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Abstract: Low-cost sensors can provide insight on the spatio-temporal variability of air pollution,
provided that sufficient efforts are made to ensure data quality. Here, 19 AirBeam particulate matter
(PM) sensors were deployed from December 2016 to January 2017 to determine the spatial variability
of PM2.5 in Sacramento, California. Prior to, and after, the study, the 19 sensors were deployed
and collocated at a regulatory air monitoring site. The sensors demonstrated a high degree of
precision during all collocated measurement periods (Pearson R2 = 0.98 − 0.99 across all sensors),
with little drift. A sensor-specific correction factor was developed such that each sensor reported a
comparable value. Sensors had a moderate degree of correlation with regulatory monitors during
the study (R2 = 0.60 − 0.68 at two sites). In a multi-linear regression model, the deviation between
sensor and reference measurements of PM2.5 had the highest correlation with dew point and relative
humidity. Sensor measurements were used to estimate the PM2.5 spatial variability, finding an
average pairwise coefficient of divergence of 0.22 and a range of 0.14 to 0.33, indicating mostly
homogeneous distributions. No significant difference in the average sensor PM concentrations
between environmental justice (EJ) and non-EJ communities (p value = 0.24) was observed.
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1. Introduction

In the United States, the Environmental Protection Agency (EPA) regulates the ambient
concentrations of various air pollutants, including particulate matter (PM) with an aerodynamic
diameter of 2.5 µm and smaller (PM2.5, also referred to as fine particulate matter). The adverse impacts
of PM on human health depends on the size distribution because fine particles can travel more deeply
through the respiratory system than larger particles [1]. EPA has established National Ambient Air
Quality Standards (NAAQS) to regulate the concentrations of PM2.5 and other pollutants in order to
minimize health and environmental impacts [2]. In order to ensure these standards are met, federal,
state, local, and tribal environmental agencies operate instruments that collect data for regulatory
purposes that meet rigorous quality standards. Regulatory instruments that meet these standards are
designated as Federal Reference or Equivalent Methods (FRM or FEM) by the EPA, provided they are
calibrated and operated according to standardized procedures [3,4].
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The network of regulatory air quality monitors was designed to monitor regional compliance
with federal and state health standards. FRM or FEM particulate instruments are typically large and
expensive ($20,000 or more), demand substantial power, and require periodic maintenance and/or
calibration by trained operators. Many field studies have shown that within given urban regions
there can be significant spatial variability of PM at small spatial scales, driven by heterogeneous
local emissions, local topography, and the microscale variability of meteorology conditions [5–8].
For example, Superczynski and Christopher [9] found that the annual average PM2.5 varied by 25–30%
across the Birmingham, Alabama, in 2000–2009. Recent studies have examined the spatial variability
of PM using networks of sensors [6,8,10].

Many low-cost sensor models cost only a few hundred dollars and are marketed directly to
consumers who are interested in understanding personal exposure or citizen science. These sensors are
designed to be simple to operate, with little power or infrastructure needed compared to regulatory
grade monitors. Low-cost sensors have the potential to provide valuable information on the spatial
and temporal variability of PM and other pollutants, and if sufficient, steps are taken to ensure that the
quality of the measurements is robust enough to meet the given objectives [11,12].

Validating sensor measurements, and in particular, determining the comparability among sensors
in an ambient environment, is a critical step to ensure data quality for any sensor deployment.
The EPA’s Air Sensor Guidebook states that “Sensor calibration is vital for producing accurate and
usable data” [13]. Recent studies have assessed the performance capabilities of sensors in the laboratory
and in field conditions. Studies have used sensor measurements to examine air quality and demonstrate
the value of sensor measurements in assessing spatio-temporal variability when a careful procedure
to evaluate sensor measurements has been employed. Snyder et al. [14] provide an overview of the
new generation of low-cost sensors that measure gas phase and particulate air pollution. Previous
studies have utilized measurements from these sensors to examine the impact of air pollution exposure
on health [15,16] and to examine their potential for integration into a network of stations [6,7]. Gao,
Cao and Seto [6] deployed a network of eight sensors to assess the spatial variability of PM in Xi’an,
China, and to identify air pollution hot spots, after calibrating to an established gravimetric method.
Heimann, et al. [17] utilized a network of carbon monoxide sensors to assess the source apportionment
of emission drivers. The EPA-conducted Community Air Sensor Network (CAIRSENSE) project
assessed the performance of gas phase and particulate matter sensors over an eight-month period and
quantified the unique precision and accuracy of different sensors, compared to FEM monitors [18].
Zikova et al. [8] utilized 27 PM sensors to evaluate the spatial variability of PM across Rochester, NY.
There is interest in synthesizing measurements from sensors along with the existing regulatory air
quality infrastructure to examine exposure and air pollution dynamics at finer scales [18–20].

The sensor model used in this study is the AirBeam, with a cost of USD $250, which was developed
by HabitatMap, Inc., in Brooklyn, NY, to measure PM2.5 using a well-established optical technique.
In previous studies, the AirBeam was shown to demonstrate high sensor-to-sensor precision in the
environments of Decatur, Georgia, and the Cuyama Valley of California [18,21]. These studies also
examined the performance of the AirBeam relative to reference regulatory monitors and showed that
meteorological variables such as relative humidity and wind speed had predictive capacity with regard
to the deviation between AirBeam and reference instruments. The Air Quality Sensor Performance
Evaluation Center (AQ-SPEC) has assessed the AirBeam and multiple other sensors in laboratory
and field conditions. In laboratory comparisons against the GRIMM FEM monitor, the AirBeam
sensors showed good correlation (R2 ~ 0.87) at 5-minute resolution, while underestimating PM2.5 by
approximately a factor of 5 [22]. Similar results were demonstrated in the field, and raw particle counts
had better agreement than retrieved PM2.5 concentrations between the two instruments [23]. AQ-SPEC
assessments also show that the AirBeam has high precision over a range of temperature and relative
humidity conditions.

Previous studies have used emission inventories to examine the spatial variability of pollution
sources [24–26]. In this study, the measurements from a network of AirBeam sensors are compared
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to a gridded emissions inventory to examine whether emission hotspots result in elevated PM2.5

concentrations detectable by sensors. While directly comparing emissions to concentrations neglects
processes, such as secondary aerosol formation, and provides a way to examine the spatial variability
of emissions and concentrations similar to methods used by Mohan et al. [24].

In this study, AirBeam sensors were deployed in the urban wintertime environment of Sacramento,
California, as part of a larger study to understand the differences in air pollution among environmental
justice (EJ) and non-EJ communities [27]. Here, we report on the sensor-to-sensor variability
during collocated measurement periods, the accuracy of the sensors in comparison to FEM and
FRM measurements at regulatory monitoring sites, the spatio-temporal variability of PM2.5 during
winter 2016/2017 among EJ and non-EJ communities, and the relationship between emissions and
measured PM2.5.

2. Methods

2.1. Instrumentation

The AirBeam sensor was used for measuring PM2.5 at community sites. HabitatMap, Inc.,
has developed the AirBeam on an open source platform, with details and schematics available at
http://aircasting.org/about. The AirBeam measures PM2.5 using an optical technique. A light-emitting
diode (LED) source of visible green light is used to detect particles, and the raw measurement provides
total particle counts. This particle count is then converted to mass concentration, assuming a fixed size
distribution and constant particle density; the October 2016 version of software provided by HabitatMap
was used in this study. This default retrieval algorithm was: PM2.5 (µg m−3) = 0.518 + 0.00274 ×
particle count (hppcf). Field evaluations have shown that the AirBeam size cutoff and assumed size
distribution provides a fairly accurate representative sample of PM2.5 (R2 of approximately 0.75) in
comparison to GRIMM derived PM2.5 [21]. An EPA study examined the performance of 12-hour
average measurements from the AirBeam compared to a regulatory monitor and found high precision
(sensor-to-sensor R2 = 0.99) and moderate accuracy (sensor-to-reference R2 = 0.43), with modest
improvements from meteorology corrections (sensor-to-reference R2

adj = 0.51) [18].
In this study, AirBeams were mounted on tripods covered in a metal hood to repel rain, but not

to obstruct air flow to the AirBeam. From the manufacturer, AirBeams are outfitted with Bluetooth
technology to transfer data from the sensor to a handheld smart device or data storage location. Due to
the limited range of Bluetooth (approximately 5–10 ft (1.5–3 m)), AirBeams used in the study were
configured with Valarm serial adaptors and wireless cellular network components to send data in
real-time from the AirBeam to Valarm’s data cloud; the data were then retrieved every minute and
stored in a central database. Valarm’s Yoctopuce Yocto serial sensor adaptors were connected to the
AirBeam’s auxiliary ports via single-pin wires, which gathered data from the AirBeam for delivery.
Connected to the serial adaptor via micro-USB was Valarm’s GSM 3G sensor hub, outfitted with a Ting
GSM SIM card, which transmitted data to Valarm’s cloud. Sonoma Technology, Inc., then retrieved
these data from Valarm’s cloud API in real time. One-minute AirBeam sensor data were averaged to
hourly values, requiring 75% completeness for each hour.

Two different methods were used to power the AirBeam units used in the study: Hardwired AC
power, and a battery-solar power combination. The power method for each AirBeam monitoring unit
was determined on a site-by-site basis depending on available resources. If the hosting site contained
an accessible outdoor power outlet (with permission from the owner), a heavy-duty outdoor-rated
extension cable was installed inside the AirBeam’s utility box as a direct power source. A majority
of the AirBeam monitoring units were powered by this method. If the hosting site did not have an
accessible outdoor power outlet, a battery-solar power configuration was used. Due to the limited
power needs of the AirBeam monitoring unit, a 12-volt deep cycle marine battery was wired to the
AirBeam’s utility box and served as the main power source for the unit. Inside the AirBeam’s utility box,
a Valarm 12-volt DC power regulator with a micro-USB port was wired to the battery cables and served

http://aircasting.org/about
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as a platform to connect the AirBeam and data communication components. In addition to the battery,
a solar panel was mounted to the top of the AirBeam’s monitoring unit and wired into the battery’s
wiring harness with a solar controller regulator to charge the battery. The AirBeams and Valarm
data communication components are connected to a power source via USB. Both of these methods,
hardwire and solar-battery, yielded a connection for a multi-port USB adaptor, enabling power sources
for all devices.

Measurements from regulatory monitors were reported to and accessed from the EPA’s Air
Quality System (AQS, available at https://aqs.epa.gov/api). A Met One Instruments Model 1020
Beta Attenuation Monitor (BAM) and a daily FRM filter sampler were operated by the Sacramento
Metropolitan Air Quality Management District (SMAQMD) at the Sacramento-Del Paso Manor air
monitoring site (Del Paso Manor, AQS site code 06-067-0006) and by the California Air Resources
Board (ARB) at the Sacramento 1309 T Street air monitoring site (T Street, AQS site code 06-067-0010)
during the study. The BAM measures PM2.5 on an hourly basis by sampling ambient air through a
sharp cut cyclone and depositing particles on a filter tape, and then exposing the filter tape to a source
of beta radiation. The FRM R & P Model 2025 PM2.5 Sequential Air Sampler provided daily average
measurements of PM2.5 using a gravimetric filter sampling technique.

Meteorological measurements were also collected at Del Paso Manor and T Street by SMAQMD
and ARB. Hourly measurements of temperature, relative humidity, and wind speed and direction were
measured and accessed through AQS. Dew point was calculated from measurements of temperature
and relative humidity using the Clausius-Clapeyron equation:

Dew Point = (237.3 log(Vapor Pressure) − 186.52)/(8.29 − log(Vapor Pressure)). (1)

2.2. Study Design

Sacramento is located in the southern portion of the Sacramento Valley, an urbanized area with
flat topography approximately 100 km from the Pacific Ocean. Source apportionment studies show
that in the Sacramento Valley, the major chemical components of wintertime PM2.5 are ammonium
nitrate and organic carbon [25,26]. Combustion from gasoline and diesel engines contributes to the
majority of nitrate mass, whereas agricultural sources are the major source of secondary ammonium
ion [26]. In Sacramento, the organic carbon and elemental carbon components of PM are driven by
emissions from diesel, gasoline, and wood burning [27,28].

The AirBeams were deployed in three distinct phases for the study:

(1) A pre-study collocation period (11/10/16–11/16/16) where 19 AirBeams were collocated with the
BAM, FRM, and meteorology measurements at the Del Paso Manor site.

(2) The study period (2 months, 12/1/2016–02/1/2017), during which 19 AirBeams were deployed at
15 locations in Sacramento. Three AirBeams were collocated at both Del Paso Manor and T Street
sites with the BAM and FRM monitor, in order to assess sensor precision and drift during the
study period. The remaining 13 AirBeams were deployed individually at site locations as shown
in Figure 1.

(3) A post-study collocation period (2/4/2017–3/8/2017) where 19 AirBeams were collocated with the
BAM, FRM and meteorology measurements at the Del Paso Manor site in the same configuration
as in the pre-study collocation period.

Figure 1 shows the community site locations and the Del Paso Manor and T Street regulatory
monitoring sites where the sensors were deployed during December-January. Based on the EPA’s
EJScreen EJ Index data (available at https://www.epa.gov/ejscreen/download-ejscreen-data) for
particulate matter, three EJ and three non-EJ community areas were selected. In each community area,
between one and four community sites were selected. These sites were located at private residences
whose owners volunteered the use of their property for the study. The study domain includes a 14 km
by 16 km, 224 km2 area in Sacramento, with all sites situated in an urban environment.

https://aqs.epa.gov/api
https://www.epa.gov/ejscreen/download-ejscreen-data
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were used to compute a correction factor for each sensor using the equation:  
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The correction ensures that, when the sensors are deployed as a network during the study 
period, each sensor provides an intercomparable value. All data shown in the Results section are 
corrected. 

Figure 1. Map of Sacramento study domain showing AirBeam network stations and the two regulatory
stations. Community boundaries for EJ and non-EJ communities are shown. Areas shaded yellow,
orange and red have a higher EJ Index percentile. Meteorology stations are collocated at the Del Paso
Manor and ARB T street sites.

2.2.1. Collocation and AirBeam Correction

Studies have shown that factory default sensor measurements can have sensor-sensor offsets that
can be corrected for [8,10,20,28]. This correction can be developed from an independent reference
instrument or from a set of sensors of the same model. In this study, the measurements from pre- and
post-study collocation periods were used to develop the correction for each AirBeam, quantify precision
(AirBeam versus AirBeam variability), and assess whether the response of individual AirBeams to
ambient PM2.5 concentrations drifted during the study. The Pearson coefficient of determination
(R2) was computed between each sensor, and the 19-sensor mean to understand precision and
sensor-to-sensor variability. Linear regressions between each sensor and the 19-sensor mean were
computed to calculate the correction needed for each sensor. The regressions for each sensor were
calculated and compared for the pre- and post-study collocation periods, to determine whether the
offset of each sensor was stable and consistent during the study. These linear regressions were used to
compute a correction factor for each sensor using the equation:

Corrected AirBeam = (Raw AirBeam − Intercept)/Slope (2)

The correction ensures that, when the sensors are deployed as a network during the study period,
each sensor provides an intercomparable value. All data shown in the Results section are corrected.

Collocated sensor measurements were used during the study period to examine precision.
The degree of confidence in sensor precision is presented statistically as the standard deviation of
the difference between the linear regression model and the 19-AirBeam average value. Evaluating
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precision during these periods allows us to quantify how much of the variability from the study period
was due to varying aerosol conditions versus sensor-to-sensor variability.

The data from the collocation of AirBeam sensors, BAMs, and meteorological measurements at Del
Paso Manor and T Street, during the study, were used to quantify drift, accuracy, and the influence of
meteorological conditions on the corrected AirBeam measurements. The relationship between corrected
AirBeam measurements and BAM measurements was examined at Del Paso throughout the pre-study,
study, and post-study periods to assess the stability of the AirBeam measurements. The correlation
between corrected AirBeam and BAM measurements was used to assess accuracy. Daily averages
of AirBeam measurements were also compared with the daily FRM measurements. The role of
meteorological influence on sensor accuracy was assessed at both sites, using multivariate linear
regression of AirBeam data with meteorological variables against BAM measurements. This analysis
provides insight into the performance of the AirBeam instrument given its measurement technique
and the impact of varying meteorological conditions in the Sacramento wintertime environment.

2.2.2. Calculations from AirBeam Deployment in Communities

Corrected AirBeam measurements are used to provide estimates of the spatial and temporal
variability of PM2.5 during the study period. The variability of PM2.5 between EJ and non-EJ sites is
estimated through examining the distributions of AirBeam PM2.5 measurements and using a Student’s
t-test of the sample means. The R2 and the coefficient of divergence (COD, defined below) calculated
between AirBeam-AirBeam pairs and AirBeam-BAM measurements are used to evaluate spatial
heterogeneity of measurements during the study. The pairwise COD for sites j and k is defined as:

COD jk =

√
1
p
∑p

i=1

( xi j − xik

xi j + xik

)2

. (3)

where i is the ith measurement out a total of p measurements, and j and k are the two sites being
compared. COD values range from 0 to 1, with a value of 0 indicating identical measurements, a value
of 0.2 being a threshold of heterogeneous spatial distributions and a value of 1, indicating significant
heterogeneity [29,30]. COD analysis has been used to examine the spatial variability of air pollutants
in similar special studies [8,30,31].

To assess the relationship between emissions inventories and ambient concentrations,
the measurements were compared to the wintertime PM2.5 emissions inventory (EI) for the study area.
SMAQMD provided 2012 PM2.5 EI data for weekdays and weekends in the winter season on a 4-by-4
km grid to the California Air Resources Board; these were processed through the California Emissions
Projection Analysis Model (CEPAM): External Adjustment Reporting Tool. The inventory provides
PM2.5 emissions data in tons emitted per day in each grid cell. These grid cell values were compared
to the PM2.5 increment above background measured by all AirBeams located within the grid cells.
Emissions data were compared to the average of all AirBeam PM2.5 measurements collected by all sites
located in that grid cell. For each grid cell, the average concentration across all AirBeams in the grid
cell was determined using only hours when all AirBeams had hourly average data, and the increment
above the lowest measured value (background) was calculated. A linear regression equation was fit to
the average PM2.5 increment and the EI data, and the R2 was calculated for the regression.

3. Results

3.1. Precision, Correction, and Drift

Sensor precision and bias were assessed using collocated measurement periods before, during,
and after the study. Raw, uncorrected data are presented in this section; subsequent sections use
corrected data. The sensors demonstrated high precision and consistent measurements throughout all
periods, allowing the development of a correction, as shown in Table 1. The R2 value of each individual
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AirBeam compared to the 19-AirBeam hourly mean provides a representation of sensor precision.
The AirBeams demonstrate very high precision during all collocation periods, with these R2 values
ranging from 0.98 to 0.999. This indicates that the AirBeam sensors provided stable and consistent
measurements over a range of different wintertime meteorological and physical conditions, including
the varying chemical composition and size distribution of PM found in Sacramento. Intercepts and
slopes of regression, computed for each AirBeam versus the 19-AirBeam hourly mean for the pre-study
and post-study collocation period, are presented in Table 1. With the exception of one outlier AirBeam
(Henrietta), the standard deviation of the absolute value of the deviation of these slopes from the mean
is 6.9%, showing how close the measurements from each AirBeam were to the 19-AirBeam average.
Likewise, the intercepts of regression are of small magnitude, between −3.5 and 3 µg m−3. This range
of linear regression variables shows that the raw AirBeam measurements are closely intercomparable
and within 15% of the AirBeam mean.

This precision is also reflected in the Root Mean Squared Error (RMSE) values. RMSE is used to
quantify sensor-sensor variability, and an RMSE of 0 µg m−3 would indicate identical measurements.
RMSE values of the raw, uncorrected data for each individual AirBeam compared to the 19-AirBeam
hourly mean have an average of 1.08 µg m−3, maximum of 2.55 µg m−3 for the pre-study collocation
period and a maximum of 1.52 µg m−3 for the post-study collocation period. The Coefficient of
Variation (CV) is another metric that has been used to assess the precision of collocated sensors [32].
The average CV of all 19 AirBeams from the pre- and post-study collocation periods was found to be
0.17 ± 0.04 (average ± one standard deviation), lower than the average CV value of 0.25 ± 0.14 reported
from 14 OPC-N2 PM2.5 measurements, reported in [32]. The high R2 values and low RMSE values
demonstrate that the AirBeams have robust sensor-to-sensor precision.

Between the two collocation periods, the average absolute change in the slopes of regression
is small (4.6%). The slopes of regression shown in Table 1 remain very consistent between the two
collocation periods. In order to examine whether there was a shift between the two periods, the change
in measuring 5, 10, 20, 30, 40, and 50 µg m−3 using the linear regressions from both periods is shown in
Supplemental Table S1. The change in these values of PM2.5 is shown in µg m−3 and as a percentage.
This shows the impact of the change in slopes and intercepts from the pre-study collocation period to
the post-study collocation period. In a majority of cases, the change in PM2.5 values due to this effects
is relatively negligible, being less than 5%. AirBeams measured a change of less than 10% for values
between 5 and 50 µg/m3 in over 83% of cases. Therefore, there is high confidence that the AirBeams
were measuring PM2.5 in a consistent way throughout the study period.

The generally robust precision of the measurements and the stable performance of the AirBeams
in the pre- and post-study periods allows for a correction using the slopes and intercepts of regression
against the mean. Equation (2) was applied to correct the AirBeam measurements, using the slopes
and intercepts of regression presented in Table 1. Given the very similar AirBeam PM sensor response
during pre-study and post-study periods, an average of the pre-study and post-study intercepts and
slopes was used for the correction. For five AirBeams, the pre-study regressions alone were used for the
correction factor for the study period, due to invalid data in the post-study period leading to a limited
range of PM values. Because the coefficient of determination is invariant under the transformation of a
linear change, the R2 values, shown in Table 1, are the same for the original AirBeam measurements
and the corrected AirBeam measurements.
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Table 1. Precision statistics using collocated measurements from the pre- and post-study periods for Pearson correlation coefficient (R2) values, root mean squared
error (RMSE), linear regression intercepts and slopes for the pre and post-study periods. The normalization correction factor was taken to be the linear regression
using the average slope and intercept.

Pre-Study Post-Study Correction Factor

AirBeam
Name

N (hours
of valid

data)

R2 vs.
AirBeam

Means

RMSE vs.
AirBeam

Means
(µg/m3)

Slope of
regression

Intercept of
regression

(µg/m3)

N (hours
of valid

data)

R2 vs.
AirBeam

Means

RMSE vs.
AirBeam

Means
(µg/m3)

Slope Intercept
(µg/m3)

Slope:
Average

slope

Intercept:
Average
Intercept
(µg/m3)

13th Ave 47 0.99 0.38 0.91 0.03 470 0.99 0.69 0.96 −0.19 0.94 −0.08

24th Ave 47 0.99 0.47 0.93 −0.53 469 0.99 0.70 0.96 −0.49 0.94 −0.51

64th St 152 0.99 0.92 1.01 0.93 467 0.99 0.53 1.06 0.09 1.03 0.51

ARB T St 2 146 0.99 1.61 0.81 −0.15 467 0.99 1.02 0.75 0.07 0.78 −0.04

ARB T St 3 150 0.99 1.11 0.95 1.19 467 0.99 0.26 1.02 0.15 0.98 0.67

Alderwood 150 0.99 1.23 0.88 1.51 465 0.99 0.34 0.95 0.09 0.92 0.80

Coroval 138 0.99 0.92 1.15 0.16 378 0.99 0.58 1.26 −0.70 1.20 −0.27

Del Paso 2 152 0.99 1.51 0.80 2.64 465 0.99 1.09 0.87 1.37 0.83 2.00

Del Paso 3 152 0.99 0.81 1.10 −0.53 468 0.99 0.59 1.19 −0.78 1.15 −0.66

Darwin St 88 0.99 0.82 0.99 0.55 466 0.99 0.36 1.04 −0.22 1.01 0.16

Henrietta Dr 47 0.99 0.60 1.55 −1.17 291 0.99 0.59 1.73 −0.51 1.64 −0.84

Socorro Way 88 0.99 0.88 0.96 0.74 464 0.99 0.42 1.00 −0.22 0.98 0.26

Tristan Cir 138 0.98 2.55 0.97 −2.95 466 0.98 1.52 0.94 −1.00 0.95 −1.98

Wyman 47 0.99 0.88 1.10 1.17 467 0.99 1.14 1.07 1.24 1.08 1.21

79th St 62 0.99 0.69 0.93 −0.39 466 0.99 0.65 0.84 −0.71 0.89 −0.55

ARB T St 146 0.99 0.87 1.13 −1.67 392 0.99 0.43 1.06 −0.34 1.10 −1.01

Del Paso 152 0.99 1.17 1.13 0.09 150 0.99 0.43 1.06 0.44 1.13 0.09

Hermosa St 47 0.99 0.74 0.85 −0.30 291 0.99 0.55 0.83 −0.16 0.85 −0.30

T St Tier 3 152 0.98 2.45 1.08 −3.20 291 0.99 0.49 0.97 −0.30 1.08 −3.20
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The correction allows the network of AirBeam measurements to be intercomparable throughout the
study period, with each AirBeam reporting a comparable value. The corrected AirBeam measurements
can then be used to assess the accuracy of the AirBeam measurements by comparing them with the
BAM and FRM, as well as examining the spatial and temporal variability of PM in the Sacramento
metropolitan region throughout the study period. Hereafter, the description relates to the corrected
AirBeam values used in the study.

3.2. Collocation Results during Study

During the study period, three AirBeams were collocated at the T Street site and three AirBeams
were collocated at the Del Paso Manor site to the BAM instruments that were operating at those
sites. These measurements were also examined to assess precision. A stable linear relationship was
seen for these sets of AirBeams throughout the study period, consistent with Table 1. For the two
sets of three AirBeams collocated during the study period, pairwise correlation R2 values range
from 0.987 to 0.995, within the range of the pre- and post-study collocation periods. Supplemental
Figure S1 shows an AirBeam-to-AirBeam comparison at Del Paso Manor. The standard deviation of
the residuals, i.e., the difference between the linear regression model and the true AirBeam value,
was computed for these six collocated AirBeams. These values range from 1.33 µg m−3 to 2.99 µg m−3,
reflecting a high degree of precision. This range of PM2.5 values is a representation of the confidence
in sensor precision during the study period. This confirms that during the study period, AirBeams
demonstrated a consistent correctable bias relative to each other, and that there was no evidence of a
drift in the measurement.

3.3. Accuracy and the Impact of Meteorology

During the study period, three AirBeams were collocated with the BAM, FRM, and meteorological
measurements at Del Paso Manor. Since AirBeam measurements have been corrected at this stage,
the three AirBeams present nearly identical measurements. Therefore, the results from only one
AirBeam are presented. These collocated measurements provide an opportunity to examine sensor
accuracy with respect to the BAM and FRM instruments, as well as to compare the AirBeam to these
instruments under varying meteorological conditions. During the wintertime study period, relative
humidity values were quite high, with a value of 85% or greater during 65% of the measurement hours,
and 90% or greater during 57% of the time. This is reflective of the typical regional climate, with humid
conditions during the winter.

Figure 2 shows a comparison of hourly corrected AirBeam values with the collocated hourly BAM
measurements at Del Paso Manor during the study period, color-coded by meteorological variables
that may impact the comparison between the AirBeam and BAM: (a) relative humidity, (b) dew point
temperature, (c) temperature, and (d) wind speed. The R2 correlation of the AirBeam and the BAM
is 0.60, demonstrating moderate sensor accuracy. Figure 2 indicates that there is a range of AirBeam
values for a given BAM concentration, with AirBeam measurements ranging from a factor of 1 to a
factor of 3 higher for the majority of measurements. In Figure 2, the deviation towards high AirBeam
measurements relative to the BAM exists during the periods with high dew point and high temperature.
However, under lower dew point conditions, roughly less than 4 ◦C, the AirBeam and BAM have
approximately a 1:1 relationship (upper right plot in Figure 2). There is no apparent trend in the
comparison between the measurements and either relative humidity or wind speed.
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Figure 2. Hourly measurements of PM2.5 from the AirBeam compared to the BAM at Del Paso Manor
during December 2016-January 2017. The data are color-coded to (top left) relative humidity, (top right)
dew point, (bottom left) temperature, and (bottom right) wind speed. 1:1 and 3:1 lines are shown
for reference.

Daily average values are also important to consider because the PM2.5 acute NAAQS is set for
daily values; therefore, the daily AirBeam values were compared to the collocated FRM. Figure 3
shows the relationship between the daily average AirBeam values and the collocated FRM values
at Del Paso Manor during December 2016–January 2017. Figure 3 is analogous to Figure 2, with the
same color coding used for relative humidity, dew point temperature, temperature, and wind speed.
Daily average BAM measurements had a high correlation with the FRM (with R2 = 0.95). The R2

correlation of the daily average AirBeam and the FRM is 0.71. Figure 3 shows the same relationships
as Figure 2, with AirBeam and FRM measurements nearly 1:1 on days with lower temperature and
dew point periods. On a daily basis, the AirBeam is consistent with the FRM under low humidity
conditions (i.e., with RH less than roughly 85%, dew point less than 4 ◦C) that were not as evident in
the hourly data. No relationship is evident with wind speed.
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Figure 3. Daily average measurements of PM2.5 from the Del Paso Manor AirBeam compared to the
FRM. The data are color-coded to (top left) relative humidity, (top right) dew point, (bottom left)
temperature, and (bottom right) wind speed.

In order to evaluate the impact of meteorological factors further, multi-variate linear regression
was performed between the AirBeam measurements and the regulatory monitor measurements using
meteorological variables as explanatory variables at Del Paso Manor for both hourly measurements
and 24-h average values. Table 2 shows the improvement to the adjusted R2 values via multi-variate
linear regression with meteorological explanatory variables. The improvement from each individual
meteorological variable is shown, as well as the total of all four variables, and the quadratic of all four
variables (including cross terms). Dew point and relative humidity are the most important explanatory
variables for these cases, showing the biggest improvements in the adjusted R2 values for both the
BAM and the FRM. This indicates that dew point and relative humidity were the most important to
explain the deviation between AirBeam measurements and the regulatory monitors.
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Table 2. Multi-linear regressions from the study period using collocated measurements at Del Paso
Manor and T Street. Rows show the initial Pearson correlation coefficient (R2) between one AirBeam
and the regulatory monitor, and the improvement with meteorological explanatory variables. REG
indicates a regulatory monitor: 24-h filter-based Federal Reference Method sampler (FRM) for the third
column and beta attenuation monitors (BAM) for the other four columns.

Variables of
Regression

Hourly BAM
vs. AirBeam:
Adjusted R2

Daily Average
BAM vs.
AirBeam:

Adjusted R2

Daily FRM vs.
AirBeam:

Adjusted R2

Hourly BAM
vs. AirBeam:
Adjusted R2

Daily Average
BAM vs.
AirBeam:

Adjusted R2

Monitoring Site Del Paso Manor Del Paso Manor Del Paso Manor T Street T Street

Initial R2 0.601 0.573 0.716 0.684 0.746

REG + Temp 0.604 0.596 0.738 0.686 0.747

REG + Dew 0.623 0.641 0.767 0.706 0.776

REG + RH 0.617 0.647 0.759 0.703 0.800

REG +WS 0.609 0.567 0.716 0.686 0.758

REG + Temp + Dew +
RH +WS 0.648 0.651 0.762 0.715 0.804

REG + quadratic
(Temp, Dew, RH, WS) 0.732 0.830 0.883 0.867 0.932

Similar relationships, as those in Figures 2 and 3, were found when the same methodology was
applied to the collocated measurements at T Street. At T Street, hourly measurements collocated
between the AirBeam and the BAM had an R2 correlation of 0.68, and daily average measurements
between the same two instruments had an R2 correlation of 0.69. These values show that the AirBeams
demonstrated comparable modest accuracy to the reference instruments at both collocation sites.
Multi-variate linear regression was performed at T Street using the same four meteorological variables
as at Del Paso Manor, also shown in Table 2. The two most explanatory variables from the multilinear
regression analysis were the dew point and relative humidity. At both Del Paso Manor and T street,
among the four models with two variables of regression, dew point and relative humidity had the
highest adjusted R2 values, and the lowest p-values (p-values less than 10-16 when using hourly data,
and p-values less than 0.005 when using daily averaged data). However, the specific regression
coefficients were quite different at the two sites. This is unlikely to be due to the differences in
meteorology between the two sites, since temperature, RH, and wind speed were highly correlated
(R2 values = 0.96, 0.87, and 0.86 respectively) with similar distributions, indicating that meteorology
is fairly homogeneous throughout Sacramento. The precision on the BAM is less than that for
FRM measurements, roughly 22% [33], so the differences in the regression result may be due more
to uncertainties in the operation and precision of the comparison instruments, rather than true
meteorological differences.

Based on these findings, and considering that the AirBeam sensor uses an optical technique, it is
likely that hygroscopic aerosol growth played a role in systematically biasing AirBeam measurements
in this study to report higher concentration values relative to the values reported by regulatory
monitors. The uptake of water vapor from hygroscopic aerosols, such as nitrate and highly oxidized
organics can lead to an increase in particle size, and thus to greater scattering efficiency per unit mass
concentration [34]. The BAM accounts for aerosol-bound water by heating the incoming stream to
evaporate the water [35,36]. The AirBeam sensor, however, does not heat the incoming stream, and
so particles enlarged with water scatter more light into the detector, leading to a positively biased
measurement. This has also been observed in other optical particle counter-based sensors [32]. Both
high relative humidity and high dew point could contribute to this effect, leading to more flux of water
to the particles. The measurements during the study period may be especially sensitive to this impact
because of the high frequency of saturated air masses in wintertime Sacramento.
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3.4. Inter-Community Variability of PM

Corrected AirBeam values were used to examine inter-community variability of PM in Sacramento
during the study period. Figure 4 shows a time series of AirBeam measurements from a representative
sensor in each of the six communities, the difference between the PM in each community from the
median across all six communities, and wind speed and direction for the period from 15 December 2016,
to 5 January 2017. This period included holiday periods and the day with the maximum measured
concentration during the study, 23 December. A clear diurnal periodicity was found during the study,
reflected in both AirBeam and BAM measurements (shown later in Figure 5), with the highest PM
concentrations occurring at night. AirBeam values across the community sites typically converge at
low PM levels during the day when winds are stronger and the atmospheric boundary layer is higher,
and diverge overnight when concentrations are higher. The correlation of pollution hour-by-hour
across the sensors suggests that common emission sources influence the entirety of the study domain,
with overnight variations among sites, due to the localized influence of sources, such as residential
biomass burning and local wind patterns. On average, PM is relatively homogeneous across the study
domain, but short-term spikes in PM were common at night-time in most communities, highlighting
the localized impact of PM during nighttime conditions. The spatial variability of PM is quantified
using statistical measures later in this section. The lower boundary layer height, higher atmospheric
stability, and higher emissions due to wintertime heating fuel consumption at night contribute to these
PM events, especially when wind speeds are low.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 23 

 

community from the median across all six communities, and wind speed and direction for the period 
from 15 December 2016, to 5 January 2017. This period included holiday periods and the day with 
the maximum measured concentration during the study, 23 December. A clear diurnal periodicity 
was found during the study, reflected in both AirBeam and BAM measurements (shown later in 
Figure 5), with the highest PM concentrations occurring at night. AirBeam values across the 
community sites typically converge at low PM levels during the day when winds are stronger and 
the atmospheric boundary layer is higher, and diverge overnight when concentrations are higher. 
The correlation of pollution hour-by-hour across the sensors suggests that common emission sources 
influence the entirety of the study domain, with overnight variations among sites, due to the localized 
influence of sources, such as residential biomass burning and local wind patterns. On average, PM is 
relatively homogeneous across the study domain, but short-term spikes in PM were common at 
night-time in most communities, highlighting the localized impact of PM during nighttime 
conditions. The spatial variability of PM is quantified using statistical measures later in this section. 
The lower boundary layer height, higher atmospheric stability, and higher emissions due to 
wintertime heating fuel consumption at night contribute to these PM events, especially when wind 
speeds are low. 

 

Figure 4. Hourly AirBeam PM2.5 measurements from the six communities (top), difference from 
median AirBeam concentration across the six communities (middle), and wind speed and wind 
direction measurements measured at Del Paso Manor (bottom) from December 15, 2016, to January 
05, 2017. Colonial Heights, Del Paso Manor, and T Street are non-EJ areas, while Arden, South 
Sacramento, and South Natomas are EJ areas. 

Using periods when all six selected AirBeams in each neighborhood had available data, the 
hourly-averaged PM2.5 concentrations measured from the AirBeams and the two BAMs is shown in 
Figure 5. These measurements all reflect the same temporal distribution, with higher PM2.5 levels 
during the late evening and night, and levels subsiding over the course of the morning and afternoon. 
The concentrations start to increase around 4:00 p.m. and rise throughout the evening, likely due to 
the emissions from rush-hour traffic and residential biomass burning. The measurements presented 
in Figure 5 also provide a way to examine the spatial variability of PM2.5. PM at Del Paso Manor is 
the highest among the six communities, similar to BC measurements reported in Brown et al. [27]. 

Figure 4. Hourly AirBeam PM2.5 measurements from the six communities (top), difference from median
AirBeam concentration across the six communities (middle), and wind speed and wind direction
measurements measured at Del Paso Manor (bottom) from December 15, 2016, to January 05, 2017.
Colonial Heights, Del Paso Manor, and T Street are non-EJ areas, while Arden, South Sacramento,
and South Natomas are EJ areas.
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Figure 5. Temporal distribution of two BAM monitors and corrected AirBeam PM2.5 measurements
from the six communities in the study.

Using periods when all six selected AirBeams in each neighborhood had available data,
the hourly-averaged PM2.5 concentrations measured from the AirBeams and the two BAMs is shown
in Figure 5. These measurements all reflect the same temporal distribution, with higher PM2.5 levels
during the late evening and night, and levels subsiding over the course of the morning and afternoon.
The concentrations start to increase around 4:00 p.m. and rise throughout the evening, likely due to
the emissions from rush-hour traffic and residential biomass burning. The measurements presented in
Figure 5 also provide a way to examine the spatial variability of PM2.5. PM at Del Paso Manor is the
highest among the six communities, similar to BC measurements reported in Brown et al. [27].

The distances between AirBeam site pairs during the study period are shown in Table 3. To assess
spatial variability, the pairwise statistical measures of correlation coefficients and COD were computed
among the AirBeams from the 15 community sites. These results are shown in Tables 4 and 5
and are derived from both hourly measurements and daily average measurements. The pairwise
statistics derived from daily average values show higher correlations compared to hourly values,
because the diurnal variability is not present. As expected, these comparisons show a statistically
significant relationship to distance, with higher R2 and lower COD values between closer AirBeams.
For two AirBeams within a 5 km distance, very high correlations are seen with hourly/daily R2 values
above 0.90/0.95 and with hourly/daily COD values being below 0.20/0.15. Over larger distances,
the correlations remain fairly high, indicating modest spatial heterogeneity in PM: the low correlation
limit (for AirBeams over a large distance) for hourly/daily R2 values is 0.67/0.81 and for hourly/daily
COD values is 0.33/0.22. However, these represent outliers from Tables 4 and 5. A COD value of 0.2
is typically used as a threshold for heterogeneity [29,30], so for the study period, hourly PM2.5 was
marginally heterogeneous and daily PM2.5 was almost always homogeneous within the 14 km by
16 km study domain.
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Table 3. Matrix of the distances between the 15 AirBeam site pairs during the study period. AirBeam sites are grouped by community. Distances are in kilometers.
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Darwin Arden 0.0

Alder Del Paso 4.8 0.0

Del Paso Del Paso 4.4 0.9 0.0

Wyman Del Paso 5.3 1.9 1.2 0.0

Coroval South Natomas 8.4 13.3 12.8 13.5 0.0

Socorro South Natomas 6.1 10.9 10.5 11.1 2.4 0.0

24th Ave South Sacramento 8.1 11.6 11.7 12.8 7.5 6.9 0.0

Henrietta South Sacramento 15.7 17.9 18.3 19.5 15.2 15.2 8.3 0.0

Hermosa South Sacramento 14.3 15.7 16.2 17.4 15.6 15.1 8.2 3.3 0.0

Tristan South Sacramento 15.0 15.8 16.4 17.6 17.0 16.3 9.5 4.7 1.7 0.0

ARB T St T St 8.2 12.2 12.1 13.2 6.1 5.9 1.5 9.3 9.5 10.9 0.0

TstTier 3 T St 8.9 13.1 13.0 14.0 5.6 5.8 2.5 9.7 10.2 11.7 1.1 0.0

13th Ave Tahoe Park 8.2 9.8 10.2 11.5 11.1 9.9 4.3 8.0 6.2 6.9 5.7 6.8 0.0

64th St. Tahoe Park 9.1 10.2 10.7 12.0 12.5 11.2 5.5 7.8 5.5 5.9 7.0 8.1 1.3 0.0

79th St. Tahoe Park 8.8 9.2 9.8 11.0 13.2 11.7 6.7 9.1 6.6 6.6 8.1 9.2 2.4 1.5 0.0
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Table 4. Matrix showing pairwise Pearson coefficient of determination (R2) values from the 15 AirBeam sites during the study period. AirBeam sites are grouped by
community. R2 values are derived from hourly measurements (bottom left half), and daily average measurements (top right half).
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Darwin Arden 1 0.99 0.89 0.98 0.98 0.92 0.9 0.83 0.84 0.9 0.85 0.81 0.94 0.94 0.91

Alder Del Paso 0.96 1 0.88 0.98 0.98 0.92 0.9 0.83 0.85 0.9 0.85 0.81 0.95 0.95 0.92

Del Paso Del Paso 0.73 0.72 1 0.87 0.93 0.97 0.97 0.91 0.94 0.93 0.95 0.96 0.93 0.94 0.91

Wyman Del Paso 0.94 0.94 0.71 1 0.97 0.91 0.89 0.83 0.83 0.9 0.85 0.81 0.93 0.93 0.9

Coroval South Natomas 0.93 0.92 0.82 0.9 1 0.97 0.94 0.89 0.88 0.92 0.88 0.86 0.96 0.96 0.92

Socorro South Natomas 0.81 0.81 0.92 0.79 0.89 1 0.96 0.91 0.92 0.93 0.91 0.91 0.95 0.95 0.89

24th Ave South Sacramento 0.79 0.8 0.89 0.77 0.86 0.89 1 0.94 0.97 0.98 0.97 0.96 0.97 0.98 0.94

Henrietta South Sacramento 0.74 0.74 0.84 0.73 0.81 0.84 0.89 1 0.9 0.9 0.91 0.92 0.9 0.92 0.87

Hermosa South Sacramento 0.71 0.73 0.83 0.71 0.78 0.81 0.91 0.81 1 0.96 0.96 0.96 0.93 0.94 0.92

Tristan South Sacramento 0.78 0.8 0.79 0.77 0.81 0.81 0.91 0.81 0.86 1 0.96 0.95 0.97 0.97 0.95

ARB T St T St 0.72 0.72 0.9 0.7 0.8 0.85 0.94 0.85 0.9 0.87 1 0.98 0.94 0.95 0.93

TstTier 3 T St 0.68 0.69 0.88 0.67 0.77 0.83 0.9 0.84 0.87 0.84 0.95 1 0.91 0.92 0.92

13th Ave Tahoe Park 0.87 0.88 0.82 0.84 0.9 0.87 0.9 0.83 0.83 0.89 0.84 0.79 1 0.99 0.96

64th St. Tahoe Park 0.87 0.88 0.82 0.85 0.9 0.86 0.92 0.84 0.86 0.9 0.86 0.83 0.95 1 0.97

79th St. Tahoe Park 0.82 0.84 0.76 0.79 0.84 0.77 0.86 0.75 0.83 0.87 0.82 0.8 0.91 0.94 1
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Table 5. Matrix showing pairwise coefficient of divergence (COD) values from the 15 AirBeam sites during the study period. AirBeam sites are grouped by community.
COD values are derived from hourly measurements (bottom left half), and 24-h average measurements (top right half).
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Darwin Arden 0 0.07 0.07 0.08 0.16 0.09 0.11 0.11 0.2 0.14 0.18 0.2 0.11 0.08 0.12

Alder Del Paso 0.16 0 0.06 0.09 0.19 0.12 0.15 0.15 0.21 0.15 0.21 0.22 0.13 0.09 0.13

Del Paso Del Paso 0.14 0.14 0 0.08 0.18 0.12 0.14 0.14 0.2 0.13 0.2 0.21 0.11 0.11 0.13

Wyman Del Paso 0.18 0.15 0.17 0 0.18 0.14 0.14 0.14 0.2 0.14 0.2 0.2 0.13 0.12 0.13

Coroval South Natomas 0.23 0.28 0.25 0.3 0 0.11 0.1 0.13 0.16 0.15 0.11 0.12 0.16 0.14 0.14

Socorro South Natomas 0.17 0.23 0.21 0.25 0.16 0 0.09 0.11 0.18 0.15 0.15 0.17 0.12 0.1 0.13

24th Ave South Sacramento 0.18 0.24 0.21 0.26 0.18 0.17 0 0.08 0.14 0.12 0.09 0.13 0.12 0.09 0.09

Henrietta South Sacramento 0.21 0.26 0.23 0.27 0.2 0.19 0.14 0 0.16 0.13 0.13 0.15 0.13 0.11 0.11

Hermosa South Sacramento 0.24 0.28 0.25 0.29 0.22 0.23 0.17 0.2 0 0.12 0.15 0.13 0.18 0.18 0.15

Tristan South Sacramento 0.23 0.27 0.22 0.27 0.24 0.24 0.17 0.2 0.2 0 0.16 0.13 0.11 0.14 0.11

ARBT T St 0.23 0.27 0.25 0.29 0.17 0.19 0.14 0.19 0.19 0.22 0 0.12 0.18 0.14 0.14

TstTier 3 T St 0.28 0.33 0.28 0.33 0.22 0.27 0.2 0.23 0.23 0.18 0.21 0 0.17 0.19 0.13

13th Ave Tahoe Park 0.21 0.23 0.22 0.26 0.25 0.22 0.2 0.23 0.25 0.23 0.25 0.28 0 0.11 0.11

64th St. Tahoe Park 0.15 0.18 0.19 0.22 0.23 0.17 0.16 0.19 0.22 0.22 0.2 0.29 0.19 0 0.09

79th St. Tahoe Park 0.18 0.21 0.19 0.22 0.23 0.21 0.17 0.21 0.2 0.17 0.21 0.21 0.16 0.14 0
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For comparison, Zikova et al. [8] carried out a similar analysis using sensors deployed at 27 sites in
Monroe County, NY, over the months from October to April. Compared to Monroe County, correlations,
from this study, show a much more homogeneous PM environment, with higher R2 values and lower
COD values. In Monroe County, pollution levels were much lower overall (with median PM2.5 around
3 µg m−3), and showed a temporal pattern with higher PM2.5 in the daytime, with the transportation
sector being a major contributor. PM2.5 loading was significantly more homogeneous in Sacramento
because pollution is driven by diffuse night-time emissions during stagnant, low-wind conditions in
the wintertime, and by the topography of Sacramento Valley, which traps pollutants in the domain.

A Student’s t-test comparison of the measurements from all EJ communities versus all non-EJ
communities found no statistically significant difference in the PM2.5 levels (p value = 0.238). The PM2.5

distributions from a representative sensor in each of the six communities outlined in Figures 1 and 4
are shown as a box plot in Figure 6 for the study period. Figure 6 shows that the differences in the
distributions of PM2.5 are modest among the six communities, with the six communities having similar
inter-quartile ranges. The non-parametric Pairwise Wilcoxon Rank comparison was applied to the
nine pairwise cases between EJ versus non-EJ sites, in order to assess whether the mean ranks differ.
This test showed that for eight cases, there was no statistically significant difference between the means
(p value > 0.68); however, for the T Street versus South Sacramento comparison, there was a statistically
significant difference in the means (p value = 0.00046), with the difference in the means being 1.5 µg m-3.
Supplemental Table S2 shows the results of the Pairwise Wilcoxon Rank comparison for all pairwise
EJ versus non-EJ AirBeam comparisons. These examinations provide evidence indicating that these
communities face comparable degrees of exposure to PM2.5 concentrations. This analysis and the
observed distributions in Figure 6 reflect the fairly homogeneous spatial distribution of PM2.5.
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Figure 6. Distribution of corrected AirBeam PM2.5 measurements from six communities. The center of
the boxplot represents the median value, with 95% confidence interval at the notches. The box cutoffs
are the inter-quantile ranges (IQRs), the whiskers represent 1.5 × IQR, and the remaining points in the
distribution are plotted individually.
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3.5. Comparison of Measurements to Wintertime Emissions Inventory

The sensor network, spanning across six communities in Sacramento, provides an opportunity to
assess the relationship between ambient air pollution and the PM2.5 emissions inventory. The AirBeam
PM2.5 concentrations exhibited statistically significant spatial clustering (Global Moran’s I statistic of 1.0,
p < 0.005). Higher PM2.5 concentrations were measured in the northeast section of the study area (Arden,
Del Paso), while lower concentrations were measured south of the American River (South Sacramento,
T Street) and in the western portions of South Natomas (Coroval). This general pattern is also seen in
the emissions inventory data (see Supplemental Figures S2 and S3 for maps). The relationship between
the measured concentrations of PM2.5 and the emissions inventory (Figure 7) showed a higher R2

for weekend days (0.76) than weekdays (0.46). Weekend days showed more variability in measured
PM2.5 across sites (Range = 5.8 µg m−3) than weekdays (Range = 4.2 µg m−3). The larger differences
between sites on weekend days may account for the stronger observed relationship with the emissions
inventory on those days. The modestly high correlation indicates that overall, the EI appears to
capture the spatial variability in PM emissions in each grid cell. This indicates that the EI tends to
accurately reflect the relative amount of PM2.5 emissions in each grid cell, particularly on weekends.
The two EI grid cells that had the largest residuals for weekdays were the cells containing the Tristan
(in South Sacramento community) and Coroval (in South Natomas community) sites. For these grid
cells, the EI may not fully represent emissions, and the location of the monitors may not be completely
representative of the entire grid cell, or the PM2.5 concentrations in these locations may be affected by
factors not captured in the EI, such as secondary aerosol formation and transport. We found that grid
cells with higher emissions have higher average PM2.5 concentrations, whereas grid cells with lower
emission tend to have lower PM2.5 concentrations and greater PM2.5 variability, similar to the findings
of Mohan et al. [24].
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As described in Section 3.4, PM2.5 has modest heterogeneity among the six communities in
the wintertime, where concentrations are typically low during the day and high at night. As seen
in Brown et al. [27], as well as in the emissions inventory, residential biomass burning is a large
source of PM2.5 in Sacramento during the winter, leading to the high nighttime PM2.5 concentrations.
The emissions inventory and sensor observations are in agreement that the communities with the
highest PM2.5 concentrations for the six communities in the study are the Del Paso Manor and Arden
communities. Other communities in Sacramento may have higher concentrations, but were not among
the targeted communities for this study. While, the emissions inventory shows good agreement with
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measured spatial variability in PM2.5 seasonally, while measured PM2.5 concentrations were higher in
other neighborhoods on some evenings, contributing to the modest heterogeneity observed from the
pairwise statistical comparisons in Tables 4 and 5.

4. Conclusions

In this study located in Sacramento, California, the low-cost AirBeam PM2.5 sensors were found to
have robust precision with consistent biases among individual AirBeams that were correctable using
results from two collocated measurement periods. The AirBeam demonstrated modest accuracy in
comparison to BAM and FRM regulatory-grade monitors, with significant bias from the sensor under
high dew point and relative humidity conditions. This is likely because of the hygroscopic aerosol
growth, under such conditions, that the FEM/FRM measurements can account for, but the AirBeam
sensor does not. The AirBeam was shown to be sufficiently precise to make an estimate of spatial
variability across multiple communities in Sacramento. Measurements from the AirBeams converged
during cleaner periods, with more variable spatial gradients as well as hot spots during periods of
elevated PM2.5 overnight. Pairwise statistical metrics show that PM2.5 levels were mostly homogeneous
throughout the study domain for the study period. A gradient of higher PM2.5 levels to the northeast
of the study domain was observed and corresponded with similar gradients in the gridded emissions
inventory. The study design and methodology, that were used to evaluate the AirBeam sensors in
this study, could also be applied to other sensor models and other pollutants. While, current sensor
technology does not have a regulatory impact due to their limitations, this study demonstrates the
value of sensor measurements used to examine spatial and temporal variability of air pollution among
communities. In order to utilize sensor measurements for these applications, a careful methodology
must be employed with regard to quality control, sensor characterization, and bias correction, so that
the data quality of sensor measurements is commensurate with their application.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/21/4701/s1,
Figure S1: Scatterplot showing the correlation between two collocated AirBeams at Del Paso Manor during the
study period, Figure S2: Map of 4-by-4 km gridded winter weekday PM2.5 emissions and average AirBeam PM2.5
concentrations from the December 2016 to January 2017 period, Figure S3: Map of 4-by-4 km gridded winter
weekend PM2.5 emissions and average AirBeam PM2.5 concentrations from the December 2016 to January 2017
period, Table S1: The change in measurement from the pre- and post-study periods over a range of measurement
values, using the linear regressions from the pre- and post-study periods presented in Table 1, Table S2: Matrix
showing the p-value results of the Pairwise Wilcoxon Rank test for PM measurements in EJ vs. non-EJ sites.
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