordinate system is constructed using the site position vector,
→
r SITE, in ECI frame:

Ẑ =

→
r SITE∣∣∣∣→r SITE

∣∣∣∣ (32)

Ê = K̂× Ẑ (33)

Ŝ = Ê× Ẑ (34)

The transfer matrix between the RSW and ECI coordinate systems is then following:

MSEZ→ECI =
[
Ŝ Ê Ẑ

]
(35)

Within the SEZ coordinate frame the tracked RSO range, azimuth and elevation (ρ, ε, η) and their
derivates are measured where then by implementing the SITE-TRACK algorithm [28] the position
→

XTRK and the velocity
→

VTRK in the ECI frame can be determined.

→

XTRK =
→
r SITE + MSEZ→ECI


ρcos(η)cos(ε)
ρ cos(η)sin(ε)
ρ sin(η)

 (36)

→

VTRK = MSEZ→ECI
→
v SEZ +

→
ω x

→

XTRK (37)

where:
→
v SEZ is the velocity vector determined from observations at the site in SEZ coordinate frame and

→
ω is the Earth’s rotation vector. Based on the calculated radar performance parameters using radar error
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equations (Equations (2), (4) and (5)), it is then necessary to transform the TRK uncertainty (σrTRK , σεTRK ,
σηTRK ) into the ECI coordinate system, QTRK

ECI
CART as described in Section 2.3. Assuming the velocity

measurement error to be zero we obtain the following 3 × 3 Covariance matrix for each observation.

QTRK
ECI
CART = (MSEZ→ECI·D)·QTRK

SEZ
SPH·(MSEZ→ECI·D)T (38)

QTRK
ECI
CART =


σxTRK

2 σxyTRK σxzTRK

σyTRK
2 σyzTRK

sym σzTRK
2

 (39)

Subject to a linearized propagation method, the dynamic evolution of the RSO uncertainty
QTRK

ECI
CART now be estimated. As this paper is focused on the sensor level analysis, the full derivation

of this technique beyond scope and as such the reader is referred to [11] and [31] for this additional
framework. As previously discussed, the propagation of uncertainty is a fundamental aspect of SSA,
as it allows the determination of probability of collision between two RSO’s if a close approach is
predicted from each nominal RSO trajectory, a region known as the “Conjunction Region” is then
defined. The covariance matrix’s that describe the propagated position uncertainty of the tracked
RSO (Q′TRK) and the spacecraft (Q′NAV) are then summed together and represented as an ellipsoid
typically centered on the nominal position of the tracked (non-cooperative) RSO. Measurements are
uncorrelated, variance and covariance terms can be summed directly [32].

QTOT = Q′TRK + Q′NAV (40)

QTOT =


σx

2 σxy σxz

σy
2 σyz

sym σz
2


ECI

(41)

Following from reference REF QTOT now provides a convenient form to analyze the probability
of collision between the tracked and operation RSO. Figure 4 illustrates the concept of individual
navigation and tracking uncertainty’s volume and the resultant combined ellipsoid.
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4. Space-Based Surveillance Scenario

Based on proposed MMW SBR systems and documented GPS system performance, we outline
here a mathematical framework to combine tracking and navigation uncertainty with the aim providing
a rigorous methodology to describe and analyse the position uncertainty of a tracked RSO from a SBSS
Radar platform. As with the ground-based scenario, we focus on the case of representing uncertainty
expressed in a common satellite coordinate system to a convenient Earth-Centred Inertial (ECI) reference
frame. In this case, the RSW coordinate system is used for both navigation and tracking observations,
where the MMW radar (TRK) and GNSS (NAV) system is assumed to be centered about the origin.
The reference geometry and the key symbols for this scenario are introduced in Figures 5 and 6.
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To quantify the total error about the RSO position, we reformulate the framework described in
Section 2.2 as an Errors in-variable model following the Gauss–Helmert method [33,34]. In this case,
we assume the attitude error of the spacecraft is zero (δεNAV = 0, δηNAV = 0, δψNAV = 0). The generic
Gauss–Helmert form consists in resolution of the following equation system:

F(X, l) = 0 (42)

where X, l̂ are estimated parameters and observation vector respectively. The linearized form of the
previous equation is:

Aδ+ Br + w = 0 (43)

where A = ∂F
∂X̂

and B = ∂F
∂l are the matrix of partial derivates with respect to X, l and w is the misclosure

vector. δ and r, the parameter and observation correction vector respectively, are:

δ̂ = −
(
ATMA

)−1
ATMw

r̂ = −CrBTM(Aδ+ w)
(44)

where M =
(
BCrBT

)−1
and Cr is the covariance matrix of the observations. We obtain the covariance

matrix of parameters:

CNAV+TRK =
(
ATMA

)−1
(45)

Equation (43) is then:

F(X, l) = XD −MRSW→ECIXTRK −RECI = 0 (46)

where:

XD =


XECI

D
YECI

D
ZECI

D

 and RECI =


XECI

h
YECI

h
ZECI

h

 are the RSO and spacecraft position in ECI frame

XTRK =


−rTRKcos(εTRK)cos(ηTRK)

rTRKcos(εTRK)sin(ηTRK)

rTRKsin(εTRK)

 is the nominal position of the target in RSW frame.

l = [rTRK, εTRK, ηTRK, xNAV, yNAV, zNAV]
T is vector of estimated observations, and

Cr =



σ2
rTRK

0 0 0 0 0
σ2
εTRK

0 0 0 0
σ2
ηTRK

0 0 0
σxNAV

2 σxyNAV
σxzNAV

σyNAV
2 σyzNAV

Sym σzNAV
2


=

[
QTRK

RDR
SPH 0

0 QNAV
ECI
CART

]

is the covariance matrix of observations.

The assumption is made that all navigation and tracking observations errors are independent, so
covariance terms between the 2 observation sets in the matrix Cr are set to zero. However, covariance
terms between navigation uncertainty exist due to the transformation from the RSW to ECI coordinate
frame described by Equation (18). With A(3×3) = 1, the covariance matrix of observation is then
computed by:

CNAV+TRK(3×3) =
(
BCrBT

)
(47)

5. Results

The aim of both scenarios was to demonstrate an effective framework for measurement uncertainty
analysis while gaining a deeper understanding on the limits of a normally distributed representation of
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the uncertainty of the measurement models. In the first scenario, radar design parameters were selected
based on ground-based radar tracking stations in the SSA SST network where in the second case radar
parameters were selected from proposed spaceborne MMW Radar designs for larger orbiting platforms
such as the ISS. As described in Section 4, the second case implements an error in variables model
under a Gauss–Helmert formulation to combine both tracking the navigation measurements when
determining the total position uncertainty of the tracked RSO. In doing so, navigation measurements
are assumed to be provided by an on-board GNSS system where corresponding uncertainty values are
taken from a LEO GPS accuracy experiment found in the literature [35]. Table 4 outlines the specific
radar parameter and nominal tracking measurements (azimuth and elevation) values for both cases
and the spacecraft orbital parameters (at measurement epoch) and associated uncertainty values within
the RSW frame. To reflect the advantages of spaceborne MMW radar <10 cm RSO size was selected for
the simulation, as opposed to the larger debris sizes (>10 cm) which have been chosen for the ground
station scenario.

Table 4. Ground and Space-based tracking scenario inputs.

Spacecraft Position a = 6829 km e = 0.00001 i = 51.6◦ ω = 90◦ Ω = 90◦

Navigation Error

Radial (R) σRNAV 13.81 m

In-Track (S) σSNAV 4.15 m

Cross-Track (W) σWNAV 3.0 m

Nominal Tracking Angle Space-Based Radar Ground-Based Radar

εTRK 45◦ 45◦

ηTRK 45◦ 45◦

Fixed Radar Parameters
Frequency 95 GHz (W band) 442 MHz (UHF)

Peak transmit power 1200 W 36 MW
Beamwidth 0.2◦ 1.3◦

Aperture Dimension 1.0 m 58.0 m
Noise Figure 4.5 dB 4.5 dB

Radar pulse duration 1 µs 1 µs
Transmit antenna Gain 58 dBi 48 dBi

Varied Parameters
Debris Diameter 1, 3, 6 cm 10, 20, 30 cm

Range to Target rTRK 1:60 km 1:850 km

To test the covariance realism of the total position uncertainty the RSO the average Mahalanobis
distance metric and Cramer–von Mises test statistic outlined in Section 2.3 is computed. Adapting
the test procedure outlined in [10] for a sensor level analysis, the following steps are performed for
both cases:

1. Define a range to target and debris size, calculate the performance of the radar system and fuse
the tracking + navigation errors using the approach outline in Section 2.1

2. Generate N Monte Carlo points based on the measurement model performance as described in
Section 2.3. (10,000 points were chosen in the case of these simulations)

3. Calculate the corresponding average Mahalanobis distance metric (AMD) and Cramer–von Mises
(CVM) goodness of fit statistic.

4. Repeat steps 1–3 for every range to target for each RSO size.
5. Plot the averaged uncertainty metric (AMD) and the Cramer–von Mises test statistic versus range

to target for each tracked RSO size
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6. Determine the range to target when the averaged uncertainty metric and the Cramer–von Mises
test statistic first pierce a pre-defined confidence interval (Table 2)– and declare that the covariance
realism has broken down under the corresponding sensor performance.

Figures 7 and 8 displays the results of the above uncertainty realism test procedure which can be
interpreted as follows: The calculated degree of the CVM test and AMD metric are plotted for each
range to target as well as the confidence interval for each. Until the first point of intersect from either
realism test and the corresponding confidence interval, the uncertainty distribution can be assumed
to represent the calculated RSO covariance matrix under the chosen level of confidence. In both
the ground and space-based cases, a confidence level of 99% was chosen arbitrarily. Both figures
demonstrate that for all tracked RSO sizes, the CVM test statistic with the corresponding confidence
interval provides a more restrictive statistical measure, when compared against the first-moment
AMD metric. This is not a surprising result as the CVM test statistic is determined from the empirical
CDF measurement model, giving more indication on the actual shape, size and orientation of the
distribution. In turn the CVM test can distinguish finer discrepancies between the empirical (CDF)
and the theoretical uncertainty distribution (covariance) when compared to the AMD metric. Table 5
outlines the difference in the range to target when between the CVM test statistic and AMD metric at
the 99% confidence interval.
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Table 5. Max Range-to-Target for 99% Average Mahalanobis Distance (AMD) and CVM Covariance
Realism Test Statistic.

Space-Based Tracking Ground-Based Tracking

RSO Size 1 cm 3 cm 6 cm 10 cm 20 cm 30 cm

AMD range [km] 21.393 36.689 51.825 505.54 716.61 876.80

CVM range [km] 20.027 34.618 48.958 479.15 677.03 827.80

∆ range to target [km] 1.115 2.071 2.867 26.38 39.57 49

Due to the significant impact on the calculated SNR of the radar system, assessing the covariance
realism in relation to the specific range to target and debris size provide a practical relationship to
defining an acceptable magnitude of measurement errors. Figures 9 and 10 illustrate this relationship for
the ground and space-based case, where the magnitude of range and angular errors and corresponding
99% CVM interval are plotted against the range-to-target for each debris size.
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Mathematically, the confidence interval represents the point at which the original curvilinear
distribution described by the radars spherical uncertainty can no longer be truthfully represented as
rectilinear covariance within the cartesian ECI system. To illustrate this point further; Figure 11a shows
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the generation of Monte Carlo points used to generate the empirical distribution for the 6 cm RSO
at the 99% CVM confidence interval for the 6 cm debris size. The calculated Cartesian covariance
matrix inflated to 3 sigma is then overlaid as an ellipsoid centered about the nominal RSO position.
As expected, the corresponding contour map (Figure 11b), illustrates that the Monte Carlo points
conform to a rectilinear Gaussian distribution and therefore the corresponding uncertainty can be
represented in terms of covariance within the ECI cartesian frame. Conversely, Figure 11c,d illustrate
the distribution corresponding to range to 6 cm target of far-beyond the 99% CVM confidence interval.
The distribution is now morphed from an ellipsoidal shape to a “bananoid”, a curvilinear gaussian
distribution inherent to the radar measurement uncertainty model. Although this demonstrates the
extreme case, meaning practically that the radar would not be used under these conditions due to the
large uncertainty of the measurements, the figures aims to show physically what it means when the
distribution becomes non-gaussian at the sensor level (in the rectilinear sense) and therefore cannot be
described in terms of cartesian covariance.
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Figure 11. Monte Carlo generated distribution and corresponding contour maps for the 6 cm debris.
Clockwise from bottom left: (a) 99%CVM Monte Carlo distribution (b) 99%CVM Contour Map,
(c) >>99% CVM Confidence Interval Contour Map (d) >>99% CVM Confidence interval Monte
Carlo distribution.

As previously highlighted, the importance of quantifying uncertainty at the sensor level is to
meet the required assumptions of covariance realism for SSA activities such as orbit determination and
uncertainty propagation for RSO collision probability analysis and subsequent avoidance activities.
In effect, covariance realism at the sensor level provides means of covariance “fidelity” to these
processes. Previously published studies on covariance realism for orbital propagation demonstrate
that the initial AMD and CVM metric should tend unity and (1/12k) respectively to demonstrate that a
large enough Monte Carlo sample size of the initial covariance matrix (of RSO position uncertainty)
has been taken. Nonetheless, the sensor level analysis performed in this paper show that the initial
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covariance matrix used for these analyses may, in fact, vary in its actual realism/gaussianity if its
intrinsic observation uncertainties have been mapped from its original coordinate system. For example,
if an observation is taken under a certain tracking performance (in the case of this paper, RSO size
and range-to-target), the subsequent covariance goodness of fit determined by the CVM test will lay
somewhere along plot as shown in Figures 7 and 8. Analysis of the effect of varying gaussianity as
inputs to typical SSA analysis(orbit determination, probability of collision) is beyond the scope of this
paper and will be addressed in future research.

Turning attention now specifically to the second case of an SBSS platform. Using the Gauss–Helmert
errors in variables framework a measurement model was produced that combines both navigation and
tracking errors to generate a position uncertainty of the tracked RSO. We are interested in identifying
the influence of the navigation error on the total position uncertainty and any effect on the covariance
realism tests described previously. In doing so, plotting the range to target against the ratio between
NAV + TRK (QTOT) and TRK (QTRK) uncertainty provides an indication of the total effect of the
navigation error on the total uncertainty of the RSO. This is done by taking the eigenvalues of each
respective covariance matrix (QTOT, QTRK) and summing them in an RSS manner, where the ratio
between the two is then calculated.

TOTRSS =
√
λ1QTOT + λ2QTOT

+ λ3QTOT
(48)

TRKRSS =
√
λ1QTRK + λ2QTRK

+ λ3QTRK
(49)

From Figure 12a, it is clear the navigation error uncertainty has a strong influence on the total
error uncertainty volume at close target ranges, however as the range increases the ratio between the
two uncertainty volumes decreases asymptotically to 1. This result is expected as the navigation error
is assumed fixed during observation however the calculated radar performance is dynamic and heavily
dependent on the range to target. Not surprisingly, Figure 7 demonstrates that navigation error has.
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A significantly larger influence when a higher performance radar configuration is used, which in
the case of the SNR dependent error corresponds to a larger size RSO being tracked. Figure 12b–d
graphically illustrates the influence of navigation uncertainty error on the total uncertainty size and
orientation at the 10, 15, 20 km range to a 6 cm target. At each range value, the navigation (NAV),
tracking (TRK) and total (NAV + TRK) are represented as magenta, black and purple respectively.
Regarding the effect of navigation uncertainty has the covariance realism, we can see that that the
navigations uncertainty region of influence as defined by the ratio between TOTRSS and TRKRSS
asymptotes to unity well before the range to target of the corresponding confidence interval. This
indicates that under these specific simulation parameters the navigation error is not a limiting factor
in maintaining gaussianity assumptions. However, on referring to Figure 8, it is shown that under
close range where the navigation error is a dominant, oscillations of the CVM test occur for all debris
sizes. Further research will address these findings and aim to address under what conditions could be
detrimental to covariance realism.

The aleatoric benefits of the presented framework and covariance realism studies are quite
clear – by accurately modelling all prominent sources of error that contribute to RSO uncertainty
a realistic uncertainty regarding the position of an RSO is determined (Parameter value uncertainty).
Additionally, by addressing under what specific sensor performance RSO uncertainty (gaussian)
assumptions maintain realism, Model-Based Uncertainty is also explicitly quantified providing both a top
down and bottom up methodology to sensor performance requirements. Nonetheless, future Trusted
Autonomous Systems (TAS): will be required to address not only the aleatoric elements discussed but
also epistemic uncertainty. Importantly, within the context of future STM/SSA and the CHMI2 concept,
uncertainty quantification translates into the confidence-building measures required to inform a trusted
closed loop decision-making process between the space analyst and the machine (system autonomy).

6. Conclusions and Future Research

Ground and space-based surveillance platforms will form a necessary aspect in the categorisation
and maintenance of resident space object databases, required for timely and effective SSA operation
within a future Space Traffic Management (STM) system. Nonetheless, for this to be a viable and useful
asset, it is necessary that a sensor focused approach is taken when determining position uncertainty of
Resident Space Objects (RSO). Through a representative case study of a Ground-Based and Spaceborne
MMW radar, this paper aimed to demonstrate an error model that captures both the navigation and
tracking errors in determining RSO position uncertainty. Practically, the results show that sensor
performance must be determined under different tracking conditions to uphold uncertainty realism
assumptions and support key SSA decision-making processes. Nonetheless, an effective STM system
will require a deeper understanding of the orbital environment, where forms of traditional uncertainty
in space object position and trajectory must extend to space object operational intent, modes, and
other important decision-making criteria. In effect, this requires that decision making tools must
evolve from addressing not only parameter (inputs) and model-based uncertainty (models that process
inputs) but also the epistemic uncertainty within the on-orbit environment Future research will focus
on addressing the human centric cyber-physical system challenges associated with a future STM
system, while exploring promising Low SWAP-C space surveillance sensors and cooperative net-centric
data-sharing systems for SSA.
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