

 sensors-19-04777

sensors-19-04777

Sensors 2019, 19(21), 4777; doi:10.3390/s19214777

Article

Detecting IoT User Behavior and Sensitive Information in Encrypted IoT-App Traffic

Alanoud Subahi 1,2,* and George Theodorakopoulos 1[image: Orcid]

1

School of Computer Science and Informatics, Cardiff University, Cardiff CF10 3AT, UK

2

Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh 25732, Saudi Arabia

*

Correspondence: subahiat@cardiff.ac.uk

Received: 1 October 2019 / Accepted: 1 November 2019 / Published: 3 November 2019

Abstract

:

Many people use smart-home devices, also known as the Internet of Things (IoT), in their daily lives. Most IoT devices come with a companion mobile application that users need to install on their smartphone or tablet to control, configure, and interface with the IoT device. IoT devices send information about their users from their app directly to the IoT manufacturer’s cloud; we call this the ”app-to-cloud way”. In this research, we invent a tool called IoT-app privacy inspector that can automatically infer the following from the IoT network traffic: the packet that reveals user interaction type with the IoT device via its app (e.g., login), the packets that carry sensitive Personal Identifiable Information (PII), the content type of such sensitive information (e.g., user’s location). We use Random Forest classifier as a supervised machine learning algorithm to extract features from network traffic. To train and test the three different multi-class classifiers, we collect and label network traffic from different IoT devices via their apps. We obtain the following classification accuracy values for the three aforementioned types of information: 99.4%, 99.8%, and 99.8%. This tool can help IoT users take an active role in protecting their privacy.

Keywords:

IoT; privacy; supervised machine learning; IoT privacy inspector

1. Introduction

The Internet of Things (IoT) refers to the tens of billions of low-cost devices that communicate with each other and with remote servers on the Internet autonomously. It comprises everyday objects such as lights, cameras, motion sensors, door locks, thermostats, power switches and household appliances, facilitating our lives in almost every aspect of our day [1,2,3,4]. The most recent estimate is from GSMA Intelligence in June 2018, projecting “... over 25 billion IoT devices in 2025”, which is consistent with Gartner’s estimation in 2017 that by 2020 about 20 billion IoT devices will be connected to the Internet [5].

The diversity of IoT application domains is wide: smart cities, building and home automation, logistics and transportation, environmental monitoring, smart enterprise environments, and other smart wearable devices [6]. The recent rapid development of the IoT and its ability to offer a new platform for services and decision-making have made it one of the fastest growing technologies today. This new disruptive paradigm of a pervasive physically connected world will have a huge impact on social interactions, business, and industrial activities [7]. IoT wearable devices are predicted to reach a total of 126.1 million units in 2019 according to IDC, which will result in a five-year compound annual growth rate of 45.1% [8].

The proliferation of IoT, however, creates important security and privacy problem. IoT devices monitor, collect and store a huge amount of sensitive data and information about organizations, financial transactions, marketing insights, individuals, and product development [7]. For example, the popularity of wearable tech is one trend that is currently supporting much more extensive data capturing processes. Inventions such as the Apple iWatch, Google Glass, the Apple Health Kit, the Apple Home Kit, and Google Fit are constantly collecting information about the lives and habits of their users. It includes everything from financial data to information on medical conditions, physical fitness, shopping routines, music preferences, browsing behaviors, and much more [9]. However, when such sensitive personal data is released to third parties, the possibility of an unintentional or malicious privacy breach, such as detection of user activity, is very high [10].

Despite the importance of the privacy risk, the majority of IoT users do not understand what kind of information is being collected about them or their environment. In fact, a significant proportion of users are not fully aware that they are sharing their information in the first place [9]. The General Data Protection Regulation (GDPR) emphasizes that companies are required to protect the privacy of their EU customers by keeping Personally Identifiable Information (PII) secure. Personal data has been defined by the GDPR as follows: “Article 4(1): ‘personal data’ means any information relating to an identified or identifiable natural person (‘data subject’); an identifiable natural person is one who can be identified, directly or indirectly, in particular by reference to an identifier such as a name, an identification number, location data, an online identifier or to one or more factors specific to the physical, physiological, genetic, mental, economic, cultural or social identity of that natural person” [11,12].

There are two types of personal data: First, sensitive PII, which comprises information related to the user that is not for public use, or may violate the individual privacy and security by being made publicly available, e.g., log in details, telephone number, date of birth, full name, address. The other type of personal data is non-sensitive PII, which is information that can identify the user but will not affect his privacy or security, such as email address, first name, nickname, social media profile, website [13,14]. Privacy is not only about access authorization and encryption; rather, it also emphasizes on the type of transmitted information [15], and on how it will be used and shared by the legitimate recipient (e.g., IoT manufacturer) [16].

According to [17], there are three different methods of communication between the IoT device and its cloud: IoT device to IoT cloud (D-C); IoT mobile application to IoT device (A-D); IoT mobile application to IoT cloud (A-C). In fact, there are ample research efforts to uncover IoT security vulnerabilities and exploits [1,4,18,19,20,21]. However, researchers that address the privacy risks of IoT devices have focused on the traffic that goes directly from the IoT device to the IoT cloud (D-C) Path A in Figure 1. Nevertheless, a significant number of home-based IoT devices come with a companion mobile application. Each IoT manufacturer creates its own mobile application to control, configure, and interface with the device. Therefore, data from the IoT device can also reach the IoT cloud via the IoT app installed on the smartphone (Paths B and C in Figure 1).

To the best of our knowledge, no research studies this alternative path. Based on our analysis, the information that is being sent to the IoT cloud from the IoT app (path C) is much more sensitive than the information sent to the IoT cloud from the IoT device itself (path A) because this information not only reveals the type or the traffic rate of the IoT device, but also it could reveal users’ credentials, users’ location, or users’ current interaction with the IoT device via the app. The latter type of information is not evident from the traffic on path A.

In this work, we study the alternative data disclosure path C in depth. We invent an automated tool called IoT-app privacy inspector that analyzes collected encrypted traffic from IoT devices and classifies it using three supervised machine learning models. Each of them implements the Random Forest algorithm [22] and is used for a separate classification:

	
The first classifier classifies traffic by the type of app-device interaction (e.g., the user logs into the IoT app).

	
The second classifies traffic according to whether it carries sensitive PII, non-sensitive PII, or non-PII.

	
The third classifies PII traffic by the type of information it contains (e.g., user credentials or user location).

Once an attacker identifies a user’s interaction type e.g., log in to the IoT app, he can infer sensitive PII packets caused by this particular interaction; after that, he can infer the content type of such sensitive PII packet, e.g., log in credentials or geographical location. According to Wang et al. [23,24] 77.38% of users reuse one of their existing passwords. Also, Das et al. [25] estimate that 56% of users change their password at least once every 6 months because they tend to have the same passwords. This means that if an attacker manages to find the packet that contains the user’s password, he could mount an offline password attack to crack the password, which is impossible to detect and faster than an online attack. Therefore, he can gain access to every account the user has.

The contributions of our work are the following:

	
We show how passive packet-level analysis can be done to infer the behavior of the IoT device through the encrypted network traffic of its apps.

	
We show how an attacker can infer the type of user interaction between the IoT app that controls the IoT device and the IoT manufacturer’s cloud (e.g., log into or log out from the IoT application).

	
We show how an attacker can infer whether the IoT app sends sensitive PII to the IoT manufacturer cloud, as well as the kind of this sensitive PII, caused by user interactions.

The rest of the paper is organized as follows: Section 2 highlights recent research in IoT traffic classification as well as in IoT privacy. In Section 3, we discuss how an attacker could attack and collect smart-home traffic in our attacker model, followed by a detailed description of the method we use to establish the ground truth in Section 4. In Section 5, we present our attack design and implementation, while in Section 6 we develop our inspector tool with three multi-class classification methods, each one used to infer a different goal; we also evaluate our tool. We present the limitations of our research and discuss future work in Section 7, followed by a summary and conclusion in Section 8.

2. Literature Review

Most of the security and privacy research regarding IoT devices has focused on security issues [26,27]. Other security research monitors IoT traffic to detect intrusion attempts [28] or has discovered various IoT vulnerabilities [6,29,30,31,32]. However, the contribution of this paper is to emphasize on the risks and vulnerabilities associated with the type of personal information being collected from the IoT app and sent to the IoT cloud and whether such information could reveal sensitive user activity. In this section, we first examine the research that classifies IoT traffic. Second, we examine the most relevant research to ours, which is privacy research that monitors IoT network traffic to infer sensitive information contained in the traffic.

2.1. IoT Traffic Classification

Even though there is a huge body of work characterizing general Internet traffic, research focusing on characterizing IoT traffic (also called machine-to-machine—M2M—traffic) is still in its infancy. One of the first huge-scale studies to investigate the nature of M2M traffic has been done by Shafiq et al. [33]. They want to understand whether IoT traffic imposes new challenges for cellular networks in terms of their design and management. [34] has suggested that vast quantities of IoT device information reflecting common behavior and a sole IoT device’s communication behavior can be determined through a Coupled Markov Modulated Poisson Processes model.

The profiling, evaluation, and categorization of smart context IoT devices was undertaken in [35], through analyzing 21 distinct IoT devices. Three weeks of data from traffic traces were obtained during the research, which was then put in the public domain. Subsequently, the protocols, signaling, activity trends, and other features of the traffic were statistically assessed. Ultimately, a classification method was devised with a greater than 95% precision rate for determining specific IoT devices, in addition to being able to ascertain whether the device was IoT-enabled or otherwise.

A logical IoT device classification model was developed in [36]. However, their model was limited to only classify the IoT devices into two categories, namely high vs. low energy consumption, so as the authors state, it is still at a primary stage.

Furthermore, the precise categorization of non-IoT and IoT devices based on assessing traffic, which also enabled the specific model and company to be identified, was undertaken using machine learning methods in [37]. Two smartphones, two computers and 10 IoT devices situated locally were used to obtain traffic information with a 99.281% precision rate in the classification.

All previous research deals with IoT traffic classification with the aim of (1) classifying the IoT traffic from the non-IoT traffic, (2) classifying the IoT traffic to determine specific IoT device, (3) classifying the IoT traffic into low energy or high energy in order to understand the current behavior of the IoT device. In contrast, in our research we classify IoT traffic aiming to accurately infer (1) if the packet reveals the interaction type between the IoT device and its corresponding IoT app, (2) if the packet reveals sensitive Personal Identifiable Information (PII) about their user, and (3) if the packet reveals the content type of such sensitive information.

2.2. IoT Privacy Concerns

Motivated by privacy issues, Apthorpe, Reisman, and Feamster [38] showed how a passive network observer, e.g., an Internet Service Provider (ISP), can analyze traffic data to infer sensitive information about consumers as well as the type of connected IoT device even when the traffic is encrypted. They examine four commercially available IoT smart-home devices and find that an IoT device’s particular activity and its type can be revealed through network traffic rates by anybody passively monitoring the traffic rate pattern. For example,

	
An Amazon Echo’s traffic [39] can indicate when the intelligent personal assistant is being engaged with by a user.

	
Motion detection by a camera, as well as a user is observing its live images, can all be determined from a Nest Cam [40] Indoor CCTV’s traffic levels.

	
Whether a Belkin WeMo switch device [41] is on or off in a smart house can be inferred from its traffic.

	
The sleep pattern of a user can be understood from a Sense sleep [42] device’s traffic levels, by someone monitoring such traffic.

Our work is similar to the above in that we also study and analyze the encrypted traffic of the IoT devices. However, in that research, the focus was on (1) studying the traffic that goes directly from the IoT device to the IoT cloud (D-C), i.e., Path A in Figure 1, (2) studying only the traffic rate pattern to infer the type and the activity of the IoT device. In contrast, our focus is on the traffic that goes directly from the IoT app that controls the IoT device to the IoT cloud (A-C), i.e., path C in Figure 1. Also, we do a more in-depth analysis by examining the size and sequence of the packets, and because of this we are able to infer the user interaction with the IoT device (e.g., login to the IoT device), the user sensitive data, and finally the type of such sensitive data (e.g., password).

Siby et al. [43] developed a system called IoTScanner to analyze the IoT environment. The low energy frequencies of Bluetooth, Zigbee and, Wi-Fi used to transfer traffic can be monitored through this system. Furthermore, IoTScanner gives an overview of the active and operating IoT devices within an environment, in addition to their intercommunication. As a result, they find that it is possible to violate user privacy by classifying active Wi-Fi IoT devices, via the ratio of the send and receive traffic. In our research, we prove that user privacy can be violated by monitoring the IoT traffic to determine the user behavior with the IoT device via its app as well as to determine the sensitive information about the user.

Traffic levels were used to determine IoT behavior in a further trial [44], where it was determined that encryption processes would still enable packet headers and smart-home traffic levels to be used by a passive network attacker to determine local activities.

As a result of previous research, the correlation between traffic patterns and sensitive activities motivated us to apply machine learning to infer the three different classifications mentioned earlier.

3. Attacker Model

We consider a passive network observer who accesses smart-home traffic. We assume that our adversary can collect the transport-layer traffic of a smart home. Also, we assume that packet contents are encrypted using TLS. This adversary can be the ISP, which can collect and store traffic regularly, or, in general, it can be any adversary who knows the SSID and the WPA2 password of the smart-home router. Finally, the adversary can get a database of labeled traffic from smart-home devices for training machine learning algorithms.

The adversary’s goals are the following:

	(A)

	
Infer the user’s interactions with IoT devices in a smart home (e.g., logging into the smart-plug app),

	(B)

	
Determine whether the transmitted data carries sensitive personal identifiable information (PII), non-sensitive PII, or non-PII about the user,

	(C)

	
Determine the type of sensitive PII (e.g., password for the IoT device app) or non-sensitive PII (e.g., user email) that is being transmitted.

As the traffic is TLS-encrypted, the adversary must rely on traffic rate, packet size, and packet sequence information to make any inference; he cannot read the packet contents. This inference is especially worrisome as it is completely passive, and so it would require no change to existing data collection procedures.

4. Methodology

Before we explain our laboratory smart-home environment, we recall the two different ways that IoT devices use to communicate with their manufacturer’s cloud:

	
Device-to-cloud: as Figure 1 in the Introduction illustrates, path A represents the direct data transfer from the IoT device to the IoT cloud. Most research, to the best of our knowledge, focuses only on this path to study the contents, patterns, and metadata of IoT network traffic that reveals sensitive information about user activity [34,38,44]. However, this type of information does not violate user privacy as the second way (A-C) does.

	
App-to-cloud: all IoT devices are controlled and configured via their mobile apps [35], no two IoT devices from two different manufacturers are sharing the same app. For example, a TP-link smart plug is controlled by a mobile application called KASA, while a WeMo smart plug is controlled by a different mobile application called Wemo. These mobile apps are recommended by the IoT device manufacturers, and installed on the smart phone or tablet to control the IoT device [35]. In a typical scenario, as in Figure 1 paths B and C, when a user wants to switch on/off a smart plug, he first needs to log in to the IoT app and then press the switch on/off button. In this case, a command is sent to the smart plug via its app to switch on/off. In parallel, traffic with sensitive personal information is sent to the smart-plug cloud from the IoT app to inform that the user has logged in to the app and switch on/off the smart-plug.

In this research, we focus on collecting and analyzing the data transferred from the IoT app to the IoT cloud. Please note that many IoT devices use TLS/SSL when communicating with cloud servers, so the traffic we collect is encrypted. Given the increasing focus on security in the IoT community, we expect that encrypted communications will become standard for smart-home devices.

4.1. Overview of the IoT-App Privacy Inspector Tool

The tool takes as input encrypted traffic collected from different IoT devices. The first classifier classifies the packets according to whether they contain sensitive PII or non-sensitive PII, or none. The second classifier will classify the content type (user credential, location, username) of such sensitive or non-sensitive PII packets. Finally, the third classifier classifies the packets based on the user interaction type with the IoT device (login, logout, delete a device, change password). Figure 2 gives an overview of the proposed tool.

4.2. IoT Smart-Home Testbed

We set up our smart-home testbed with four well-known and commercially available IoT devices as a representative example of a smart-home. The devices included in this testbed are TP-link smart plug (https://www.tp-link.com/uk/home-networking/smart-plug/hs100/); TP-link smart camera (https://www.tp-link.com/uk/support/download/nc200/); Belkin NetCam (https://www.belkin.com/uk/p/P-F7D7601/); Lifx smart bulb (https://uk.lifx.com/products/lifx). An Android smartphone was also connected to the network. We install the recommended apps on the smartphone to control the functions of each IoT device in our testbed; see Table 1 for more details. Additionally, a laptop (running Kali Linux) was also connected to the network to perform two tasks: (1) monitor and continually collect the network traffic between the IoT device and the smartphone app, and also between the smartphone app and the cloud, and (2) perform a Man in the Middle attack (MITM) as we explain in Section 5. Figure 3 displays the architecture of the smart-home testbed.

5. Attack Design and Implementation

The steps below give a high-level description of our implementation, which is what the attacker would do:

	
Select IoT devices whose traffic should be classified by the tool.

	
Establish ground truth about user interactions with the IoT devices by doing the following steps:

	(a)

	
Collect IoT traffic while performing various interactions with each device to generate traffic.

	(b)

	
Analyze the IoT traffic in order to identify the interaction type, the packets containing sensitive PII, non-sensitive PII, and non-PII, and within the PII traffic (both sensitive and non-sensitive) identify the content type (e.g., user credentials or username).

	(c)

	
Annotate the traffic by labeling each packet with the interaction type that created it.

	
Use the labeled traffic as training data for a classifier to infer the three goals stated above (Section 3) from unlabeled/unseen traffic. This point will be explained in detail in Section 6.

Now we explain step 2 in the following subsections in more detail.

5.1. Establish Ground Truth

5.1.1. IoT Traffic Collection

We conduct our experiments to establish ground truth from November 2018 until April 2019. An overview of our experiments can be seen in Figure 4. We use Wireshark [45] to passively capture and collect the traffic data of the IoT devices and their relevant IoT apps: First, we determine the IP address of each IoT device within the smart-home network; then, we identify the IP address of the smartphone that has the installed IoT apps. The second and third steps are performed in parallel: In the second step, we intercept and therefore collect the traffic by conducting a MITM attack (with ARP spoofing) [46] between the smartphone and the IoT cloud. This attack allows us to record all network traffic between the IoT cloud and the IoT app in both directions. Figure 5 and Figure 6 illustrate the redirection that ARP spoofing causes in the traffic between the IoT app and the IoT cloud. Before ARP spoofing, the traffic goes via the router, Figure 5; after the ARP spoofing, the traffic goes via the attacker device (in this case via our Kali laptop), then Kali sends it to the router as Figure 6 shown.

While the MITM attacks are active, we interact with each IoT device mentioned in Table 1 separately. We perform four different interactions because they are common among IoT apps. These actions are the following:

	
Login to the IoT application, permitting the user to control the IoT device functions;

	
Alter settings including changing the password, permitting the user to change the IoT device settings or the password;

	
Delete the IoT device, allowing the user to cease use of the IoT device by deleting it from the application, and consequently deleting it from the IoT cloud/server database;

	
Logout from the IoT application, which sends the user’s access or control of the IoT device functions.

This second step collects encrypted TLS traffic that we need to decrypt to establish the ground truth about the packets that the IoT app sends to the IoT manufacturer’s cloud. We do this decryption in the third step, while we are collecting the traffic. First, we used Burp Suite tool [47] on our Kali laptop. In Burp Suite, we set up the proxy server port to 8080 to listen to the network traffic of the smart phone and the IoT device. Second, we configure the Wi-Fi setting of the smartphone to use the same proxy server port. Finally, we install the Burp Suite certificate onto the smart phone User Trust Store.

It should be noted that these steps only work if the IoT app does not employ certificate pinning [48]. In our case, KASA, TpCamera, and NetCam do not employ certificate pinning, but Lifx does. One of the solutions to solve the certificate pinning problem is to reverse engineer the IoT app. Then, install the fake certificate from Burp Suite. Finally, recompile the new version of the IoT app and re-install it on the smart phone.

5.1.2. Activity Inference from Collected Traffic and Identification of Packets Comprising User Interaction, Sensitive PII, and the Content Type of the Sensitive PII

In this section, we present our observations from a passive packet-level analysis of collected traffic from the IoT devices installed on the smart-home testbed. As we explain in the previous section, for each of the four interactions with each of the four IoT devices, we collect one encrypted pcap file from Wireshark and one corresponding decrypted burb file from Burp Suite. To analyze and therefore identify the type of user interaction with the IoT app, the packet sensitivity level, and the packets that contain personal information along with the type of personal information that they contain. We analyze each pair of burb file and pcap file for each interaction with each IoT device separately.

Analyzing the Burp Suite Files

We establish the ground truth about the user’s interactions with the IoT devices by analyzing the decrypted traffic we obtain from Burp Suite file of each IoT app. In particular, we correlate the actions that the user invokes on the IoT device with the packet sizes and sequences that result from these actions.

We find that each IoT app communicates with several domain names associated with the IoT device manufacturer. Interestingly, we realize that each domain name is responsible for certain types of interaction. For example, the KASA and TpCam apps from TP-link communicate with two different domain names, while the NetCam app from Belkin communicates with three different domain names, and finally the LIFX app from Lifx communicates with five different domain names.

Figure 7 illustrates an example of the two domain names that KASA app communicates with, which are api.tplinkra.com and eu-wap.tplinkcloud.com, both owned by TP-link. Each domain name is responsible for a particular set of methods. See Appendix A for the rest of IoT-app domain names. For example, each time the user logs in to KASA app, the methods listed in Table 2 are executed, always in the same sequence. Each method always generates a request packet from KASA app to the domain name responsible for this method. It is followed by a response packet from that domain name to KASA app, with the indicated packet sizes and sequences. In Table 3, we observe the sequence and the packet sizes of the methods that are executed when the user logs out from KASA app, and we see that they are different from Table 2. We observe similar differences for the other actions of this and the other IoT devices; see Appendix B. Because these sizes and sequences are unique to each action, an attacker can use them to identify the invoked actions. Also, because each packet in a sequence always contains the same type of information, the attacker can detect the packets that contain sensitive information.

Based on these findings, we conclude that we can rely on the packet sizes and sequences to infer whether the user interaction with the IoT app is login, logout, and so forth. Furthermore, we manage to identify the length of every packet that sends to or receives from the IoT cloud any personally identifiable information (e.g., user location, username and password). For example, we can confirm that any packet sent by the KASA app with a packet size of 520 bytes and a received size of 873 bytes from the TP-link domain name eu-wap.tplinkcloud.com, is the passthrough method. This method is always triggered when the user logs in to the KASA application, and it carries information regarding the user’s geographical location, see Figure 8; similarly for the remaining methods.

In some cases, we notice that the packet sizes do vary across executions of a method. This variation is small and thus does not affect our classification negatively, but it can reveal additional information. For example, the size of the request packet for the login method, see Table 2, is always 542 bytes plus the length of the user’s password. This means that the password length is only 6 bytes in this example. From a security perspective, this is an important finding because the attacker can determine the password length, and therefore determine whether a brute force attack is feasible to obtain the password. Please note that this attack can be done offline, so any measures on the IoT cloud side to block repeated failed password submissions would not help.

Analyzing the Wireshark File

We now aim to match the encrypted packets from the Wireshark file to the equivalent decrypted packets from the Burp Suite file. We can then label each packet of the encrypted traffic and use this labeled traffic to train our machine learning classifier. The most straightforward way to do this match would be to match encrypted packets to decrypted packets of the same size. However, the sizes of encrypted and decrypted packets are not similar, so we design a new method to find this match. We apply our method to all actions of the IoT apps. We describe this method in the steps below, in which we aim to match encrypted-decrypted packets for the logout action in KASA app as an example.

	(a)

	
First, we filter the pcap file to keep only the packets whose source IP address belongs to the smartphone that has the IoT app, and whose destination IP address belongs to one of the two IoT domains of KASA app, see Table 3.

	(b)

	
Then, in the pcap file, we look for a sequence of encrypted packets whose source and destination IP addresses match the corresponding sequence in the methods of the logout action in the decrypted packets from burp file. For example, the user logout action from KASA app triggers five methods. Therefore, in the pcap file, we expect to find the same five5 methods in the same order. In Table 3, the first method in the logout action is logout method, which communicates with the eu-wap.tplinkcloud.com server, followed by the second method helloIotCloud, which in turn communicates with the pi.tplinkra.com server and so on for the rest of the methods. Therefore, we should find in the pcap file the same domain names in the same order. As we mentioned earlier, each domain name is responsible for specific methods. By finding the same sequence of the domain names, we can prove that we have found the correct expected method.

	(c)

	
After identifying the correct method, we now want to match the actual packets. We compare the request and the response packet size of the logout methods from the pcap file with the response and the request packet size of the equivalent logout methods from the burp file. We find that encryption always adds a constant number of bytes to the plain packet size:

	
The size of the encrypted packet for the logout method request is equal to the decrypted packet size plus 148 bytes (decrypted: 521 bytes; encrypted: 669 bytes).

	
Similarly, for the response traffic, the encrypted packet size is equal to the decrypted packet size plus 95 bytes (decrypted: 178 bytes; encrypted: 273 bytes).

We observe the same constants (148 bytes for request packets and 95 bytes for the response packets) for all packets of the KASA app. We link this constant to the type of cipher suite that KASA app use, which is TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256. Other apps also exhibit the same behavior, only with different additive constants for their request and response packet sizes, because they have different cipher suite. For example, netcam app uses TLS-RSA-WITH-AES-128-CBC-SHA cipher suite.

	(d)

	
Finally, as a visual verification step that we match the correct packets, we create a plot per decrypted action and a corresponding plot per encrypted action. By comparing the two plots, we find that they are equivalent. Figure 9 illustrates the logout action and the method sizes and sequences from the burp file from KASA app. After applying our method, we find the same methods with the same order in the pcap file, as you can see in Figure 10. Note the packet sizes are for encrypted packets. The plots for the rest of the actions can be found in Appendix C.

Feature Selection and Data Labeling

During this stage, we compose all packets that are transmitted between the same pair (IP-src, IP-dst) to a group of sessions. Next, we select the most important features that help us manually label all the encrypted session according to the following categories:

	
the user interaction with the IoT device that the packet is part of;

	
whether they contain sensitive information;

	
the content type of the packets that contain sensitive information.

These features are the following:

	
IP-src: refers to the IP address of the smartphone running the IoT app;

	
IP-dst: refers to the IP address of the IoT-app domain.

	
Comm-type: refer to which domain name the IoT app communicates with (e.g., KASA app communicate with two domains, so if the IP-src belongs to the smartphone and the IP-dst belongs to the second domain name, then the comm-type set to 1.2);

	
Req-len: refers to the length of the sending packet (from the IP-src to the IP-dst);

	
Resp-len: refers to the length of the receiving packet (from the IP-dst to the IP-src).

We label the sessions in three different ways, thus creating three different datasets. Each one is used to train and test one classifier—see Figure 11. For the first dataset, named IoT-interactionType, we label the packets according to the interaction type between the user and the IoT app with either “Login”, “Logout”, “Change Password”, “Delete”, or “None”. For the second dataset, named IoT-PII, we label the packets according to their sensitivity level with either “Sensitive PII”, “Non-sensitive PII”, or “None”. For the third dataset called IoT-user-PIItype, we label the sensitive packets (sensitive PII or non-sensitive PII) according to their content type with either “User credentials”, “User location”, “username”, or “None”.

Once an adversary creates or obtains such labeled traffic for the IoT devices of his choice, he can create a classifier to identify packet streams pertaining to a specific IoT device. Then, he can infer a specific user interaction in unlabeled traffic. Therefore, he will be able to infer the packets that carry sensitive information and the content type of this sensitive information. In the next section, we describe the design of the classifiers.

6. Machine Learning-Based Classification

We treat the tasks of identifying user interaction type, packet sensitivity level, and sensitive data type as a multi-class classification problem. Accordingly, six classifiers were selected based on their ability to support multi-class classification.

To evaluate the performance of the selected algorithms and hence choose the best classifier for our problem, we apply several measures. The most common measures are precision, recall, F-mean, and accuracy. As an example, the first multi-class classification problem is evaluated relative to the training dataset, producing the following four outputs:

	
True positive (TP)—packets are predicted as a sensitive PII, when they are truly sensitive PII.

	
True negative (TN)—packets are predicted as a None when they are truly None.

	
False positive (FP)—packets are predicted as sensitive PII, when they are truly None.

	
False negative (FP)—packets are predicted as None when they are truly sensitive PII.

Precision (P) measures the ratio of the packets that were correctly labeled as sensitive PII to the total packets that are truly sensitive PII [Precision = TP/(TP + FP)]. Recall (R) measures the ratio of the packets that were correctly labeled as sensitive PII to the total of all packets [Recall = TP/(TP + FN)]. F-measure (F) takes both false positives and false negatives into account by calculates precision and recall. Then, it provides a single weighted metric to evaluate the overall classification performance [F1 Score = 2 × (Recall × Precision)/(Recall + Precision)]. Accuracy measures the ratio of the packets that were correctly predicted to the total packets number of the packets [Accuracy = (TP + TN)/(TP + FP + FN + TN)]. However, using accuracy to measure the performance of a classifier is a problem. This is because if the classifier always infers a particular class, it will achieve high accuracy, which makes it useless when it comes to building such a classifier.

The goal is to maximize all measures, which range from 0 to 1, to achieve better classification performance. Table 4 illustrates the overall results based on previous measurements. As we can see, the Random forest exhibits the best performance across all six classifiers. Therefore, we develop our classification tool based on the Random Forest classifiers. To support our choice, a recent survey on ML methods for security [49] discusses the advantages of using Random Forest. Their study is related to our research as it combines decision-tree induction with ensemble learning; these advantages are:

	
Very fast when classifying input data

	
Resilient to over-fitting.

	
It takes a few input parameters.

	
The variance decreases as per the increment of tree numbers, excluding any biased results.

6.1. Multi-Class Classifier Training

To perform our classification experiments, we randomly split each dataset described in Section 5.1.1 into 80% for training, and the remaining 20% for testing. Notice that each classifier applies to one dataset; see Figure 11. Each classifier is responsible for inferring the possible label of one category. As we can see in Table 4, the Random Forest classifier achieves the best performance resulting in 99.8%, 99.8%, and 99.8% in the first and the second classifier, while it achieves 99.4%, 99.4%, and 99.4% in the third classifier for the measurements of precision, recall, and F-mean score, respectively. Additionally, the classification time is 0.35 s, for each classifier.

To validate that the classifier does not overfit, we perform several experiments:

	
10-fold cross validation experiments

To determine the optimal hyperparameters of the Random Forest algorithm [22,50], we try many different combinations using GridSearch algorithm optimization. Based on the results, we set our hyperparameters as follows: the number of n-estimator is 10, min-samples-leaf is 3, bootstrap is “False”, min-samples-split is 8, criterion is “entropy”, max-features is “auto”, and the max depth is 90.

	
Confusion matrix experiments

To get a better understanding of the performance of the classifier across the experiments, the confusion matrices of the three classifiers in Table 5, Table 6 and Table 7 consecutively show the predicted classes for individual packets compare against the actual ones. Every confusion matrix is a synopsis of inferring the outcome of one multi-classification problem, which demonstrates the process in which our classification model is confused upon making an inference. Then correct and incorrect inference numbers are summarized through count values and decoded to each class. The individual confusion matrix gives us an in-depth look into errors being made by a classifier and mainly focuses on the sort of errors being made. For example in Table 5, the confusion matrix which is related to inferring the user interaction, shows that the actual number of the Delete interaction sessions is 284. However, the classifier correctly infers 281 sessions as a Delete interaction, while it infers incorrectly two packets as Logout interaction and one packet as No-action. These results confirm the high accuracy and reliability of our classifiers.

	
Compare the accuracy of the training dataset with the accuracy of the testing dataset

The training accuracy is the accuracy of the classifier on the training dataset, while the testing accuracy is the accuracy of the classifier on the testing dataset. If the accuracy of the training data is almost similar to the accuracy of the testing dataset, then there is no over-fitting issue; otherwise, we have an over-fitting issue. Table 8 shows that the accuracy of the training dataset and the accuracy of the testing dataset are very similar in all the three classifiers.

As a result of the previous experiments, we conclude that the IoT-app privacy inspector tool does not fall into the over-fitting problem.

6.2. Results and Discussion

An overview of the steps of the IoT-app privacy inspector tool is outlined in Figure 12. At first, the tool receives collected unseen IoT traffic in a pcap file format. Next, it extracts the relevant features from the pcap file as mentioned earlier (Section 5.1.1). Three different classifiers will be applied to this dataset. Each one is used for different inferences (Figure 11).

Unseen Validation Datasets

To evaluate the performance of our tool, we apply the trained classifiers to unseen datasets. We collect such datasets in Section 5.1.1 to validate the classifiers. Notice that we did not include the validation dataset in the original dataset used to train our classifiers. Accordingly, we conduct two types of evaluations to evaluate the accuracy and reliability of the IoT-app privacy inspector tool.

Classification Accuracy for Each IoT-App Interaction Separately

In the first evaluation experiment, we test the tool on each IoT device individually (one IoT device each time). For each IoT device, we apply the tool four times, on a collected dataset for each interaction Login, Logout, Delete, and Change Password. Thus, we apply the tool 16 times in total.

The results show that in every experiment the tool infers the correct class. We summarize and group the results from the 16 experiments according to each IoT app in Table 9. Each row represents one user interaction and the output of the IoT-app inspector tool (the three classifiers). For example, in the first row, the IoT-app inspector tool accurately infers that when the user logs into to KASA app, only sensitive PII packets are sent to the IoT cloud. The type of these sensitive packets is user credentials and user location.

In Table 10, we compare the results of all user interactions with all IoT devices. Our findings show that most interactions are similar in terms of sending sensitive PII or non-sensitive PII packets to their IoT cloud. However, we highlight three important things. First, the change-password interaction and the login interaction send both sensitive PII and non-sensitive PII packets to the IoT cloud from Lifx app. This means that Lifx app excessively sends sensitive PII packets about their user to the Lifx cloud through these two interactions. Second, logout interaction from netcam app does not send any type of sensitive packets to its IoT cloud, which makes it the safest interaction among the others. Finally, the delete interaction and the logout interaction of KASA, TpCam, and Lifx send only non-sensitive PII packets to its IoT cloud. Hence, these two interactions are seen to be the interactions that least send sensitive PII packets about the user to the IoT cloud.

Classification Accuracy with Mixed IoT Interactions in the Same File

In the second evaluation experiment, we test the tool four times on each IoT device individually (one IoT device each time). For each IoT device, we apply the tool on mixed user interactions between the IoT app and its IoT device to validate the classification accuracy by inferring the previously mentioned aims. The results presented in Table 11 demonstrate very high classification accuracy of our three classifiers:

	
the average accuracy (number of correctly inferred user interactions divided by the total number of interactions) is 99.4% with F1 score 0.994;

	
the average accuracy (number of packets for which the level of sensitivity is correctly inferred divided by the total number of packets) is 99.8% with F1 score 0.998;

	
the average accuracy (number of packets for which the content of the sessions correctly inferred divided by the total number of packets) is 99.8% with F1 score 0.998.

As a result of the previous experiments, we prove the validity and reliability of such a tool. We achieve high accuracy for inferring the correct type of sensitive information, as well as for inferring the user interaction type that occurs between the IoT device and the user.

7. Limitations and Future Work

Our method is subject to the following limitations:

	
Only devices communicating via TCP/IP were studied. Protocols such as ZigBee and Bluetooth were not included even though they are employed by some IoT devices.

	
We collect benign IoT traffic, i.e., we do not compromise the IoT device nor use it in an unusual manner. Our conclusions therefore apply only when capturing normal behavior patterns of diverse IoT device types.

In future work, we plan to diversify the devices used in our lab and extend the device type identification and IoT-app privacy inspector method to additional communication protocols. We are also looking at ways to automate part of the labeling process, to make it easier to train classifiers for new IoT devices. Finally, we plan to make this tool available as an open-source mobile application tool that passively monitors and collects the traffic of any installed IoT app.

8. Conclusions

In this research, we start with the observation that there are two different ways of sending information about the IoT user to the IoT cloud: Device-to-cloud and App-to-cloud. To the best of our knowledge, no research has been done on the second way i.e., App-to-cloud. We show that any adversary who can observe and collect smart-home traffic can reveal sensitive information about the IoT user through the packet sizes and the packet sequences. For example, the adversary can infer, in real time, that a specific interaction (e.g., login to the IoT app) is occurring between the user and a smart plug via its related IoT app. In addition, the adversary can infer which packets carry sensitive information about their user, as well as the type of this information (e.g., user location or user credential).

We build a multi-class classification tool called IoT-app privacy inspector using supervised machine learning to raise the awareness of the IoT users about specific interactions that cause a violation of their privacy. For training data, we label the encrypted TLS transport-layer traffic that is being sent to the IoT cloud from the IoT app. We want the tool to be able to

	
classify the interaction of the user with every IoT-app (e.g., log in to/log out of the IoT-app);

	
classify the packets generated by the user interaction according to their sensitivity level (e.g., sensitive PII, non-sensitive PII, non-PII)

	
classify the content of the sensitive PII (into e.g., user credentials, user location) and the content of the non-sensitive PII (into e.g., user email, username).

We leverage the observation that the traffic generated by IoT apps follows a limited set of patterns, which allows us to perform the three classifications above. After training, this tool can be continuously applied to classify newly collected (unlabeled) IoT device traffic data.

Our tool aims to help IoT users by notifying them of any interactions that send excessive personal data to the IoT cloud e.g., when they login to the IoT app. The tool can accurately detect the TLS traffic that originates from any IoT app that controls the IoT device. Then it infers the user interaction type with the IoT app, infers whether there is any sensitive PII packet being sent to the IoT cloud and infers the type of the sensitive PII packet (e.g., user credentials). The results show that 99.4% of the user interactions with the IoT app are correctly detected, while 99.8% of the packets the carry sensitive PII caused by this interaction are correctly detected. Finally, 99.8% of the content type of this sensitive PII packets are correctly detected. The high accuracy results achieved by our tool prove the reliability of such a tool. Finally, we point out a security problem: It is possible for an attacker to identify the packet that contains the user’s password, and thus to launch an offline password cracking attack.

Author Contributions

Conceptualization, A.S.; Methodology, A.S.; Software, A.S.; Validation, A.S.; Formal analysis, A.S.; Investigation, A.S.; Resources, A.S.; Data Curation, A.S.; Writing–original draft preparation, A.S.; Writing–review and Editing, A.S., G.T.; Visualization, A.S.; Supervision, G.T.; Project administration, G.T.; Funding acquisition, A.S.

Funding

This research was funded by King Abdul Aziz University.

Acknowledgments

The first author’s work is sponsored by King Abdul Aziz University in Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

	PPA
	Privacy Policy Agreement

	PII
	Personal Identifiable Information

Appendix A. IoT-app Cloud Server Names

[image: Sensors 19 04777 g0a1 550]

Figure A1. TP-link smart camera domain names that TpCam app communicates with. Each domain responsible for specific methods.

Figure A1. TP-link smart camera domain names that TpCam app communicates with. Each domain responsible for specific methods.

[image: Sensors 19 04777 g0a1]

[image: Sensors 19 04777 g0a2 550]

Figure A2. Belkin Netcam smart camera domain names that NetCam app communicates with. Each domain responsible for specific methods.

Figure A2. Belkin Netcam smart camera domain names that NetCam app communicates with. Each domain responsible for specific methods.

[image: Sensors 19 04777 g0a2]

[image: Sensors 19 04777 g0a3 550]

Figure A3. LIFX smart bulb domain names that Lifx app communicates with. Each domain responsible for specific methods.

Figure A3. LIFX smart bulb domain names that Lifx app communicates with. Each domain responsible for specific methods.

[image: Sensors 19 04777 g0a3]

Appendix B

Appendix B.1. TP-Link Smart-Plug App KASA User Interactions Packet Sizes and Sequences

[image: Table]

Table A1. User change password interaction with KASA app that controls TP-link smart plug. Methods are always invoked by the app in the order shown—top to bottom. The sizes are of decrypted packets.

Table A1. User change password interaction with KASA app that controls TP-link smart plug. Methods are always invoked by the app in the order shown—top to bottom. The sizes are of decrypted packets.

	

	
Methods

	
Request Length in Byte

	
Response Length in Byte

	
change password action

	
modifyCloudPassword

	
600

	
171

	
getDeviceList

	
415

	
205

	
listScenes

	
768

	
381

	
listRules

	
700

	
381

	
isLinked

	
662

	
381

	
login

	
517

	
330

	
listScenes

	
768

	
381

	
authenticate token

	
315

	
278

	
postPushInfo

	
692

	
178

	
getDeviceList

	
415

	
1143

	
helloIotCloud

	
1031

	
435

	
passthrough

	
520

	
873

[image: Table]

Table A2. User delete interaction with KASA app that control TP-link smart plug. Methods are always invoked by the app in the order shown—top to bottom (“retrivelocation” is misspelled like this in the packet contents). The sizes are of decrypted packets.

Table A2. User delete interaction with KASA app that control TP-link smart plug. Methods are always invoked by the app in the order shown—top to bottom (“retrivelocation” is misspelled like this in the packet contents). The sizes are of decrypted packets.

	

	
Methods

	
Request Length in Byte

	
Response Length in Byte

	
Delete action

	
unbindDevice

	
513

	
171

	
deviceRemoved

	
716

	
419

	
getDevice

	
415

	
646

	
listScenes

	
769

	
629

	
isLinked

	
663

	
889

	
retrieveLocation

	
663

	
655

	
listRules

	
701

	
642

Appendix B.2. User Interactions With TP-Link Smart Cam AppTpCam, Methods Are Always Invoked by the App in the Order Shown—Top to Bottom. the Sizes Are of Decrypted Packets

[image: Table]

Table A3. Packet sizes and sequence of User login interaction with TpCam app.

Table A3. Packet sizes and sequence of User login interaction with TpCam app.

	

	
Methods

	
Request Length in Byte

	
Response Length in Byte

	
Login action

	
Login

	
508

	
318

	
Post push info

	
713

	
178

	
Get device

	
434

	
653

	
Subscribe msg

	
431

	
178

	
Passthrough

	
565

	
464

	
Get device config info

	
497

	
267

	
Get intl fw versions

	
642

	
190

[image: Table]

Table A4. Packet sizes and sequence of User logout interaction with TpCam app.

Table A4. Packet sizes and sequence of User logout interaction with TpCam app.

	

	
Methods

	
Request Length in Byte

	
Response Length in Byte

	
Logout action

	
logout

	
442

	
178

	
postPushInfo

	
713

	
178

	
subscribeMsg

	
431

	
178

	
getAppConfigInfo

	
474

	
190

	
getAccountInfo

	
450

	
252

	
login

	
508

	
318

	
getDeviceCofigInfo

	
497

	
370

	
passthrough

	
565

	
462

	
Get device list

	
434

	
653

[image: Table]

Table A5. Packet sizes and sequence of User change password interaction with TpCam app.

Table A5. Packet sizes and sequence of User change password interaction with TpCam app.

	

	
Method

	
Request Length in Byte

	
Response Length in Byte

	
Change password action

	
GetupgradeList

	
1007

	
227

	
modifyPassword

	
1379

	
227

	
1108

	
235

	
HTML

	
812

	
257

	
requestRelyService

	
927

	
290

	
options

	
464

	
333

	
requestURL

	
589

	
346

	
login

	
1112

	
428

	
login

	
1114

	
428

	
isRelyReday

	
627

	
466

	
passthrough-changepass

	
682

	
572

	
getMyList

	
1012

	
809

	
Admin

	
821

	
35,375

	
Cloud

	
812

	
61,668

	
updateInfo

	
953

	
63,854

[image: Table]

Table A6. Packet sizes and sequence of user deletes interaction with TpCam app.

Table A6. Packet sizes and sequence of user deletes interaction with TpCam app.

	

	
Method

	
Request Length in Byte

	
Response Length in Byte

	
Delete action

	
unbinedDevice

	
506

	
178

	
Get device list

	
434

	
205

	
getDeviceCofigInfo

	
497

	
267

	
passthrough

	
565

	
464

	
Get device list

	
434

	
653

Appendix B.3. User Interactions with Belkin NetCam Cam App netcam, Methods Are Always Invoked by the App in the Order Shown—Top to Bottom. the Sizes Are of Decrypted Packets

[image: Table]

Table A7. Packet sizes and sequence of User login interaction with Netcam app.

Table A7. Packet sizes and sequence of User login interaction with Netcam app.

	

	
Method

	
Request Length in Byte

	
Response Length in Byte

	
Login action

	
Login

	
1190

	
324

	
1092

	
541

	
1043

	
454

	
993

	
459

	
528

	
451

	
HTML login

	
1020

	
16,228

	
1028

	
16,228

	
970

	
13,350

	
1102

	
3098

	
1002

	
3089

	
1102

	
3098

	
1002

	
3089

[image: Table]

Table A8. Packet sizes and sequence of User logout interaction with Netcam app.

Table A8. Packet sizes and sequence of User logout interaction with Netcam app.

	
Logout action

	
Method

	
Request length in byte

	
Response length in byte

	
Logout

	
1013

	
338

[image: Table]

Table A9. Packet sizes and sequence of User change password interaction with Netcam app.

Table A9. Packet sizes and sequence of User change password interaction with Netcam app.

	
Change password action

	
Method

	
Request length in byte

	
Response length in byte

	
Change password

	
1130

	
338

[image: Table]

Table A10. Packet sizes and sequence of User delete interaction with Netcam app.

Table A10. Packet sizes and sequence of User delete interaction with Netcam app.

	
Delete action

	
Method

	
Request length in byte

	
Response length in byte

	
Camera delete

	
1022

	
338

Appendix B.4. User Interactions with LIFX Smart Lamb Applifx, Methods Are Always Invoked by the App in the Order Shown—Top to Bottom. the Sizes Are of Decrypted Packets

[image: Table]

Table A11. Packet sizes and sequence of User login interaction with lifx app.

Table A11. Packet sizes and sequence of User login interaction with lifx app.

	

	
Method

	
Request Length in Byte

	
Response Length in Byte

	
Login action

	
Sign in

	
302

	
721

	
307

	
446

	
409

	
541

	
414

	
531

	
458

	
555

	
Log

	
472

	
592

	
Batch.login

	
680

	
114

[image: Table]

Table A12. Packet sizes and sequence of User logout interaction with lifx app.

Table A12. Packet sizes and sequence of User logout interaction with lifx app.

	
Logout action

	
Method

	
Request length in byte

	
Response length in byte

	
Batch.logout

	
716

	
114

[image: Table]

Table A13. Packet sizes and sequence of User change password interaction with lifx app.

Table A13. Packet sizes and sequence of User change password interaction with lifx app.

	

	
Method

	
Request Length in Byte

	
Response Length in Byte

	
Change password action

	
forgot-password

	
292

	
350

	
reset-password

	
540

	
4698

	
1295

	
4751

	
assets

	
839

	
276,599

	
862

	
32,134

[image: Table]

Table A14. Packet sizes and sequence of User deletes interaction with lifx app.

Table A14. Packet sizes and sequence of User deletes interaction with lifx app.

	

	
Method

	
Request Length in Byte

	
Response Length in Byte

	
Delete action

	
Batch.delete

	
682

	
114

	
Device-delete

	
207

	
696

	
402

	
534

	
Schedule-delete

	
368

	
510

	
Promotion-delete

	
396

	
640

Appendix C

[image: Sensors 19 04777 g0a4 550]

Figure A4. User login interaction from KASA in decrypted format.

Figure A4. User login interaction from KASA in decrypted format.

[image: Sensors 19 04777 g0a4]

[image: Sensors 19 04777 g0a5 550]

Figure A5. Equivalent user login interaction from KASA in encrypted format.

Figure A5. Equivalent user login interaction from KASA in encrypted format.

[image: Sensors 19 04777 g0a5]

[image: Sensors 19 04777 g0a6 550]

Figure A6. User change password interaction from KASA in decrypted format.

Figure A6. User change password interaction from KASA in decrypted format.

[image: Sensors 19 04777 g0a6]

[image: Sensors 19 04777 g0a7 550]

Figure A7. Equivalent user change-password interaction from KASA in encrypted format.

Figure A7. Equivalent user change-password interaction from KASA in encrypted format.

[image: Sensors 19 04777 g0a7]

[image: Sensors 19 04777 g0a8 550]

Figure A8. User delete interaction from KASA in decrypted format.

Figure A8. User delete interaction from KASA in decrypted format.

[image: Sensors 19 04777 g0a8]

[image: Sensors 19 04777 g0a9 550]

Figure A9. Equivalent user delete interaction from KASA in encrypted format.

Figure A9. Equivalent user delete interaction from KASA in encrypted format.

[image: Sensors 19 04777 g0a9]

References

	

Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]

	

Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. Vision and challenges for realising the Internet of Things. Clust. Eur. Res. Proj. Internet Things Eur. Comm. 2010, 3, 34–36. [Google Scholar]

	

Weber, R.H. Internet of Things–New security and privacy challenges. Comput. Law Secur. Rev. 2010, 26, 23–30. [Google Scholar] [CrossRef]

	

Zhao, K.; Ge, L. A survey on the internet of things security. In Proceedings of the 2013 Ninth International Conference on Computational Intelligence and Security, Emei Moutain, China, 14–15 December 2013; pp. 663–667. [Google Scholar]

	

Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT devices in smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 2018, 18, 1745–1759. [Google Scholar] [CrossRef]

	

Tekeoglu, A.; Tosun, A.Ş. A testbed for security and privacy analysis of IoT devices. In Proceedings of the 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Brasilia, Brazil, 10–13 October 2016; pp. 343–348. [Google Scholar]

	

Ferrando, R.; Stacey, P. Classification of device behaviour in internet of things infrastructures: Towards distinguishing the abnormal from security threats. In Proceedings of the 1st International Conference on Internet of Things and Machine Learning, Liverpool, UK, 17–18 October 2017; p. 57. [Google Scholar]

	

Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]

	

Perera, C.; Ranjan, R.; Wang, L.; Khan, S.; Zomaya, A. Privacy of big data in the internet of things era. IEEE IT Spec. Issue Internet Anything 2015, 6, 32–39. [Google Scholar] [CrossRef]

	

Ukil, A.; Bandyopadhyay, S.; Pal, A. IoT-privacy: To be private or not to be private. In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 27 April–2 May 2014; pp. 123–124. [Google Scholar]

	

Grimes, R.A. What Is Personally Identifiable Information (PII)? How to Protect It Under GDPR. Available online: https://www.csoonline.com/article/3215864/how-to-protect-personally-identifiable-information-pii-under-gdpr.html (accessed on 1 November 2019).

	

Rouse, M. Personally Identifiable Information (PII). Available online: https://searchfinancialsecurity.techtarget.com/definition/personally-identifiable-information (accessed on 1 November 2019).

	

ICO. What Is Personal Data? Available online: https://ico.org.uk/media/for-organisations/documents/1549/determining_what_is_personal_data_quick_reference_guide.pdf (accessed on 1 November 2019).

	

Sweeney, M. What Is PII, Non-PII, and Personal Data? Available online: https://piwik.pro/blog/what-is-pii-personal-data/ (accessed on 1 November 2019).

	

Crabtree, A. Enabling the new economic actor: Personal data regulation and the digital economy. In Proceedings of the 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW), Berlin, Germany, 4–8 April 2016; pp. 124–129. [Google Scholar]

	

Subahi, A.; Theodorakopoulos, G. Ensuring compliance of IoT devices with their Privacy Policy Agreement. In Proceedings of the 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 6–8 August 2018; pp. 100–107. [Google Scholar]

	

Alrawi, O.; Lever, C.; Antonakakis, M.; Monrose, F. Sok: Security evaluation of home-based iot deployments. IEEE S&P 2019, 2019, 208–226. [Google Scholar]

	

Andrea, I.; Chrysostomou, C.; Hadjichristofi, G. Internet of Things: Security vulnerabilities and challenges. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 180–187. [Google Scholar]

	

Bonetto, R.; Bui, N.; Lakkundi, V.; Olivereau, A.; Serbanati, A.; Rossi, M. Secure communication for smart IoT objects: Protocol stacks, use cases and practical examples. In Proceedings of the 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco, CA, USA, 25–28 June 2012; pp. 1–7. [Google Scholar]

	

Moskvitch, K. Securing IoT: In your smart home and your connected enterprise. Eng. Technol. 2017, 12, 40–42. [Google Scholar] [CrossRef]

	

Sivanathan, A.; Sherratt, D.; Gharakheili, H.H.; Sivaraman, V.; Vishwanath, A. Low-cost flow-based security solutions for smart-home IoT devices. In Proceedings of the 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Bangalore, India, 6–9 November 2016; pp. 1–6. [Google Scholar]

	

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]

	

Wang, D.; He, D.; Cheng, H.; Wang, P. fuzzyPSM: A new password strength meter using fuzzy probabilistic context-free grammars. In Proceedings of the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, 28 June–1 July 2016; pp. 595–606. [Google Scholar]

	

Wang, D.; Zhang, Z.; Wang, P.; Yan, J.; Huang, X. Targeted online password guessing: An underestimated threat. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1242–1254. [Google Scholar]

	

Das, A.; Bonneau, J.; Caesar, M.; Borisov, N.; Wang, X. The Tangled Web of Password Reuse. 2014, p. 7. Available online: https://www.semanticscholar.org/paper/The-Tangled-Web-of-Password-Reuse-Das-Bonneau/b085a4e0a2b2a059b59937934c615d5a52393051 (accessed on 1 November 2019).

	

Wang, H.; Lai, T.T.T.; Roy Choudhury, R. Mole: Motion leaks through smartwatch sensors. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015; pp. 155–166. [Google Scholar]

	

Das, A.K.; Pathak, P.H.; Chuah, C.N.; Mohapatra, P. Uncovering privacy leakage in ble network traffic of wearable fitness trackers. In Proceedings of the 17th International Workshop on Mobile Computing Systems and Applications, Augustine, FL, USA, 23–24 February 2016; pp. 99–104. [Google Scholar]

	

Anthi, E.; Ahmad, S.; Rana, O.; Theodorakopoulos, G.; Burnap, P. EclipseIoT: A secure and adaptive hub for the Internet of Things. Comput. Secur. 2018, 78, 477–490. [Google Scholar] [CrossRef]

	

Hale, M.L.; Ellis, D.; Gamble, R.; Waler, C.; Lin, J. Secu Wear: An open source, multi-component hardware/software platform for exploring wearable security. In Proceedings of the 2015 IEEE International Conference on Mobile Services, Coimbra, Portugal, 3 June 2015; pp. 97–104. [Google Scholar]

	

Siboni, S.; Shabtai, A.; Tippenhauer, N.O.; Lee, J.; Elovici, Y. Advanced security testbed framework for wearable IoT devices. ACM Trans. Internet Technol. (TOIT) 2016, 16, 26. [Google Scholar] [CrossRef]

	

Tekeoglu, A.; Tosun, A.S. Investigating security and privacy of a cloud-based wireless IP camera: NetCam. In Proceedings of the 2015 24th International Conference on Computer Communication and Networks (ICCCN), Las Vegas, NV, USA, 3–6 August 2015; pp. 1–6. [Google Scholar]

	

West, J.; Kohno, T.; Lindsay, D.; Sechman, J. Wearfit: Security design analysis of a wearable fitness tracker. IEEE Center Secure Des. 2016. Available online: https://cybersecurity.ieee.org/blog/2016/02/17/wearfit-security-design-analysis-of-a-wearable-fitness-tracker/ (accessed on 1 November 2019).

	

Shafiq, M.Z.; Ji, L.; Liu, A.X.; Pang, J.; Wang, J. A first look at cellular machine-to-machine traffic: Large scale measurement and characterization. ACM SIGMETRICS Perform. Eval. Rev. 2012, 40, 65–76. [Google Scholar] [CrossRef]

	

Laner, M.; Svoboda, P.; Nikaein, N.; Rupp, M. Traffic models for machine type communications. In Proceedings of the ISWCS 2013 Tenth International Symposium on Wireless Communication Systems, Ilmenau, Germany, 27–30 August 2013; pp. 1–5. [Google Scholar]

	

Sivanathan, A.; Sherratt, D.; Gharakheili, H.H.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Characterizing and classifying IoT traffic in smart cities and campuses. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017; pp. 559–564. [Google Scholar]

	

Mahalle, P.N.; Prasad, N.R.; Prasad, R. Object classification based context management for identity management in internet of things. Int. J. Comput. Appl. 2013, 63, 1–6. [Google Scholar]

	

Meidan, Y.; Bohadana, M.; Shabtai, A.; Guarnizo, J.D.; Ochoa, M.; Tippenhauer, N.O.; Elovici, Y. ProfilIoT: A machine learning approach for IoT device identification based on network traffic analysis. In Proceedings of the Symposium on Applied Computing, Marrakech, Morocco, 4–6 April 2017; pp. 506–509. [Google Scholar]

	

Apthorpe, N.; Reisman, D.; Feamster, N. A smart home is no castle: Privacy vulnerabilities of encrypted iot traffic. arXiv 2017, arXiv:1705.06805. [Google Scholar]

	

Amazon Echo—Previous Generation. Available online: https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E (accessed on 1 November 2019).

	

Nest Cam Indoor|This Is What a Home Security Camera Should Be|Nest. Available online: https://nest.com/cameras/nest-cam-indoor/overview/ (accessed on 1 November 2019).

	

Belkin|iPhone, Apple Watch, iPad, Kindle, Samsung & Networking Accessories. Available online: http://www.belkin.com/us/ (accessed on 1 November 2019).

	

Trackers, B.S. Hello Sense. Available online: https://sleeptrackers.io/sense/ (accessed on 1 November 2019).

	

Siby, S.; Maiti, R.R.; Tippenhauer, N. Iotscanner: Detecting and classifying privacy threats in iot neighborhoods. arXiv 2017, arXiv:1701.05007. [Google Scholar]

	

Apthorpe, N.; Reisman, D.; Sundaresan, S.; Narayanan, A.; Feamster, N. Spying on the smart home: Privacy attacks and defenses on encrypted iot traffic. arXiv 2017, arXiv:1708.05044. [Google Scholar]

	

Wireshark Chapter 1. Introduction. Available online: https://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html (accessed on 1 November 2019).

	

ARP Spoofing. Available online: https://www.veracode.com/security/arp-spoofing (accessed on 1 November 2019).

	

Configuring an Android Device to Work Wi..”., PortSwigger Web Security. Available online: https://support.portswigger.net/customer/portal/articles/1841101-configuring-an-android-device-to-work-with-burp (accessed on 1 November 2019).

	

Merzdovnik, G.; Buhov, D.; Voyiatzis, A.G.; Weippl, E.R. Notary-Assisted Certificate Pinning for Improved Security of Android Apps. In Proceedings of the 2016 11th International Conference on Availability, Reliability and Security (ARES), Salzburg, Austria, 31 August–2 September 2016; pp. 365–371. [Google Scholar]

	

Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 2015, 18, 1153–1176. [Google Scholar] [CrossRef]

	

sklearn.ensemble.RandomForestClassifier—Scikit-Learn 0.21.1 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 1 November 2019).

[image: Sensors 19 04777 g001 550]

Figure 1. Methods of IoT communication with its cloud to transfer data.

Figure 1. Methods of IoT communication with its cloud to transfer data.

[image: Sensors 19 04777 g001]

[image: Sensors 19 04777 g002 550]

Figure 2. IoT-app privacy inspector tool overview.

Figure 2. IoT-app privacy inspector tool overview.

[image: Sensors 19 04777 g002]

[image: Sensors 19 04777 g003 550]

Figure 3. IoT smart-home testbed network architecture.

Figure 3. IoT smart-home testbed network architecture.

[image: Sensors 19 04777 g003]

[image: Sensors 19 04777 g004 550]

Figure 4. Overview of the steps used to collect the encrypted TLS traffic and the encrypted one of the IoT device to establish the ground truth of the IoT-app privacy inspector tool.

Figure 4. Overview of the steps used to collect the encrypted TLS traffic and the encrypted one of the IoT device to establish the ground truth of the IoT-app privacy inspector tool.

[image: Sensors 19 04777 g004]

[image: Sensors 19 04777 g005 550]

Figure 5. Normal traffic: All traffic goes through the router.

Figure 5. Normal traffic: All traffic goes through the router.

[image: Sensors 19 04777 g005]

[image: Sensors 19 04777 g006 550]

Figure 6. Spoofed traffic: IoT-app traffic is redirected through the attacker.

Figure 6. Spoofed traffic: IoT-app traffic is redirected through the attacker.

[image: Sensors 19 04777 g006]

[image: Sensors 19 04777 g007 550]

Figure 7. TP-link smart-plug domain names that KASA app communicates with. Each domain responsible for specific methods.

Figure 7. TP-link smart-plug domain names that KASA app communicates with. Each domain responsible for specific methods.

[image: Sensors 19 04777 g007]

[image: Sensors 19 04777 g008 550]

Figure 8. Screen shot from Burp Suite showing user’s exact location (latitude and longitude).

Figure 8. Screen shot from Burp Suite showing user’s exact location (latitude and longitude).

[image: Sensors 19 04777 g008]

[image: Sensors 19 04777 g009 550]

Figure 9. User logout interaction from KASA in decrypted format.

Figure 9. User logout interaction from KASA in decrypted format.

[image: Sensors 19 04777 g009]

[image: Sensors 19 04777 g010 550]

Figure 10. Equivalent user logout interaction from KASA in encrypted format.

Figure 10. Equivalent user logout interaction from KASA in encrypted format.

[image: Sensors 19 04777 g010]

[image: Sensors 19 04777 g011 550]

Figure 11. Overview architecture of the multi-class classifier.

Figure 11. Overview architecture of the multi-class classifier.

[image: Sensors 19 04777 g011]

[image: Sensors 19 04777 g012 550]

Figure 12. An overview of IoT-app privacy inspector tool for IoT-app user interaction type identification; identification of sensitive packet, and content type of sensitive packet identification.

Figure 12. An overview of IoT-app privacy inspector tool for IoT-app user interaction type identification; identification of sensitive packet, and content type of sensitive packet identification.

[image: Sensors 19 04777 g012]

[image: Table]

Table 1. Type of IoT devices used in our experiments.

Table 1. Type of IoT devices used in our experiments.

	Type of Device
	Model Type
	IoT Device Manufacturer
	Type of IoT-App (iOS, Android)

	Smart plug
	HS110
	TP-Link
	KASA version 2.11.0

	Smart camera
	NC200
	TP-Link
	TpCamera version 3.1.12

	NetCam HD
	F7D7601fc
	Belkin
	NetCam version 2.0.4

	Smart lamp
	B22
	Lifx
	LIFX version 3.13.0

[image: Table]

Table 2. User login interaction with KASA app that controls TP-link smart plug. Methods are always invoked by the app in the order shown—top to bottom (“retrivelocation” is misspelled such as this in the packet contents). The sizes are of decrypted packets.

Table 2. User login interaction with KASA app that controls TP-link smart plug. Methods are always invoked by the app in the order shown—top to bottom (“retrivelocation” is misspelled such as this in the packet contents). The sizes are of decrypted packets.

	

	
Domain Name

	
Methods

	
Request Packets Size in Bytes

	
Response Packet Size in Bytes

	
Login Action

	
eu-wap.tplinkcloud.com

	
login

	
548

	
318

	
api.tplinkra.com

	
auth token

	
315

	
278

	
eu-wap.tplinkcloud.com

	
postPushInfo

	
692

	
178

	
api.tplinkra.com

	
helloIotCloud

	
1031

	
435

	
api.tplinkra.com

	
listRules

	
700

	
566

	
eu-wap.tplinkcloud.com

	
getDeviceList

	
415

	
1143

	
api.tplinkra.com

	
listScenes

	
768

	
568

	
api.tplinkra.com

	
isLinked

	
662

	
817

	
eu-wap.tplinkcloud.com

	
passthrough

	
520

	
873

	
api.tplinkra.com

	
retriveLocation

	
662

	
574

[image: Table]

Table 3. User logout interaction with KASA app that controls TP-link smart plug. Methods are always invoked by the app in the order shown—top to bottom. The sizes are of decrypted packets.

Table 3. User logout interaction with KASA app that controls TP-link smart plug. Methods are always invoked by the app in the order shown—top to bottom. The sizes are of decrypted packets.

	

	
Domain Name

	
Methods

	
Request Packets Size in Bytes

	
Response Packet Size in Bytes

	
Logout Action

	
eu-wap.tplinkcloud.com

	
logout

	
521

	
178

	
api.tplinkra.com

	
helloIotCloud

	
888

	
427

	
api.tplinkra.com

	
isLinked

	
542

	
772

	
api.tplinkra.com

	
retriveLocation

	
542

	
380

	
eu-wap.tplinkcloud.com

	
helloCloud

	
546

	
204

[image: Table]

Table 4. The results of all selected classifiers based on the most common measurement; precision, recall, and F-mean.

Table 4. The results of all selected classifiers based on the most common measurement; precision, recall, and F-mean.

	

	
Packet Sensitivity Type Classifier

	
Packet Content Type Classifier

	
Interaction Type Classifier

	
Classifier

	
P

	
R

	
F

	
Time

	
P

	
R

	
F

	
Time

	
P

	
R

	
F

	
Time

	
Decision Tree

	
97.1

	
97.1

	
97.1

	
0.093

	
97.1

	
97.1

	
97.1

	
0.088

	
97.1

	
97.1

	
97.1

	
0.072

	
Naive Bayes

	
74.0

	
42.1

	
38.8

	
0.043

	
65.3

	
42.05

	
37.6

	
0.035

	
61

	
51.1

	
49.1

	
0.041

	
K Nearest Neighbor

	
98.5

	
98.5

	
98.5

	
0.161

	
98.5

	
98.5

	
98.5

	
0.159

	
97.7

	
97.7

	
97.7

	
0.189

	
Multi-Layer Perception

	
54.2

	
73.6

	
62.4

	
0.873

	
1

	
71.4

	
83.3

	
1.206

	
52.7

	
72.6

	
84.1

	
1.501

	
Support Vector Machine

	
96.1

	
95.4

	
95.6

	
125.165

	
95.7

	
94.8

	
95

	
179.739

	
93.5

	
92.9

	
93.5

	
166.316

	
Random Forest

	
99.8

	
99.8

	
99.8

	
0.35

	
99.8

	
99.8

	
99.8

	
0.35

	
99.4

	
99.4

	
99.4

	
0.35

[image: Table]

Table 5. Confusion matrix of the first classifier which is responsible to infer the user interaction. Rows show the actual class of a repetition and columns show the classifier’s prediction.

Table 5. Confusion matrix of the first classifier which is responsible to infer the user interaction. Rows show the actual class of a repetition and columns show the classifier’s prediction.

	

	

	
Predicted Labels

	

	

	
Delete

	
Login

	
Logout

	
Modify Password

	
No-Action

	
True Labels

	
Delete

	
281

	
0

	
2

	
0

	
1

	
Login

	
0

	
655

	
7

	
0

	
2

	
Logout

	
0

	
0

	
207

	
0

	
6

	
Modify Password

	
0

	
0

	
1

	
233

	
2

	
No-action

	
9

	
0

	
3

	
0

	
3694

[image: Table]

Table 6. Confusion matrix of the second classifier which is responsible to infer the sensitivity level of the packet. Rows show the actual class of a repetition and columns show the classifier’s prediction.

Table 6. Confusion matrix of the second classifier which is responsible to infer the sensitivity level of the packet. Rows show the actual class of a repetition and columns show the classifier’s prediction.

	

	

	
Predicted Labels

	

	

	
Non

	
Non-Sensitive

	
Sensitive

	
True Labels

	
Non

	
3693

	
6

	
4

	
Non-sensitive

	
5

	
699

	
0

	
Sensitive

	
0

	
0

	
696

[image: Table]

Table 7. Confusion matrix of the third classifier which is responsible to infer the type of the sensitive packet. Rows show the actual class of a repetition and columns show the classifier’s prediction.

Table 7. Confusion matrix of the third classifier which is responsible to infer the type of the sensitive packet. Rows show the actual class of a repetition and columns show the classifier’s prediction.

	

	

	
Predicted Labels

	

	

	
Non

	
Credential

	
Location

	
Location + Credential

	
User Name

	
True Labels

	
Non

	
3643

	
1

	
0

	
0

	
6

	
Credential

	
0

	
457

	
0

	
0

	
1

	
Location

	
1

	
0

	
126

	
0

	
0

	
Location + Credential

	
0

	
0

	
0

	
92

	
0

	
User name

	
6

	
0

	
1

	
0

	
769

[image: Table]

Table 8. The accuracy of the training data and the testing data among the three classifiers.

Table 8. The accuracy of the training data and the testing data among the three classifiers.

	
	Packet Sensitivity Type Classifier
	Packet Content Type Classifier
	Interaction Type Classifier

	Train accuracy
	99.9%
	99.9%
	99.7%

	Test accuracy
	99.8%
	99.8%
	99.4%

[image: Table]

Table 9. Summary of the IoT-app privacy inspector tool results on the IoT apps interactions.

Table 9. Summary of the IoT-app privacy inspector tool results on the IoT apps interactions.

	

	
Sensitivity Level of the Packet

	
Content Type of the Sensitive Packet

	

	
User Interaction

	
Sensitive PII

	
Non-Sensitive PII

	
User Credentials

	
User Location

	
Username or Email Address

	
KASA app

	
Login

	
✓

	
×

	
✓

	
✓

	
×

	
Logout

	
×

	
✓

	
×

	
×

	
✓

	
Delete

	
×

	
✓

	
×

	
×

	
✓

	
Change Password

	
✓

	
✓

	
✓

	
×

	
✓

	
TpCam app

	
Login

	
✓

	
×

	
✓

	
✓

	
×

	
Logout

	
×

	
✓

	
×

	
×

	
✓

	
Delete

	
×

	
✓

	
×

	
✓

	
✓

	
Change Password

	
✓

	
✓

	
✓

	
×

	
✓

	
Netcam app

	
Login

	
✓

	
×

	
✓

	
×

	
×

	
Logout

	
×

	
×

	
×

	
×

	
×

	
Delete

	
×

	
✓

	
×

	
×

	
✓

	
Change Password

	
✓

	
×

	
✓

	
×

	
×

	
Lifx app

	
Login

	
✓

	
✓

	
✓

	
×

	
✓

	
Logout

	
×

	
✓

	
×

	
×

	
✓

	
Delete

	
×

	
✓

	
×

	
×

	
✓

	
Change Password

	
✓

	
✓

	
✓

	
×

	
✓

[image: Table]

Table 10. Comparison between the IoT apps user interactions to find out which IoT apps send excessive sensitive PII about their user.

Table 10. Comparison between the IoT apps user interactions to find out which IoT apps send excessive sensitive PII about their user.

	
IoT Apps

	
User Interactions

	
Sensitive PII

	
Non-Sensitive PII

	
KASA app

	
Login

	
✓

	
×

	
Logout

	
×

	
✓

	
Delete

	
×

	
✓

	
Change Password

	
✓

	
✓

	
TpCam app

	
Login

	
✓

	
×

	
Logout

	
×

	
✓

	
Delete

	
×

	
✓

	
Change Password

	
✓

	
✓

	
NetCam app

	
Login

	
✓

	
×

	
Logout

	
×

	
×

	
Delete

	
×

	
✓

	
Change Password

	
✓

	
×

	
Lifx app

	
Login

	
✓

	
✓

	
Logout

	
×

	
✓

	
Delete

	
×

	
✓

	
Change Password

	
✓

	
✓

[image: Table]

Table 11. The Accuracy results of IoT-app privacy inspector of inferring user interaction, packet level of sensitivity, and packet content type.

Table 11. The Accuracy results of IoT-app privacy inspector of inferring user interaction, packet level of sensitivity, and packet content type.

	
IoT-App Privacy Inspector

	
Accuracy

	
F1 Score

	
User Interaction Classifier

	
Login

	
99.4

	
0.994

	
Logout

	
Delete

	
Change Password

	
Packet Level of Sensitivity Classifier

	
Sensitive PII

	
99.8

	
0.998

	
Non-Sensitive PII

	
Packet Content Type Classifier

	
User Credential

	
99.8

	
0.998

	
User Location

	
User name or Password

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file4.png
Lt — d -

NetCam app cloud servers

1-BventsAliasname

F-Firmware-do-upsrade

— 1- Task-register

-DeleteTrue

8- Cameralist

media/file26.jpg
Connect the IoT devices to the home local
network

Install the recommended loT-app of each loT
device ina smartphone or tablet

Adjust the smartphone or the tablet proxy.
Setting to match the Burp Sulte software

Perform different user interaction with each loT.

device via ts app, while collecting their traffic
from both Burb Suite and Wireshark

Store the traffic data in burp file format and
peap file format

Analyze the traffic, extract the feature, label the
traffic, and built the data set

‘Apply (train and test) the classifierto the pcap
file only.

media/file8.jpg
Packrtsnenbites
RTEEE T

LoginActon Burpsiite

sremes orepnz

]

Mevots e acion

[R———

media/file27.png
Connect the loT devices to the home local
network

Install the recommended loT-app of each loT
device in a smartphone or tablet

Adjust the smartphone or the tablet proxy
setting to match the Burp Suite software

Perform different user interaction with each loT
device via its app, while collecting their traffic
from both Burb Suite and Wireshark

Store the traffic data in burp file format and
pcap file format

Analyze the traffic, extract the feature, label the
traffic, and built the data set

Apply (train and test) the classifier to the pcap
file only

media/file43.png
Capture the loT traffic

Save the collected traffic in peap file

Extract the features

Implement the loT-app privacy inspector tool

Precant the results and recommendations

media/file34.jpg

media/file13.png
1,400
1,200

1,000

Packet size in byte

Change Password - Burp

@request g response

& 1143
® 73
& 700 ® oo ® G532
® G0
& 517
415 & 132 & 192 #3192 415
& 1330
* 171 205 & 173
aod iy Dlou AP aes weord petiDewic olist listRu bes listSoenes L inked login postPushiinto wetiDewic st

Metho name peraction

315
278

anrthen B i token

& 1031

& 435

& 373

s through

media/file31.png
1- Smartphone

Traffic redirection

Attacker

2-1o’l Device

Tp-lnk Smart
LB Phag

media/file39.png
Packet sizein byte

Logout action - Wireshark

® request-len ® response-len

® 1,036
® G669
@ 522
® 273
losout hellgiotCloud

® 3867
& 590 & 590
& 475
izLinked retrivelocation

Method name per action

® 694

helloCloud

media/file12.jpg
p——

media/file3.jpg

media/file18.jpg
Packatsizeinbyte
888888

[P R —

Delete IoT device - Wireshark

oraen o repons

.
o
o o = o
.
I T R —

Maihod nama aracson

[

media/file9.png
8

-

;

Packet size inbytes
- =258 88

Login Action-Burp suite

@reques g response

® 1143
& 1031
® 817
& 7&d
® Gaz L ® &il
® 5438 & 56k & 56
— 15 ® 433 $§ 415
® 118 . 278
w178
login auth toden post Pushinfo helolotCloud jostRubes getDevicelist i tS0e nes sLinked

Methods name per action

& 373

@ 520

passthrough

& G63
® 7

ne trie e Location

media/file42.jpg
Capture the loT traffic

Save the collected traffic in peap file

Extract the features

Implement the loT-app privacy inspector tool

Present the results and recommendations

media/file14.jpg

media/file35.png
Applications laces 7 burp-StartBurp « Sat 13 en1 =) [k -

Burp Suite Professional v1.7.23 - tp-link-BrealSSL.burp - licensed to Aecom [single user license] @ ® O

Burp Intruder Repeater Window Help

Target] Proxy | Spider | Scanner T Intruder T Repeater TSequencer T Decoder TComparer TEx‘tender T Project options TUser options | Alerts

[Intercept T HTTP history T WebSockets history T Options]

History logging of out-of-scope items is disabled

| Filter: Showing all items ?
| # &/ Host | Method | URL | Params | Edited | Status | Length | MIME type | Extension | Title Comment |ssL [P Cookies
129 http://216.58.212.99 GET fogenerate_204 ()] (8] 204 102 O 216.58.212.99 1
130 https:/fwap.tplinkcloud.com POST ffappName=Kasa_Android&term... & (] 200 204 JSON ¥ 52.18.231.177 ;
£ L &
132 https:/fapi.tplinkra.com POST MNljiotfrealtimedb/auth & (0] 200 544 JSON (] 54.86.222.131
133 https:/fapi.tplinkra.com POST Mlfauth/hellolotCloud?token=30 1] L] 200 435 JSON ® 5486222131
134 https://android.clients.goo... POST fe2dm/register3 & O 200 562 text [172.217.23.486
135 https:ffwap.tplinkcloud.com POST fTtoken=30e0a33c-b99a58c5ef7c... (] (] 200 681 JSON [52.18.231.177
136 https:/fapi.tplinkra.com POST Mlfiotfsc listScene ?token . &] 200 575 JSON [54.86.222.131
137 https:/fapi.tplinkra.com POST Mlfiotfrules/fapp/r li & @ 200 573 JSON [54.86.222.131
138 https:/fapi.tplinkra.com POST Mlfauthfislinked?token=30e0a3... & (8] 200 824 JSON [54.86.222.131
139 https:/iwap.tplinkcloud.com POST f?token=30e0a33c-b99a58c5ef7c... & (8] 200 178 JSON @ 52.18.231.177
140 httpsﬂandroid clients.goo... POST fe2dm/register3 & (] 200 410 text [172.217.23.486
_https:/feu-wap.tplinkcloud.. 7 & O & %
hH-n:- fani tnlinkra roen oDhST Iyl Fimtd fliete T+l h [] 2NN CTE 1=kl (4] CA B& w 1321 5. d
‘/k -7)
(RequestT Response]
l Raw I Headers | Hex
HTTR/1.1 200 OK A
Content-Type: text/plain;charset=UTF-8 P
Date: Sat, G8 Jul 2017 11:13:0% GMT
Server: Apache-Coyotes1.1
Content-Length: 692
Connection: Close
{"error_code":0,"result":{"responsebata": "{\"system\": {\"get_sysinfo\":{\"err_code\":0,\"sw_ver\":\"1.0.10 Build 160316
Rel.l180116\",\"hw_very" :\"1.0\", \type\" :\"I0T.SMARTPLUGSWITCHY" ,\"modely" 1\ "HS100{ UK) V", \"mac\" :\"50: C7:BF: 66:99: 2E\" ,\"deviceId\": \"SOGSCDSGSEOSDSSAI843292FQOBBBA18186#9867\" \"thd\" W5
22CBD4857687F1AETD7EESB440BF26BY ", \ " fwId\ " : \ " 9D151D31COCS1FCO4CD7AECZEZBFDO23\ ", \ "oenIdy " : \ " OF26B8A5A0266993CT96D0BFS93B84154 ", \"alias\ " 1\ "My Smart Flug\",\"dev name\":\"Wi-F
Flugh",\"icon_hashy" vy, relay_state\":0,\"on_time\":0,\"active_mode\":\"scheduley", v feature\" \"TIMVY \updatingy " 10,0\ " rssiv": -79, " led_offy":0,\['latitudey"” 51._\"1.ong1tude\"
[HaEnd
-
¥
| [l . h term 0 matches

media/file20.jpg
10T data communication:
A: transferred data between the loT device and the IoT cloud.

B: transferred data between the loT device and the loT app installed on a smart phone.
C:transferred data between the IoT app installed on a smart phone and the [oT cloud

3-10T cloud server 2-10T Device

media/file23.png
Classify Packet Sensitivity

lewel

A, P oo

Yo /
Identify the level of the
sensitive packets,
whether it is sensitive,
non-sensitive, or none
based on the packet size
and method sequence

Classify Packet content
type

If the packet is sensitive
or non-sensitive, identify
the content type e.2.
login credential, email
address, user ID... etc.

Classify user interaction
type

T
-

Identify the user interaction type
with the 10T device via its loT app
based on the content type
identification from the previous
classifier e.g. login, logout,
to/ffrom the loT app.

media/file36.jpg
Packetsizein byte:
CEEEEEEEELE

KASA logout action- Burp suite

e @ reponse

e
o osa osa
. o
o
g [e— - [——

Methodname pesacson

o208

netecions

media/file15.png
Packe size in Inyte

1,400

1200

1,000

Change Password - Wireshark

@request g response

® 316
& 343 & 310
& 743
® Gos
® i3

® 510 ® 510 & 510

® 432
MaodifyCloud Password getDevicelist istRules s tSoenes isLinked login

Method name per action

& 340

® 273

past Pushinfo

® 1246
& 1173
® 671
® 563
463
429
getDevicelist authenticate token helialotCloud

& Gaod

passthrough

media/file19.png
Packet sizein byte

Delete 1oT device - Wireshark

® request @ responss

& 00
& =17
& =5 & ==
& Ti= & Ta= I m $ = ®
® a5l
® 37 L
& 72
unbindDevice deviceRemoved getDevice listicenes i=Linked retrievelocation listRules

Method name per action

media/file28.jpg

media/file6.png
| 1-identity [
2-forgot-password
1-User_resource_and_campaigns 3- reset-password

media/file32.jpg
J1-HelloloT cloud
- is linked

3-retrieve location

b-getdevice
b- unbindDevice

nav.xhtml

 sensors-19-04777

 		
 sensors-19-04777

media/file11.png
1,400
o 1200

o

Packet sze in:w
28 88

[ud
o B

Login Action- Wireshark

erequest-len @ response-len

g ® 1238
® 316
340 ® 343
® 536 & 675 & 677
i & 536 & 563
& 413 419
& 273
=i n au th toden plC.I'Trl ZnanTe o oot U s tHU b pe il e wsce st = mnoeEs
' y Pushinfo heloistCloud fis thu b getDevicelist ListSe

Method name per action

® 925
& 3la

slhinked

& 3GH

& 313
® GG & Ga3

passthrough retrivelocation

media/file24.jpg
Router

>

N

Android smartphone

13

loT devices

media/file29.png
Y

N |

2=101 Device

Tp-Ink Sman
Plug

media/file41.png
loT-interactionType.csv

loT-Pll.csy

laT-user-Plitype.csv

r_-------------.ﬁ

First classifier, to infer
user interaction

second classifier, to infer

ievel of sensitivity

Third classifier, to infer

Pl type

Logn

Logaut

Changa Passward

Delele

v¥ vy

M

Sensitive

MWn-sensitive

MWin

LFser credentials

Liser lncntian

LFsernarme

MWizn

media/file2.png
ToCam app cloud servers

1-Login
2- Post pushinfo 1- Getupgradelist

3-Get device lis 2- modifyPassword

3- requestRelyService

-Get intl fw versions

B-getApplonfiginfo
O-cetAccountinfo

10-Logout
11-unbinedDevice
12-Getdevice list

media/file37.png
Packetsizein byte

100d

KASA logout action - Burp suite

® request ® response

& 288
® 772
& 521 & 542 & 542 & G545
& 427 & 380
® 178 8204
logout hellolotCloud izlinked retrivelocation helloCloud

Method name per action

media/file10.jpg
Login Action- Wireshark

erequestien @ responseen

0 o o oo
oo oon oo P
O oo
8

media/file5.jpg

media/file40.jpg
Random Forest multk class
dassifier

Logn

Lomout

First cassifier, to infer p—

Senstie

second classifer, o infer

Tevelof sensitvty Nonsonlin

arecedentns

Uierocton

media/file33.png
L
A

SA app cloud servers

1-HelloloT cloud
2- 15 linked
3-retrieve location

1-passthrough

b- getdevice
b~ unbindDevice

media/file1.jpg
fi-Login
Jo- Post pushinfo
bs-Get device lix

-Subscribemsg

-Passtivogh
Get device config infol
-Getintl fw versions

E-getAppConfiginfo
getAccountinfo

- getMyList
updateinfo

media/file16.jpg
Packetsizeinbyte

=8 8888

1

Delete loT device - Burp

o reqes @ reponse

[T
.
LIRS R PR T
e
o
onwia tveont s Tebma biem ratenton i

Method name psacson

media/file38.jpg
Packetsieinbye

Logout action- Wireshark

reemion +reponseien
.o
.
e om0 .o
e .o
o
[e— ke f——

Mathod name paracson

[

media/file0.png

media/file22.jpg
("

AT
AP

ety h el
st ks,
oot oot
bodonth et s

[r—

e et

ecomentiees
logn et e
s, 0. e

[E—

sty e ercn e
ot conent e
ot o he e
e g, g,
ettt oo

media/file17.png
Packetsizein byte

1,000

& 71
® -2
$» 23

® 171

unbindCevice deviceRemoved

Delete loT device - Burp

L FE’EILESt . rezponze

& =z
& T
@ G & s & &5 tEEE.
e
§ 213
getDevice listcenes isLinked retrievelocation

Method name per action

.J'Ell
B2

listRules

media/file30.jpg
2-10T Device
1- W-ﬁ—v- g
otk Smar
s

- MM‘!

Attacker

media/file25.png
Internet

Kali Linusx

Android smartphone
rr’é I'll-lJ_':-

loT devices

media/file21.png
loT data communication:

A: transferred data between the loT device and the loT cloud.

B: transferred data between the loT device and the loT app installed on a smart phone.
C: transferred data between the loT app installed on a smart phone and the loT cloud

1- Smartphone

P

3- loT cloud server

2-101 Device

Tp-link Smart
'.I Phlg

