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Abstract: Canopy reflectance sensors are a viable technology to optimize the fertilization management
of crops. In this research, canopy reflectance was measured through a passive sensor to evaluate
the effects of either crop features (N fertilization, soil mulching, appearance of red fruits, and
cultivars) or sampling methods (sampling size, sensor position, and hour of sampling) on the
reliability of vegetation indices (VIs). Sixteen VIs were derived, including seven simple wavelength
reflectance ratios (NIR/R460, NIR/R510, NIR/R560, NIR/R610, NIR/R660, NIR/R710, NIR/R760), seven
normalized indices (NDVI, G-NDVI, MCARISAVI, OSAVI, TSAVI, TCARI), and two combined
indices (TCARI/OSAVI; MCARI/OSAVI). NIR/560 and G-NDVI (Normalized Difference Vegetation
Index on Greenness) were the most reliable in discriminating among fertilization rates, with results
unaffected by the appearance of maturing fruits, and the most stable in response to different cultivars.
Black mulching film did not affect NIR/560 and G-NDVI behavior at the beginning of the growing
season, when the crop is more responsive to N management. Due to a moderate variability of NIR/560
and G-NDVI, a small sample size (5-10 observations) is sufficient to obtain reliable measurements.
Performing the measurements at 11:00 and 14:00 and maintaining a greater distance (1.8 m) between
plants and instrument enhanced measurement consistency. Accordingly, NIR/560 and G-NDVI
resulted in the most reliable Vls.

Keywords: passive sensor; sampling methodology; bootstrap analysis; vegetation indices; green
ratio of vegetation index; NIR/560 or GVI (Green Vegetation Index); green normalized difference
vegetation index; normalized difference vegetation index on greenness (G-NDVI); soil mulching;
solanum lycopersicum L

1. Introduction

In recent years, interest in multispectral radiometry in crop production has increased, having
been successfully investigated in fertilization and irrigation management [1-6], and disease and pest
control [7-9]. Optical sensors have proven to be particularly useful in maximizing N use efficiency
and minimizing N losses. Among proposed models, image processing based on aerial photography
considers a field-scale observation, whereas plot-scale is achieved when using portable multispectral
radiometers, and leaf-scale is provided by portable chlorophyll and/or flavonols meters [2,5,10-15].
As plant/canopy observation is closer to the crop, predictions of chlorophyll and N content in plant
tissues are more accurate [2], but less consideration is given to variability between plants and leaves,
which translates into the need of larger sample numbers. On the other hand, the application of aerial
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crop remote sensing within precision agriculture in Europe is still scarcely adopted [2]. It is probably
not due to a lack of interest from farmers but due to commercial systems being too expensive compared
to the relatively low economic gains. Accordingly, the adoption of portable canopy reflectance sensors
may represent a cheaper and appealing technology to optimize the fertilization management of crops.
Their use has been fruitfully adopted in cereals [16-19], and other field crops such as soybean and
cotton [20,21], and tomato [22,23] and other vegetable crops such as broccoli, cucumber, melon, and
sweet pepper [24-27]. Canopy reflectance diagnostic tools are classified as passive (e.g., MSR5/87/16R,
CropScan Inc., Rochester, MN, USA) or active (e.g., GreenSeeker, Trimble Inc., Sunnyvale, CA, USA)
sensors depending on whether the sensor is fitted or not with an own light source, respectively.
For passive reflectance sensors, uniform irradiance conditions are highly recommended [28].

As a general rule, the adoption of multispectral radiometry is based on the application of
Vegetation Indices (VIs) that translate instrument readings into indicators of the actual N or chlorophyll
content of the crop. Cui et al. [29] reported the high correlation existing between NDVI [Normalized
Difference Vegetation Index: NDVI = (NIR — Red) / (NIR + Red)] and leaf chlorophyll content on
tomato plants, thus defining the index as a useful tool to detect nitrogen stress on this crop. Another
work on processing tomato [22] showed the relationship between key VIs and main crop features
(chlorophyll and N content, N supply and predicted yield), and proposed both NIR/560 [ratio between
reflectance readings: NIR/560 = R810 nm wavelength (NIR) / R560 nm wavelength (Green)] and
G-NDVI [Normalized Difference Vegetation Index on Greenness: G-NDVI = (NIR — Green) / (NIR +
Green)] as the most reliable indicators for the N status of this crop. Padilla et al. [23], in a research
carried out on indeterminate tomato grown in a plastic greenhouse, confirmed NDVI as a sensitive
indicator of crop N status throughout the crop cycle, being strongly and consistently related to the crop
Nitrogen Nutrition Index (NNI), which is the ratio between actual crop N content and the critical crop
N content (i.e., the minimum N content necessary to achieve maximum growth). Padilla et al. [23]
found that other VIs (G-NDVI, NIR/Green and NIR/Red) were related to crop NNI, but there was less
consistency in R? between phenological phases. The strong relationship between VIs and NNI allows
obtaining threshold values of these indices, thus facilitating on-farm use of optical sensors to monitor
crop N status and optimizing N management.

Precise and quick measurements are the main conditions for both reducing incidence of
measurement errors and enabling a timely fertilizer supply. However, each plant monitoring method
is characterized by a certain degree of inaccuracy, caused by instrumental bias, operator approach,
sampling procedure, as well as environmental and agronomical factors. Several studies have been
carried out to understand the variability induced by environmental factors on VIs, which were applied
to address vegetation biomass [30]. Nevertheless, little research has been focused on influence of other
factors such as agronomical ones (e.g., soil water content, use of organic or plastic mulching, weed
presence) on VI reliability. Since optical tools measure gross crop—soil ability to reflect incident light,
the presence of reflecting material on background — such as a plastic mulching film — may interfere
with instrumental readings. It is well known that mulching materials influence soil temperature, wind
speed at soil surface, soil water evaporation, soil N availability, as well as crop yield, and literature has
shown that plastic-mulched soil can be detected by remote sensing [31-35]. However, no reference is to
date available on possible disturbances of soil mulching on the canopy reflectance assessment of crops.

Furthermore, besides variations in background color, changes in crop pigmentation throughout
season, e.g., for presence of mature red fruits, can also affect the reliability of the VIs adopted. Plant
redness and its relationship with greenness and NIR have been successfully adopted for assessing the
plant nutritional status of tomatoes [22], although the influence of red fruits on radiometric readings
has not yet been adequately considered. However, if VIs may be significantly affected by fruit presence,
the applications of optical sensors should take into account this source of variation. Since canopy
color (chlorophyll and other pigments, including fruit carotenoids) is cultivar-dependent [12], different
genotypes should also be considered in assessing VI consistency.
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Use of radiometers at different times of the day can generate different VIs in so far as sun angles
affect the quality and quantity of light reflected from crop canopies. Few studies have been conducted
to determine the effects of sun angles (hour of the day) on the canopy reflectance of crops [36-39].
Lord et al. [36] studied the effect of sun angles on reflectance in the red and near-infrared regions on
canopies of wheat, barley, corn, and sunflower. They found that changes in sun angles had a greater
effect on reflectance in the red region than in the NIR region. De Souza et al. [37] demonstrated that
spectral radiometer reflectance measurements in corn were influenced by the time of day, and to a
lesser extent by sun angles (morning and afternoon measurements were often different at the same sun
angle). Ishihara et al [38] found that in general the vegetation indices of rice, corn, and grass decreased
with decreasing solar zenith angles (i.e., close to solar noon). Guan and Nutter [39] showed that the
percentage of sunlight reflected from alfalfa canopies in all spectral regions obtained prior to 11:00 h
and after 15:00 h were significantly higher than reflectance measurements obtained between 11:00 h
and 15:00 h.

Another factor that can affect the canopy reflectance of crops is sensor height. However, very few
quantitative studies have been conducted using hand-held multispectral radiometers and, generally,
the considered height ranged from 1.5 to 4 m [39]. In a study on cotton canopy reflectance [21] a
CropScan MSR 16 spectroradiometer was either positioned either 0.50 or 0.80 m above the canopy, but
the two positions were not compared.

This work investigates the stability of several vegetation indices — the key VIs considered in
a previous study [22] — in assessing canopy reflectance of a processing tomato crop, against some
of the above-mentioned factors described as sources of variation. Accordingly, besides increasing N
supply, the elements analyzed in this paper are (a) what is the optimal height of the instrument above
the canopy (i.e., size of sampling area) to provide useful information on crop canopy reflectance, (b)
what sample size is required (i.e., how many individual measures are needed) to successfully monitor
a tomato field and what multispectral reading variations are expected, (c) when to sample (i.e., hour of
the day) in relation to irradiance conditions during daytime, (d) how consistent the measurements are
between different cultivars or in the presence/absence of mulching film or in the presence/absence of
maturing fruits.

2. Materials and Methods

2.1. Experimental Design

Five experiments were carried out in two locations of northern Italy, namely Legnaro (PD),
45°20’ N; 11°57’ E; 8 m a.s.l. and Codigoro (FE), 44°49’ N, and 12°06” E, 2 m a.s.1., between 2002 and
2005. In all experiments, soil preparation was provided by ploughing (0.35 m depth) plus several
harrowings (disk + flexible + spike harrowing). Pest and weed controls were conducted using practices
normally adopted by the farmers of the area. The specific features of each experiment were as follows.

Experiment 1#: Influence of nitrogen supply and height of the multispectral radiometer on main vegetation
indices. The trial was conducted in PD on a silty-loam soil fertilized with a basal dressing of 150 kg
phosphorous (P) ha~! and 150 kg potassium (K) ha~!. Plants (cv Perfect Peel, Petoseed, Saticoy, CA,
USA) were transplanted in single rows on 11 May 11 2002, with a planting density of 33,000 plants
ha=! (1.0 m between rows, and 0.3 m spacing between plants). Four N fertilization treatments were
considered, 0, 100, 200, and 300 kg N ha~!, applied 50% before transplanting and 50% top dressed at
the 5th—7th leaf stage (N as ammonium nitrate, NO3NHy, 34% N). At 65 days after transplanting (DAT),
multispectral readings were collected by placing the instruments either at 0.50 or 1.80 m above the
canopy, as previously adopted for cotton, wheat, and alfalfa by Bronson et al. [21], Vouillot et al. [40]
and Guan and Nutter [39], respectively. The experimental design was a randomized block design with
two replicates with the individual plot being 5 x 4 m? (20 m?).

Experiment 2#: Influence of plastic mulching on main vegetation indices throughout the growing season.
In order to assess whether and how soil mulching material would affect overall crop reflectance, a
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trial was conducted in PD on a silty-loam soil fertilized with a basal dressing of 150 kg phosphorous
(P) ha~! and 150 kg potassium (K) ha~!. Plants (cv Perfect Peel) were transplanted in paired rows on
24 April 2002, with a planting density of 50,000 plants ha™! (1.2 m between adjacent pairs of rows,
0.4 m between paired rows, and 0.25 m spacing between plants). Nitrogen, as ammonium nitrate
(NO3NHy, 34% N), was applied before transplanting at the rate of 180 kg N ha™!. The influence of
mulching on the performances of selected VIs was assessed through a comparison between a crop
grown over a black PE plastic film and a bare soil control. Radiometer measures were performed seven
times between 41 and 85 DAT. The experimental design was a randomized block design with three
replicates with the individual plot being 5 x 4 m? (20 m?).

Experiment 3#: Influence of nitrogen supply and hour of sampling on main vegetation indices. The trial
was conducted in PD on a silty-loam soil fertilized with a basal dressing of 150 kg phosphorous (P)
ha~! and 150 kg potassium (K) ha~!. Plants (cv Perfect Peel) were transplanted in single rows on
23 April 2003, with a planting density of 30,000 plants ha~! (1.0 m between rows, and 0.33 m spacing
between plants). Six N fertilizations were studied, 0, 32.5, 65, 130, 195, and 260 kg N ha~!, applied 50%
before transplanting and 50% top dressed at 5th-7th leaf stage (N as ammonium nitrate, NO3NHy, 34%
N). At 68 DAT, 18 radiometer measurements were performed at different hours of the day (respectively
8:00; 11:00; 14:00; 17:00), in order to verify if the radiometer measurements were stable across the day.
The experimental design was a randomized block design with three replicates, with the individual plot
being 5 x 4 m? (20 m?).

Experiment ##: Influence of presence of red fruits on main vegetation indices. In order to assess whether
and how the presence of red fruits would affect overall crop reflectance, a trial was conducted in
PD on a silty-loam soil fertilized with a basal dressing of 150 kg phosphorous (P) ha™! and 150 kg
potassium (K) ha~!. Plants (cv Perfect Peel) were transplanted in single rows on 11 May 2004, with
a planting density of 30,000 plants ha™! (1.0 m between rows, and 0.33 m spacing between plants).
Nitrogen, as ammonium nitrate (NO3NHy, 34% N) at the dose of 180 kg N ha~!, was applied 50%
before planting and 50% top dressed at 5th-7th leaf stage. The influence of the presence of red fruits
was assessed by conducting radiometric measures on the same plants just before and after the removal
of red fruits, by avoiding disturbance of plant architecture through gentle fruit picking. Measures were
taken at 107 DAT. The experimental design was a randomized block design with four replicates with
the individual plot being 5 x 4 m? (20 m?).

Experiment 5#: Influence of different cultivars and sample size on main vegetation indices. The trial was
conducted in FE, in a commercial field of 5.4 ha, on a clay soil fertilized with a basal dressing of 130 kg
of 10-34-0 N-P-K fertilizer. Eight cultivars were grown, each one extending to 0.6-0.7 ha. The cultivars
were: (1) Davis UC82, Agro Parma, Parma, Italy; (2) Early Magnum and (3) UG3002, Unigen seeds,
Hollister, CA, USA; (4) ES22-03, EsaSem, Verona, Italy; (5) Falco rosso, Nunhems, Nunhem, Holland;
(6) DRI5406, (7) DRI7485, and (8) 83G38, De Ruiter, Holland. Direct sowing was arranged in paired
rows on 5 April 2005, to obtain a planting density of 50,000 plants ha™! (1.2 m between adjacent pairs
of rows, 0.4 m between paired rows, and 0.25 m spacing between plants). Nitrogen, as urea (46% N)
at the dose of 46 kg N ha™!, was applied top dressed at the 3rd—4th leaf stage. After approximately
3 weeks, a fertigation program started providing small supplies of N-P-K and Ca every 1 to 3 days up
to the beginning of fruit ripening. The fertilizers used (around 10 kg ha™! of fertilizer, each supply)
were calcium nitrate (16% N), 14-34-12 N-P-K, 14-10-14 N-P-K, 9-15-38 N-P-K, and 18-18-18 N-P-K.
The different types of fertilizer were chosen according to phenological stage and provided a total
amount (basal dressing + top dressing + fertigation) of 120 kg N ha=!, 100 kg P ha~!, 100 kg K ha™!,
and 45 kg Ca ha™!.

On fourteen dates (every five days, from 58 to 123 days after sowing, DAS), ten radiometer readings
for each cultivar were performed during a clear sunny day. Influence of sample size on variance
reduction was evaluated using bootstrap analysis, as reported below. In addition, 44 measurements
on the same plot (cv Davis UC82) were taken at 68 DAS in order to verify the coefficient of variation
obtained by the bootstrap procedure (see details below).



Sensors 2019, 19, 4730 5of 25

2.2. Reflectance Readings and Vegetation Indices Adopted

Reflectance measurements were collected using a handheld Multispectral Radiometer MSR5/87/16R
(CropScan Inc., Rochester, MN, USA). The instrument utilizes narrowband interference filters to select
discrete bands in the visible and NIR regions of the electromagnetic spectrum. Eight bands were
measured within the 460 to 810 nm range, and the following VIs—the same considered in a previous
study [22]—were calculated: seven simple wavelength reflectance ratios (NIR/R460, NIR/R510,
NIR/R560, NIR/R610, NIR/R660, NIR/R710, NIR/R760), seven normalized indices (Normalized
Difference Vegetation Index, NDVI; Normalized Difference Vegetation Index on greenness, G-NDVI;
Modified Chlorophyll Absorption in Reflectance Index, MCARI; Soil Adjusted Vegetation Index, SAVL;
Optimized Soil Adjusted Vegetation Index, OSAVI; Transformed Soil-Adjusted Vegetation Index,
TSAVI; Transformed Chlorophill Absorption in Reflectance Index, TCARI), and two combined indices
(TCARI/OSAVL; MCARI/OSAVI). A complete description of the indices as well as of the instrument
functioning principles is included in Gianquinto et al. [22]. All plot data were collected as close to solar
noon as possible (excluding the experiment on sampling time), on sunny days, clear sky, with absence
of clouds or shadow. Plants were in a healthy nutritional status at the time measurements were taken,
showing a green color in their leaves.

2.3. Data Analysis

The definition of the sample size was achieved by assessing the variability of a complete set of
data along several sampling days and on different varieties (Experiment 5#) through the bootstrap
procedure [41,42]. Collected data for each VIs were then normalized for varieties and for sampling
days. Three data sets were reconstructed.

SET DAY—For each variety, within each day, the average value was calculated (Equation (1)), and
then the values obtained were divided by each replicate within the day and the corresponding variety
(Equation (2)), and then multiplied by the average of the day (Equation (3)). In this way we obtained
a set of data for each day in which the differences were only due to the difference in the replicates
(independent from the variety).

SET VARIETY—For each day, within each variety, the average value was calculated (Equation (4)),
and then the values obtained were divided by each replicate within the variety and the corresponding
day (Equation (2)), and then multiplied by the variety (Equation (5)). In this way we obtained a set
of data for each variety in which the differences were only due to the difference in the replicates
(independent from the day).

SET WHOLE DATA—The values obtained with the “SET DAY” procedure (Equation (3)) were
divided by the average of each single day (Equation (1)), and multiplied by the average of the whole
set of data (Equation (6)). In this way we obtained a set of data (Equation (7)) in which the only source
of variability were the differences in the replicates regardless of variety and of day.
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with:

i = index for the sampling day;

j = index for the varieties;

k = index for the replicates;

n = number of days;

m = number of varieties;

p = number of replicates;

Xi jx = value of the considered variable (VI index) in the sampling day ith, for the variety j and for the
replicate k'f;

Xd; = mean value of the day i'";

Xv; = mean value of the variety j;

Xw = mean value of the whole experiment;

Xuvd;, j = mean value of the variety jh in the day ith;

Xd; jx = normalized value, over the effect of varieties, of the considered variable (VI index) in the
sampling day i, for the variety j' and for the replicate k;

Xv; j = normalized value, over the effect of sampling day, of the considered variable (VI index) in the
sampling day i, for the variety j" and for the replicate k';

Xr;jx = normalized value, over the effect of sampling day and variety, of the considered variable
(VI index) in the sampling day i'", for the variety j and for the replicate k.

The bootstrap with replacement procedure [41,42] was applied on the data coming from the
normalizations described above. Ten thousand subsets of n (from 2 to 100) samples were randomly
generated and the corresponding coefficients of variation (CV%) of the samples were calculated.
This procedure was applied for each VI separately. Even if the CV% of the samples are not unbiased
estimators for small samples [43], this parameter was used to obtain a unique index for comparing
small and large samples generated with the bootstrap procedure. The CV% generated were sorted and
the 0.025 and 0.975 percentile limits were calculated. In this way it was possible to calculate the 95%
confidence interval for the population CV% [41,42,44].

For all other determinations, data were analyzed with Multifactor ANOVA with repeated measures
using Statgraphics 15 (Statpoint Technologies Inc., Warrenton, VA, USA) and means were compared
using Tukey’s honestly significant difference (HSD) procedure (p < 0.05%). The variables DAT (days
after transplanting) and DAS (days after sowing) were used as a factor in the multifactor analysis of
variance, thus, allowing the evaluation of the interaction between DAT and mulching in Experiment 2#
and DAS and tomato varieties in Experiment 5#.

In Experiment 3#, an analysis of linear regression was performed between N fertilization rates
and the VIs responses using Microsoft Excel® Professional Plus 2010. The significance of the linear
regression model was tested using Multifactor ANOVA (Statgraphics 15-Statpoint Technologies Inc.,
Warrenton, VA, USA).
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3. Results

3.1. Experiment 1#: Influence of Nitrogen Supply and Height of the Multispectral Radiometer on Main
Vegetation Indices

The instrument position over the crop canopy determines the area measured, which is a circle
with a diameter equal to one half of the instrument height. In Experiment 1#, two instrument positions
(0.50 and 1.80 m in height, corresponding to a sampling area of about 0.05 and 0.64 m?, respectively)
were compared, versus four N supplies (0, 100, 200, and 300 kg ha~!). Measures were conducted at
65 DAT, during the “full fruit growth” phenological stage (Table 1), which generally corresponds to the
period of maximum peak for N uptake of the tomato crop.

Table 1. Phenological stages for a processing tomato crop grown in Northern Italy (Gianquinto,
personal communication).

Planting Method
Transplanting Direct Sowing Phenological Stage
Weeks After Transplanting ! Weeks After Sowing !
- 1-3 Emergence

34 4-7 30% soil cover

4-5 7-10 7th true leaf (start of fast growth)

5-6 9-11 Start of flowering

7-8 11-15 Start of fruit growth
9-10 13-17 Full fruit growth
11-12 15-19 Start of ripening
12-13 16-20 30% fruit ripening
14-15 18-25 Fruit harvest

1 In relation to season and cultivar.

At sampling, both nitrogen rate and instrument height significantly affected the reflectance for all
the considered wavelengths (Table 2).

The unfertilized control showed the highest reflectance for all the bands within the visible range
and up to 710 nm, with increases of 14.5%, 12.6%, 10.6%, 17.3%, 21.5%, and 11.7% as compared with
the mean of the N fertilized plots at 460, 510, 560, 610, 660, and 710 nm, respectively (data not shown).
At near infrared wavelengths, the reflectance of the control was slightly but significantly lower (—1.9%
and —3.3% at 760 and 810 nm, respectively, data not shown). By positioning the instrument closer to
the crop, the reflectance was higher all along the light spectrum, with the exclusion of 660 nm where
reflectance was lower. As compared with 1.80 m height, the percent variation was +3.4%, +5.4%, +5.4%,
+5.4%, —8.4%, +6.3%, +19.5% and +17.4% at 460, 510, 560, 610, 660, 710, 760, and 810 nm, respectively
(data not shown). As a consequence, all the derived VIs were significantly affected by both N and
height treatments, and significant interaction effects were always observed (Table 2). When instrument
was positioned at 1.80 m high, VIs increased in N fertilized treatments as compared with unfertilized
control, except for MCARI, TCARI, and the combined indices (TCARI/OSAVI and MCARI/OSAVI)
where the highest values were shown in absence of N fertilization (Figure 1). The VIs response to
intermediate N doses (100 and 200 kg ha~!, in this experiment) is of main relevance, since it is within
these values (rather than the extreme ones, unlikely to occur in the field) that the practical N application
occurs. Accordingly, the best indices were NIR/R560, NIR/710, and G-NDV], as they were the only VIs
able to discriminate among these levels of N fertilization, with significant increases when fertilization
was augmented from 100 to 200 kg ha~! (Figure 1). Moving the instrument closer (0.5 m height), the
VIs appeared to be frequently erratic without consistent relationships with N rates.
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Figure 1. Experiment 1#. Influence of nitrogen supply (0, 100, 200, 300 kg ha™') and position of

multispectral radiometer (0.5 m height white bars, and 1.8 m height grey bars) on different VIs as
assessed at 65 DAT. Mean values =+ SE.
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Table 2. Experiment 1#. Statistical significance of each of the factors (N rate, and instrument height)
and of the interaction between factors by ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001, NS not significant.

N Rate (a) Instrument Height (b) (a) x (b)
Wavelength
460 EE R EE
51 0 3 R E
560 Ak k% *4%
61 0 B R EE
660 s H43F e
710 *kk Er PR
760 B R EE
81 0 s *4F s

Simple Wavelength Reflectance Ratios

NIR/46O 4% *%% *%%
NIR/510 gl k% P
NIR/56O *X% *%3% *k%
NIR/610 4% *%% *%%
NIR/66O *AX k% 4k
NIR/710 *%% *%% $ %
NIR/76O %% *%% *%%
Normalized Indices
NDVI *%% *4% *k%
G-NDVI *kA *k P
MCARI XX *%% %
SAVI *kk *%% 3
OSAVI *RA * PR
TSAVI *okk w4t -
TCARI %% *%% *k%
Combined Indices
TCARI/OSAVI otk otk -
MCARI/OSAVI *okk wokk S~

3.2. Experiment 2#: Influence of Plastic Mulching on Main Vegetation Indices Throughout the Growing Season

In Experiment 2#, plastic mulching influence on instrument performance was assessed.
Consistently, reflectance at all measured wavelengths (Table 3) was diminished by black PE film, and
the effect on each band varied across the growing season being largely more evident up to 71 DAT
(data not shown). Considering the mean values between 41 and 71 DAT, the reflectance of the mulched
crop was reduced by 37%, 39%, 46%, 52%, 54%, 56%, 48%, and 50% at 460, 510, 560, 610, 660, 710,
760, and 810 nm, respectively. In the remaining 2 weeks, the wavelengths that were affected more by
mulching were 610, 660, 710 nm (33-35% reduction), followed by 510 and 560 nm (23-27%), while 460,
760, and 810 were the least penalized by the PE film (16-18% reduction) (data not shown).

These effects on light bands translated into the derived VIs (Table 3, Figure 2), most of them
showing significant differences between mulched and not mulched crop on relatively few sampling
dates (three-four out of seven), while only NIR/710, TCARI/OSAVI and MCARI/OSAVI were affected
almost all along the season (six observations out of seven). Moreover, for most of the VIs, relevant
differences, in terms of magnitude, occurred during the last part of the season, while NIR/460, MCARI,
TCARI, and combined TCARI/OSAVI and MCARI/OSAVI showed the largest differences during the
first half of the sampling period.
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Figure 2. Experiment 2#. Influence of bare soil (white bars) and black mulching film (grey bars) on
different VIs as assessed throughout the growing season (41, 58, 69, 71, 75, 78, 85 DAT). DAT = days
after transplanting. Mean values + SE.
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Table 3. Experiment 2#. Statistical significance of each of the factors (plastic mulching, and date of
sampling) and of the interaction between factors by ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001, NS
not significant.

Plastic Mulching (a) Date of Sampling (b) (a) x (b)
Wavelength
460 EXE) e XX
510 %% X434 %%
560 ok *kF £k
610 EXE) e R
660 b X434 %%
710 ok *kF £k
760 R e R
810 *xok *%% +k%

Simple Wavelength Reflectance Ratios

NIR/460 *rx ok —_—
NIR/SlO *%% *%% S
NIR/560 *xk *otk -
NIR/610 A% *%% F
NIR/660 *okk *otk -
NIR/710 ok *otk -
NIR/76O *%3% *k% PR
Normalized Indices
NDVI otk *k% .
G-NDVI *X% *%% *%%
MCARI xkxk o ot
SAVI wokk otk —_—
OSAVI *kk *4% ek
TSAVI wokk wotk -
TCARI wokk otk ot
Combined Indices
TCARI/OSAVI wokk *otk -
MCARI/OSAVI wokk *otk —_—

3.3. Experiment 3#: Influence of Nitrogen Supply and Hour of Sampling on Main Vegetation Indices

During Experiment 3#, VIs were assessed against daily time of sampling using four sampling
times (8:00, 11:00, 14:00, and 17:00), and six N doses (0, 32.5, 65, 130, 195, and 260 kg N ha‘l). Measures
were conducted at 68 DAT, during the “full fruit growth” phenological stage (Table 1). Both nitrogen
rate and sampling time significantly affected the reflectance for all the considered wavelengths, while
interaction effects “N rate X hour” were never found (Table 4).

The unfertilized control showed the highest reflectance from 510 up to 710 nm with increases
of 11.3%, 8.3%, 14.0%, 15.7%, and 3.8%, as compared with the mean of the N fertilized plots, at 510,
560, 610, 660, and 710 nm, respectively (data not shown). At blue and near infrared wavelengths the
reflectance of the control was significantly lower (—14.0%, —14.5%, and —15.8% at 460, 760, and 810 nm,
respectively). The reflectance of all the considered wavelengths varied considerably during the day
and the highest values were observed either at 8:00 (460, 710, 760, and 810 nm) or at 11:00 (all the other
bands), while the lowest ones were always detected at 17:00 with sensible reductions of reflectance,
ranging 45-70%, as compared with morning time (data not shown).
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Table 4. Experiment 3#. Statistical significance of each of the factors (N rate, and hour of the day) and
of the interaction between factors by ANOVA, and linear regression analysis between N fertilization
rates and VIs responses. * p < 0.05, ** p < 0.01, *** p < 0.001, NS not significant.

N Rate Hour of Day @ x (b) VIs = (N Rate)
(a) (b) Intercept Slope R? Sign.
Wavelength
460 i ok NS 16.82899  0.01779 0.06340 x
510 b il NS 3.60776 ~ —0.00185  0.04334 b
560 o il NS 773276 —0.00313  0.03131 i
610 o ot NS 6.06534  —-0.00431  0.03822 ok
660 o il NS 3.89937  —0.00302  0.09675 i
710 * i NS 11.10698  —0.00413  0.00928 o
760 o o NS 31.58037  0.03351 0.09770 i
810 o il NS 35.23383  0.03842 0.11925 o
Simple Wavelength Reflectance Ratios
NIR/460 ns il NS 2.21645 0.00008 0.00028 ns
NIR/510 o il NS 9.82605 0.01772 0.52784 i
NIR/560 o o NS 4.53060 0.00761 0.63670 o
NIR/610 i il NS 6.34761 0.01370 0.23411 i
NIR/660 o il NS 9.09626 0.02047 0.51980 o
NIR/710 o ok NS 3.49459 0.00579 0.15447 i
NIR/760 o il NS 1.12601 0.00003 0.00272 **
Normalized Indices
NDVI i e NS 0.79966 0.00028 0.48844 o
G-NDVI il il NS 0.63852 0.00038 0.61673 i
MCARI ns i NS 507250  —-0.00146  0.00647 o
SAVI i e NS 1.18335 0.00043 0.49112 o
OSAVI i il NS 0.92357 0.00033 0.48994 i
TSAVI i i NS 0.41919 0.00014 0.39787 o
TCARI ns e NS 15.21751  -0.00438  0.00647 o
Combined Indices
TCARI/OSAVI =~ *** ok NS 16.49165  —0.00992  0.02902 o
MCARI/OSAVI ~ *** i NS 549722  -0.00331  0.02945 i

In the last column of Table 4, the significance of the regression between nitrogen fertilization
rates and the response in term of VIs is included. Most VIs (with the only exception of NIR/460)
were significantly correlated with nitrogen fertilization in the processing tomato crop. The highest
coefficients of determination (R?) were found for NIR/560 and G-NDVL. Observing the VIs’ response to
the day’s hour (Table 4, Figure 3), almost all the simple wavelength reflectance ratios and normalized
indices showed lower and statistically similar values at 11:00 and 14:00, against higher and different
values observed at 8:00 and 17:00 (the magnitude of difference varied index by index). A different
response was observed for MCARI, TCARI, and combined indices (TCARI/OSAVI and MCARI/OSAVI)
as higher and not different values were observed at 8:00 and 11:00, then they decreased reaching a
minimum index at 17:00.



Sensors 2019, 19, 4730 13 of 25

4 15 8 12
o 3 o 12 fm o 6 o 9
¥ o b3 % |
= g = z ©
0 AL L CINE R A 0 AL L oL LI L
8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00
Hour Hour Hour Hour
(a) (b) (c) (d)
15 8 1.6
o 12 o 6 o 12 -
O — O >
S S utm— 10| [Ses [ HHT 6
o —_— P z
Z 6 Z 2+ Z04 H H H H .
3 0 - T r . ) 0.0 T T T , 0.2 :
8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00 $:00 11:00 14:00 17:00 $:00 11:00 14:00 17:00
Hour Hour Hour Hour
(e) () (8) (h)
10 ~ 8 - 15
08— 6 = 1.2
> > >
Qoe H I < 4 < 09
Z o w0
Vos HHHHF sz———ﬂf 06
0.2 T - - ) 0 T ) 0.3
8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00
Hour Hour Hour Hour
@) (k) D
0.8 20 8
> >
. 0.6 15 - z 15 < 6
2 2 : :
0.4 N 10 4
9)) o — =
™02 =5 % s % 2
o o
0.0 0 : = 0 S o L
8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00 8:00 11:00 14:00 17:00
Hour Hour Hour Hour

(m) (n) (0) (p)

Figure 3. Experiment 3#. Influence of the hours of the day on different VIs as assessed at 68 DAT. Mean
values + SE.

3.4. Experiment 4#: Influence of the Presence of Red Fruits on Main Vegetation Indices

During Experiment 4#, measures were conducted on the same plants just before and after fruit
harvest in order to assess key VIs variability induced by ripened fruit. The removal of the fruits
significantly affected the reflectance of almost all the wavelengths considered in this study (Table 5).
Only the 560 nm band did not show significant differences between treatments. The plots where red
fruits were removed showed the highest reflectance, as compared with plants with red fruits, at 460,
510, 610, 660, and 710 nm with increases of 23.6%, 27.7%, 27.1%, 28,3%, and 9.6%, respectively (data not
shown). At near infrared wavelengths, the reflectance of the plant without red fruits was significantly
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lower (-11.6% and —10.8% at 760 and 810 nm, respectively). As a consequence, most of the derived
VIs were significantly affected and increased by the presence of red fruits, with the only exception of
NIR/560, G-NDVI, TCARI/OSAVI, and MCARI/OSAVI where no differences were noted (Table 5).

Table 5. Experiment 4#. Statistical significance by ANOVA and mean values of the “red fruit” factor. *
p <0.05, * p < 0.01, ** p < 0.001, NS not significant.

Reflectance (%)

Significance Red Fruit
No Yes
Wavelength
460 x 3.30 2.67
510 ot 4.38 3.43
560 NS 6.92 7.40
610 il 5.95 4.68
660 ok 4.81 3.75
710 i 11.93 10.89
760 ok 40.50 45.84
810 ot 43.29 48.51
Simple Wavelength Reflectance Ratios
NIR/460 ok 13.19 18.15
NIR/510 ax 9.95 14.14
NIR/560 NS 6.30 6.56
NIR/610 ok 7.34 10.35
NIR/660 X 9.16 12.96
NIR/710 i 3.64 4.45
NIR/760 ok 1.07 1.06
Normalized Indices
NDVI i 0.80 0.86
G-NDVI NS 0.72 0.73
MCARI * 4.64 5.10
SAVI i 1.19 1.27
OSAVI i 0.92 0.99
TSAVI i 0.43 0.45
TCARI i 13.91 15.30
Combined Indices
TCARI/OSAVI NS 15.05 15.47
MCARI/OSAVI NS 5.02 5.16

3.5. Experiment 5%: Influence of Different Cultivars, and Sample Size on Main Vegetation Indices Throughout
the Growing Season

In Experiment 5#, both cultivars and date of sampling significantly affected the reflectance for
all the considered wavelengths (Table 6). Consistently, all VIs were able to discriminate the main
factors—variety (a) and date of sampling (b). Probability was extremely high for both Factor (a)
and Factor (b)—P tended to zero and was non-computable with standard spreadsheets or statistical
packages—and for the interaction (a) x (b).

The determination of the sample size useful to provide further significant information in an
experiment is crucial for the correct application of diagnostic non-destructive tools. In Experiment 5#
we used the bootstrapping with replacement procedure in order to estimate the coefficients of variation
of population (CV%) of the measurements of VIs and identify the most suitable number of observations
to have a reliable assessment.

When we look at Figure 4, it is possible to observe the effect of sampling dates on the VIs (using
SET DAY data). Among the VIs considered in this study, the simple wavelength reflectance ratios
(from NIR/460 to NIR/760) were shown to be more unstable, as the range of the CV% found using
the bootstrap procedure had higher results than in both the normalized (from NDVI to TCARI) and
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the combined VIg (TCARI/OSAVI and MCARI/OSAV]) indices. The only exception was NIR/760 and,
partially, NIR/710. Among simple wavelength reflectance ratios, the highest variability was observed

for NIR/660.
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Figure 4. Experiment 5#. Coefficient of variation (CV%) of different VIs across different sampling

dates, generated with bootstrap analysis by using SET DAY (see Section 2.3 data analysis). DAS = days

after sowing.
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Table 6. Experiment 5#. Statistical significance of each of the factors (variety, and date of sampling)
and of the interaction by ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001, NS not significant.

Variety (a) Date of Sampling (b) (a) x (b)
Wavelength i ot o
460 e *%% %%
51 0 334 %K b
560 *kk *%% *k
61 0 L *%% %%
660 334 %X b
710 Xk *k R
760 L *%% %%
81 0 334 %K b

Simple Wavelength Reflectance Ratios

NIR/46O 4% *%% *%%
NIR/510 gl k% P
NIR/56O *X% *%3% *kk
NIR/610 4% *%% *%%
NIR/66O *AX k%% P
NIR/710 *%% *%% R
NIR/76O %% *%% *%%
Normalized Indices
NDVI *%% *4% *H%
G-NDVI *kA Kk Fr
MCARI *%k *k Py
SAVI *%% *4% 2%
OSAVI gl K P
TSAVI Hokk w4t -
TCARI *%% *%% 2%
Combined Indices
TCARI/OSAVI i otk -
MCARI/OSAVI - . exs

Considering the VARIETY SET data (Figure 5), the CV% showed a great stability within varieties
even if the data came from all measurements throughout the growing season. Among the other simple
wavelength reflectance ratios, the NIR/560 result was the least influenced by variety and the CV%
was relatively low, while the VI with the highest CV% was again NIR/660. For the normalized and
combined VIs all the values were relatively low but G-NDVI was one of the most stable VIs among
varieties, while MCARI and TCARI presented the highest CV%. Only one variety, DRI 7485, presented
higher CV% for many VlIs (almost half of the considered VIs), but the variations were not so high.

From the SET WHOLE data (Table 7, Figure 6) is possible to observe the variability of the replicates
regardless of the variety and of the date of sampling, and consequently the change of CV% related to
the size of the data set. In general, for NIR/760, normalized, and combined Vls, a set of 5 data (n = 5) is
sufficient to have reliable output with a CV% always below 20%. Among normalized VIs, G-NDVI
proved to be the best, already showing an upper limit CV% (0.975 percentile limit) lower than 10%
with n = 10. Good performances were also shown by NDVI, SAVI, and OSAVI. Considering the other
simple wavelength reflectance ratios, good results were also given by NIR/710 and NIR/560, both
displaying upper limit CV% less than 20% with n = 10. For the other VIs, upper limit CV% never fell
below 20% and the CV% range was wider.
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Figure 5. Experiment 5#. Coefficient of variation (CV%) of different VIs for different varieties, generated

with bootstrap analysis by using SET VARIETY (see Section 2.3 data analysis).
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Figure 6. Experiment 5#. Coefficient of variation (CV%) limits (P = 95%) of different VIs with number
of observations ranging 2-50 observations per measurement, generated with bootstrap analysis by
using SET WHOLE data (see Section 2.3 data analysis) (red line, lower limit at P = 2.5%; blue line,
upper limit at P = 97.5%). The filled circles represent the CV% of a set of 44 data taken for the variety
Davis UC82 as assessed at 68 DAS.

The bootstrap procedure, as performed in our experiment, can be seen as a tool for generating
an enormous amount of data; in other words, an artificial set of data with low correspondence to the
initial data set. In order to verify and exclude this eventuality—or refuse this hypothesis—a set of 44
data was taken for the variety Davis UCS82 at 68 DAS—around the start of flowering stage—and the
CV% for each VI was calculated. The values calculated for Davis UC82 were always within the 95%
variation limits (Figure 6, filled circles) proving the reliability of the adopted procedure.
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Table 7. Experiment 5#. Coefficient of variation (CV%) limits (P = 95%) with different number of
observations per measurement (N = 5, N = 10, and N = 20), generated with bootstrap analysis by
using SET WHOLE data (see Section 2.3 data analysis). LL, lower limit at P = 2.5%; UL, upper limit at
P =97.5%.

N=5 N=10 N =20
UL (97.5%) LL (2.5%) UL (97.5%) LL (2.5%) UL (97.5%) LL (2.5%)

Simple Wavelength Reflectance Ratios

NIR/460 32.803 5.793 28.616 9.236 25.755 11.716
NIR/510 31.474 5.478 26.777 8.753 23.771 11.235
NIR/560 22.548 3.855 19.243 6.395 17.505 8.376
NIR/610 32.747 5.720 27.990 9.122 25.131 11.936
NIR/660 44.708 6.967 37.206 11.085 32.684 14.463
NIR/710 19.654 3.335 16.875 5.491 15.244 7.031
NIR/760 1.441 0.239 1.270 0.379 1.118 0.487
Normalized Indices
NDVI 13.755 2.044 11.788 3.336 10.475 4.369
G-NDVI 10.956 1.772 9.569 2.831 8.557 3.640
MCARI 16.974 2.893 14.666 4.605 12.980 5.932
SAVI 13.654 2.054 11.704 3.291 10.342 4.339
OSAVI 13.793 2.043 11.760 3.285 10.387 4.334
TSAVI 15.399 2.147 13.206 3.556 11.775 4.759
TCARI 17.019 2917 14.683 4.604 13.000 5.878
Combined Indices
TCARI/OSAVI 14.024 2117 11.909 3.306 10.512 4.319
MCARI/OSAVI 13.534 2.168 11.879 3.400 10.544 4.289

4. Discussion

The correct use of multispectral radiometers can give a quick and accurate estimation of the N
status of tomato crops [22,23]. Our previous work [22] demonstrated that the simple wavelength
reflectance ratio NIR/560 is a strong predictive index for crop N status, as it appeared to be the best
indicator of leaf chlorophyll concentration, as well as of leaf N concentration (together with NIR/610).
Moreover, it proved to be able to discriminate among N fertilization (together with NIR/510, NIR/710,
and G-NDVI), allowing the detection of even little variations in N supply (together with G-NDVI).
Finally, together with G-NDV], it appeared to be the best indicator for yield prediction, being able to
also discriminate between small yield variations [22].

In this work, the consistency of both NIR/560 and G-NDVI in discriminating among N fertilization
has also been confirmed by the dramatically higher R? values found for the linear regression line at
increasing N rates tested in Experiment 3#. On the other hand, the results obtained in Experiment 1#
confirmed that NIR/560, NIR/710, and G-NDVI are the most accurate VIs, able to reveal variations in
intermediate N doses, this being actually relevant as it is within the intermediate rates (rather than
extreme ones, unlikely to occur in field) that practical N application occurs.

It was also previously suggested that many other environmental and agronomic factors affect a
crop’s total canopy reflectance [2], including, e.g., light intensity, presence of diseases and nutrient
disorders not related to a crop’s N status, soil water content, use of organic or plastic mulching, weed
presence, different varieties. This, together with a certain degree of inaccuracy—caused by instrumental
bias, operator approach, sampling procedure—inevitably lead to an increase in measurements error.
Accordingly, this work addressed issues related to standardization of measuring procedures, as well as
stability of VIs in presence of some “disturbing elements”.

In order to achieve reliable readings, it is possible to estimate, at field scale, data variability
obtainable by using the bootstrap procedure and this can be used for further determination of the
sample size required in an experiment [44]. The relationship between sample size and the ability of the
Cropscan MSRG5 field spectroradiometer to assess both diversity and productivity of a grassland was
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stressed in a study by Csillag et al. [45]. Although their study was carried out over a natural ecosystem
rather than an agricultural field, they stated that a reliable correlation between sensor readings and
both species composition and yield would be found when basing the sample size on the maximum
number of species combinations. On the other hand, the application of multispectral radiometry
over agricultural fields has been successfully applied by Vouillot et al. [40] on wheat, with significant
correlation from using two independent readings per plot. Afterward, experiments on corn [17]
considered two measures per plot sufficient to provide reliable indications. Furthermore, as far as
sample size is concerned, in some works on potato, an acceptable coefficient of variation was provided
by 3 randomized measurements in each experimental plot [46,47]. In this paper, we demonstrated
that measurements of all normalized and combined VIs had a very low range of variability in the
coefficients of variation—since they are normalized indices—and a minimal number of replicates
(n = 5) is recommended when a coefficient of variation lower than 20% is required. Among normalized
VIs, G-NDVI showed the best performance with a coefficient of variation lower than 10% when a
number of replicates equal to 10 was provided. Furthermore, a limited variability in NIR/760 (CV < 20%
when n = 5) was also observed. This may be ascribed to the proximity between the spectral regions
considered in the ratio (e.g., 760 and 810), which resulted in index values proximal to 1. A number
of replicates around 10 appeared to be the minimum to have an acceptable coefficient of variation
(lower than 20%) for NIR/710 and NIR/560. All the other simple wavelength reflectance ratios appeared
less reliable, showing a greater variability. Among these, the highest variability was observed for
NIR/660 (Figure 6), which was therefore characterized by a high degree of uncertainty. Nevertheless,
the light absorbance/reflectance in the red zone is strictly linked to quantum yield for CO, uptake [48].
Consistently, NIR/660 could be used as good discriminating index of photosynthetic efficiency, but
more specific research should be addressed on this topic.

Regarding the instrument height, in previous reports a CropScan MSR was either positioned at
0.50 or 0.80 m above the canopy on cotton [21], or between 1.50 and 4.0 m on alfalfa [39], and a CIMEL
field radiometer was placed at height of about 2 m over the canopy on wheat [40]. Since the area
undergoing multispectral measurement is a circle with diameter that is about half of the height of the
instrument, these positions measured either the canopy of an individual plant or part of it (diameter
0.25 or 0.40 m) or the area where few plants are grown (diameter 0.75 to 2 m). This brings us back to
the considerations of whether instrument reliability to assess plant N status is more greatly influenced
by interferences of soil between the plants or by variability between and/or within plants. Our results
have shown how, for a precise and reliable data collection, measures should be performed by keeping
the instrument 1.80 m above the soil surface rather than 0.5 m, including more than one plant in order
to reduce variability (Figure 1). When the sensor is very close to the plant the detected area is very
small and interferences—and high variability—are probably due to the architecture/orientation of
branches and leaves that undoubtedly affects reflectance of the light. This disturbance element has
shown to be more relevant than soil in the background.

A further experiment (Experiment 3#) was conducted in order to assess the response of VIs to
changes in incident radiation along the day, as this issue has been scarcely considered in available
literature on passive canopy reflectance sensors. Nevertheless, some works demonstrated that
vegetation indices of rice, corn, grass, and alfalfa decreased close to solar noon [38,39]. Other
experiences are present in literature for active canopy reflectance sensors revealing that they are able
to measure at any time of day regardless of variations in solar irradiance [27,49-51]. On the other
hand, studies reporting slight effects of the time of day on measurements of active canopy reflectance
sensors also exist [28,52,53]. Indeed, as a consequence of different irradiance throughout the day, in our
experiment—which used passive canopy reflectance sensors—higher variability was observed at 8:00
and 17:00, as compared to 11:00 and 14:00 when the key VIs were fairly steady (Figure 3). Our results
have confirmed the findings on alfalfa [39] other than the manufacturer guidelines [54], thus suggesting
the central hours of the day as optimal time to take measurements. Nevertheless, as no significant
interaction found with nitrogen doses (i.e., the crop relative response to nitrogen supply did not
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change during the day), two modus operandi could be hypothesized according to the approach used
to interpret sensor measurements [5]: (1) when an absolute approach—based on sufficiency/threshold
values—is used, measurements (as well as assessment of the sufficiency/threshold values) should be
done at central hours of the day; (2) when a relative approach—based on reference/spy plots—is used,
measurements could be done at any time, but at the same time of reference/spy plot.

Black bodies absorb most of the incident radiation [33]. Accordingly, reduced reflectance at all
wavelengths in response to black mulching film was observed in Experiment 2#. Nevertheless, the
effect translated in a different way into derived VIs and across the growing season (Figure 2). Most of
VIs showed significant differences between mulched and not mulched crop in relatively few sampling
dates and in the last part of the season, when monitoring is actually less relevant for crop N status
assessment and fertilization management. Several VIs (including NIR/460, NIR/710, MCARI, TCARI,
TCARI/OSAVI, and MCARI/OSAVI), were significantly affected by mulching during the first part of
the growing period, or even along the season.

Besides variations in the background color due to soil mulching materials, changes in crop
pigmentation due to the presence of mature red fruits [22] also affected VIs, as shown in Experiment
4# where most of VIs were increased by their presence (Table 5). Nevertheless, the relevance of this
finding depends on the N fertilization method adopted for the crop. If crop is supplied with traditional
granular fertilizers, the last top dressing generally occurs not later than the full flowering stage, when
red fruits are not yet appeared. In this case, there is no disturbance on crop monitoring. If crop is
fertigated, N supplies can last till the late fruit growth stage when many red fruits are present. In this
case, most VIs are unreliable, excluding NIR/560, G-NDVI, TCARI/OSAVI, and MCARI/OSAVI, which
were not influenced by maturing fruits (Table 5).

As stated in the introduction, different genotypes should also be considered in assessing the VIs’
consistency and this was confirmed by the results of Experiment 5#, where significant differences were
found among cultivars for all the VIs considered (Table 6). However, the CV% was always below
20% for each of the VIs considered. While this does not exclude that there could be varieties with
higher variability, in the present work all indices can be seen as overall stable for each variety. Among
simple wavelength reflectance ratios, NIR/560 was less influenced by the variety, with a relatively low
CV%, while within normalized and combined VIs, G-NDVI appeared to be one of the most stable
among varieties. Comparing these two VIs, the lowest CV% was achieved by the cultivar UG 3002 for
both NIR/560 and G-NDVI (Figure 5). In general, the CV% of NIR/560 showed higher ranges than
the corresponding CV% of G-NDVI for all the cultivars. This leads to a lower level of accuracy of
NIR/560 if a comparison of cultivars is requested. No general trend was observed for cultivars even if
lower values of confidence intervals for the CV% of G-NDVI were observed. Both indices had different
responses to the day of sampling (Figure 4) but the variability was lower for G-NDVI. Notably, a greater
difference between the worst (high variability) and the best (low variability) performance of G-NDVI
was observed as compared with corresponding values of NIR/560. The CV% of NIR/560 showed
higher ranges than the corresponding G-NDVI along the whole cycle (Figure 6). This leads to reduced
precision in the estimation of NIR/560 compared with G-NDVIL. For both variables, the minimum range
was observed at around 90 DAS (Figure 4). It is interesting to note that for both variables the highest
level of variability was observed at the beginning and at the end of the cycle. While the end of season
variability is not relevant as no agronomic interventions are performed anymore, in the initial stages of
cultivation a more stable measurement could be useful for properly defining, for example, fertilization
management [22].

5. Conclusions

Integrating the results from this work with previous experimental evidences [22], two VIs proved
to be the most reliable in predicting nitrogen status and managing nitrogen fertilization of a processing
tomato field crop: NIR/560 and G-NDV], also called the Green Ratio of Vegetation Index, GVI [55], and
the Green Normalized Difference Vegetation Index [56], respectively. They were the best indicators
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of leaf chlorophyll and nitrogen concentration, and showed a great ability in discriminating among
nitrogen fertilization rates [57], allowing the detection of even little variations in nitrogen supply.
They also appeared to be the best indicators for yield prediction, also giving high precision between
small variations in yield. Furthermore, NIR/560 and G-NDVI showed a moderate variability, indicating
that a relatively small sample size (5-10 observations) is required to obtain reliable measurements.
Measurement consistency is also enhanced when the multispectral radiometer is positioned at such a
distance from the crop to allow the detection of several plants, and when measurements are taken
during the central hours of the day (if passive canopy reflectance sensors are used). Both NIR/560
and G-NDVI also demonstrated to be unaffected by the appearance of maturing fruits, while most
of the others VIs were altered by their red color. Furthermore, changes in NIR/560 and G-NDVI
behavior due to the presence of black soil mulching film proved to be almost negligible during the
first part of the growing season, when accurate N status assessment is crucial. Ultimately, even
though NIR/560 and G-NDVI behavior varied with tomato cultivar, they appeared the most stable
among VIs. Since VI behavior is cultivar dependent, an added value for seed companies should be
characterizing and providing specific VI patterns for each cultivar, thus allowing producers to adopt
precision farming fruitfully.
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