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Abstract: This paper proposes a methane sensor based on localized surface plasmon resonance (LSPR)
of a hexagonal periodic gold nanoring array. The effects of structural parameters on the extinction
spectrum and refractive index (RI) sensitivity are analyzed to obtain optimal parameters. In particular,
the RI sensitivity can reach 550.08 nm/RIU through improvement of the sensor structure, which is an
increase of 17.4% over the original value. After coating a methane-sensitive membrane on the inner
and outer surfaces of the gold rings, the methane concentration can be accurately measured with a
gas sensitivity of −1.02 nm/%. The proposed method is also applicable to quantitative analyses of
components concentration and qualitative analyses of gas composition.

Keywords: localized surface plasmon resonance; methane sensor; nanorings array

1. Introduction

Surface plasmon polariton (SPP) [1–5] is a surface free-electron oscillation existing at the interface
between two materials with a dielectric constant of the opposite sign. Such an evanescent wave
propagates along a metal surface through free oscillating electrons that interact with photons. The
localized surface plasmon resonance (LSPR) behavior [6–9] is a free-electron oscillation that is usually
confined to metal nanostructures. The essence of the LSPR phenomenon is that the incident light wave
transfers into the surface plasmon resonance in the form of an evanescent wave. In comparison to
an SPR-based sensor, the LSPR-sensing device can be simpler. High-precision LSPR measurements
can be achieved by the use of a miniature light source and a spectrometer. Recently, researchers
have conducted in-depth research on different LSPR-sensing structures, including nanospheres [10],
nanorings [11,12], and nanoroads [13]. Most of these structures are composed of periodic rectangular
arrays. LSPR is also used in other fields [14–16]. In 2018, Wang et al. designed a periodic gold nanoring
array for refractive index (RI) measurements with a sensitivity of 544 nm/RIU [17]. In the same
year, Viswanath et al. focused on the influence of the array sequence of gold nanopores on sensing
performance [18]. The RI sensitivity was found to be about 470.49 nm/RIU. Relatively speaking, the
coupling strength of hexagonal periodic gold nanorings is larger than that of other sensor structures
with much simpler fabrication processes. This provides us with a new means for solving some difficult
problem related to the measurement of gas by optical sensing.

The reported optical gas sensors are mainly based on the optical absorption spectroscopy
technology, and the greatest challenge lies in enhancing the gas sensitivity and simplifying the sensor
structure. In 2018, Liu et al. designed a simpler PCF-SPR structure for simultaneous measurements
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of hydrogen and methane with high sensitivity [19]. However, the coating process and gas diffusion
in the PCF structure is relatively difficult, which in turn greatly affects the gas detection efficiency.
Therefore, the combined use of LSPR and gas-sensitive films is proposed to solve this problem. In
this study, we adopted an improved hexagon gold ring array in order to enhance the refractive index
sensitivity and response speed. In 2016, J. Yang et al. studied the response speed of methane-sensitive
films [20]. When the methane-sensitive-film thickness is 240 nm, the response time is approximately
60 s. Meanwhile, the desorption time following spectral detection is about 180 s. In our simulations,
and with the coating thickness set at t = 8 nm, the response speed could have been faster. This is
because the resonance enhancement was influenced not only by the dipole resonance of the single
nanoring, but also by the coupling between different nanorings. Finally, the refractive index sensitivity
reached a maximum of 550.08 nm/RIU, which was a 17.4% increase from the original value, and the
methane gas sensitivity reached −1.02 nm/%. In contrast to reported gas sensors [21–23], the coating
process was simpler, and the sensor structure was conducive to an enhancement in the gas sensitivity
for rapid concentration measurements.

2. Sensing Principles and Model Optimization

The incident light excites LSPR when the wave vector condition is satisfied, and the resonance
position is determined by the geometry, size, and surrounding medium of the nanoparticles. Equation (1)
represents the dispersion relationship of the LSPR, where l is the depth of penetration, and ε1 and ε2

are the dielectric constants of the metal and the medium, respectively. The resonance frequency is
determined by Equation (2), where ωp is the angular frequency of the surface plasmons. The extinction
peak of LSPR depends on the dielectric environment around the particle, and Equation (3) describes
the frequency-dependent analytical form of the dielectric constant ε1. This form is based on the widely
adopted Drude model, where γ is the damping coefficient of the material. In visible or near-infrared
wavelengths, Equation (3) can be written as Equation (4) because γ

〈〈
ωp . The resonance is generated

at ε1 = 2εm, and Equations (5) and (6) denote the resonance frequency, ωmax, and the resonance
wavelength, λmax, respectively. In these equations, εm is the surrounding dielectric constant, and
εm = n2

m, λp is the isochronous elementary frequency of the corresponding bulk metal. Therefore,
the LSPR peak wavelength and the refractive index can be approximately regarded as linear in the
optical band.

ε1

ε2
+

l + 1
l

= 0 (1)
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√
l
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ω2

p
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ω
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ωmax =
ωp

√
2εm + 1

(5)
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√
2n2
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Figure 1a shows that the LSPR sensor structure (Structure A) consists of a hexagonal periodic
gold nanoring array that is located above the quartz substrate. The gold nanoring is prepared by
photolithographic-patterning electrodeposition, and the quartz substrate is only used as a preparation
carrier for the gold nanoring. The nanoring arrays exhibit periodic distribution in both the x- and the
y- directions. Figure 1b,c indicate the main parameters of the sensor structure, including the inner
radius r1, the outer radius r2, the lattice constant a, and the height h. In the simulation model, the
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background index is set at 1, while the mesh accuracy is set at 2 by default. For boundary conditions,
we selected a periodic mode in x- and y-directions and a PML mode in z-direction. The source shape
was a plane wave, and the plane wave type was BFAST. The incident light was perpendicular to the
nano-array and is indicated by the red arrows in Figure 1a. The transmittance T and reflectance R
were obtained through wavelength scanning and intensity detection. Then, the extinction coefficient
E(λ) = 1− T(λ) −R(λ) was calculated. The sensing characteristics were evaluated by analyzing the
resonant peak-shift in the extinction spectra in relation to the background refractive index variation
under different parameters.
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Figure 1. Structure of the gold nanoring array: (a) 3D view, (b) top view, and (c) side view. 
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with a step size of 10 nm. Since the electric field between different gold rings can be negligible when 
the period is a  = 400 nm, the resonance was caused by the LSPR of single nanorings. As shown in 
Table 1, the resonance peak, full width at half maximum (FWHM), and extinction rate for different 
values of the parameters were obtained. The extinction rate can be obtained by the ratio of extinction 
to incident light. Obviously, when a  = 320 nm, h  = 150 nm, and d  = 40 nm, the extinction rate 
can reach a maximum of 97.2%, while FWHM is only 64 nm. High intensity and narrow linewidth 
mean that such LSPR sensors have higher wavelength resolution and sensitivity. However, it was 
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displacement of the coupling peak in the unit refractive index. The background RI changed from 1.34 
to 1.37 with a step size of 0.01 [24]. 
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Figure 1. Structure of the gold nanoring array: (a) 3D view, (b) top view, and (c) side view.

First, the effects of thickness, height, and period on the extinction spectrum were analyzed. In
the analysis of the influence of thickness, the radius of the outer ring varied from 110 nm to 150 nm
with a step size of 10 nm. Since the electric field between different gold rings can be negligible when
the period is a = 400 nm, the resonance was caused by the LSPR of single nanorings. As shown in
Table 1, the resonance peak, full width at half maximum (FWHM), and extinction rate for different
values of the parameters were obtained. The extinction rate can be obtained by the ratio of extinction
to incident light. Obviously, when a = 320 nm, h = 150 nm, and d = 40 nm, the extinction rate can reach
a maximum of 97.2%, while FWHM is only 64 nm. High intensity and narrow linewidth mean that
such LSPR sensors have higher wavelength resolution and sensitivity. However, it was still necessary
to investigate the influence of each parameter on RI sensitivity to obtain the optimal combination of
parameters. Here, the refractive index sensitivity can be obtained by analyzing the displacement of the
coupling peak in the unit refractive index. The background RI changed from 1.34 to 1.37 with a step
size of 0.01 [24].

Table 1. The resonance peak, full width at half maximum (FWHM), and extinction rate for different
values of the parameters d (thicknesses), a (period), h (height).

d [nm] a [nm] h [nm] Resonance
Peak [nm]

Full Width at Half
Maximum (FWHM) [nm]

Extinction
Ratio %

20 400 160 760 87 83.1
30 400 160 731 80 80.5
40 400 160 737 72 80.2
50 400 160 743 79 81.9
40 310 160 778 88 87.2
40 320 160 772 73 89.2
40 330 160 763 76 93.7
40 340 160 731 80 90
40 320 140 734 78 92.9
40 320 150 753 64 97.2
40 320 160 772 73 87.2
40 320 170 802 76 74
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Figure 2 shows the extinction spectra for partial thicknesses d under different background refractive
indices. The influence of height h and period a was also analyzed by the same method, which can
be seen in Figures 3 and 4. There was a tendency for double formants when h > 170 nm. This is
because gold rings may have different couplings at different heights. As the background refractive
index increases, the resonance peak will have a red shift. Based on Figures 2–4, Figure 5 shows the RI
sensitivity for different values of the parameters. Obviously, the RI sensitivity first increased and then
decreased with the increase of the thickness, and the maximum RI sensitivity was obtained at d = 40 nm.
Moreover, the RI sensitivity decreased as the period a increased. We can therefore draw the conclusion
that smaller period and larger height are beneficial to the enhancement of RI sensitivity. That being
said, we considered various factors to avoid the double-peak phenomenon when h > 170 nm, obtaining
the results listed in Table 2. These results are generally the same as those of the analysis in the previous
section, with the RI sensitivity up to 530.4 nm/RIU when selecting d = 40 nm, a = 300 nm, h = 160 nm.
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Figure 2. The effect of gold nanoring thickness (t) on the extinction spectrum under different refractive 
indices (RI): (a) d  = 20 nm, (b) d  = 30 nm, and (c) d  = 40 nm. 
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Figure 3. The effect of gold nanoring height (h) on the extinction spectrum under different refractive 
indices: (a) h  = 130 nm, (b) h  = 170 nm, and (c) h  = 180 nm. 

Figure 2. The effect of gold nanoring thickness (t) on the extinction spectrum under different refractive
indices (RI): (a) d = 20 nm, (b) d = 30 nm, and (c) d = 40 nm.
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Figure 3. The effect of gold nanoring height (h) on the extinction spectrum under different refractive
indices: (a) h = 130 nm, (b) h = 170 nm, and (c) h = 180 nm.

Figure 4. The effect of gold nanoring period (a) on the extinction spectrum under different refractive
indices: (a) a = 300 nm, (b) a = 320 nm and (c) a = 340 nm.



Sensors 2019, 19, 4803 5 of 11

Sensors 2019, 19, x FOR PEER REVIEW 5 of 11 

 

0.95 1.00 1.05 1.10

0.2

0.4

0.6

0.8

0.85 0.90 0.95 1.00
0.0

0.2

0.4

0.6

0.8

0.80 0.85 0.90 0.95
0.0

0.2

0.4

0.6

0.8

 

 

 
Ex

tin
ct

io
n(

a.
u.

)

 n=1.34
 n=1.35
 n=1.36
 n=1.37

(a) (b)

 

 

 

 n=1.34
 n=1.35
 n=1.36
 n=1.37

(d)

Wavelength(um)

 n=1.34
 n=1.35
 n=1.36
 n=1.37

 
Figure 4. The effect of gold nanoring period (a) on the extinction spectrum under different refractive 
indices: (a) a  = 300 nm, (b) a  = 320 nm and (c) a  = 340 nm. 

1.34 1.35 1.36 1.37

810

825

840

855

870

885

1.34 1.35 1.36 1.37

840

880

920

960

1000

1040

1080

1.34 1.35 1.36 1.37
800
840
880
920
960

1000
1040
1080
1120
1160

(a)

 

Pe
ak

 W
av

el
en

gt
h(

nm
)

Refraction index(RIU)

 d=20nm
 d=30nm
 d=40nm
 d=50nm

(b)

  

 

 h=130nm
 h=140nm
 h=150nm
 h=160nm
 h=170nm
 h=180nm

(c) a=300nm
 a=310nm
 a=320nm
 a=330nm
 a=340nm
 a=350nm

 
Figure 5. RI sensitivity for different values of (a) thickness d , (b) height h , and (c) period a . 

Table 2. RI sensitivity of different parameters at d = 40 nm. 

Group Number 
Period Height Sensitivity 
a  [nm] h  [nm] [nm/RIU] 

1A  300 150 449.87 

2A  320 150 441.05 

3A  340 150 370.2 

4A  300 160 530.4 

5A  320 160 453.66 

6A  340 160 372.9 

7A  300 170 449.72 

8A  320 170 473.63 

9A  340 170 412.4 

It was also necessary to further optimize the original design. The side view of the improved 
structure is shown in Figure 6. A set of smaller gold rings with outer radius of R2 = 30 nm, inner radius 

of R1 = 10 nm, height of h = 160 nm, and center distance of 3 3p a=  (Structure B) were added into 
the previous hexagon. The main purpose was to improve the RI sensitivity by increasing the coupling 
area. The coupling between adjacent LSPRs was enhanced under SPP modulation [25]. The RI 
sensitivity for Structure B and the increase rates relative to Structure A are shown in Table 3. The 
increase rate I can be obtained by Equation (7), where ARI  and BRI  are the refractive index 
sensitivity of Structure A and B, respectively. If Structure A4 was replaced by Structure B4, its RI 
sensitivity remained the largest. Meanwhile, the RI sensitivity had the largest growth rate when the 
structure changed from A1 to B1. Obviously, the increasing trend of RI sensitivity was basically the 
same, and this optimization method was effective for sensitivity enhancement. 

Figure 5. RI sensitivity for different values of (a) thickness d, (b) height h, and (c) period a.

Table 2. RI sensitivity of different parameters at d = 40 nm.

Group Number
Period Height Sensitivity

a h [nm/RIU]

A1 300 150 449.87
A2 320 150 441.05
A3 340 150 370.2
A4 300 160 530.4
A5 320 160 453.66
A6 340 160 372.9
A7 300 170 449.72
A8 320 170 473.63
A9 340 170 412.4

It was also necessary to further optimize the original design. The side view of the improved
structure is shown in Figure 6. A set of smaller gold rings with outer radius of R2 = 30 nm, inner
radius of R1 = 10 nm, height of h = 160 nm, and center distance of p =

√
3/3a (Structure B) were added

into the previous hexagon. The main purpose was to improve the RI sensitivity by increasing the
coupling area. The coupling between adjacent LSPRs was enhanced under SPP modulation [25]. The
RI sensitivity for Structure B and the increase rates relative to Structure A are shown in Table 3. The
increase rate I can be obtained by Equation (7), where RIA and RIB are the refractive index sensitivity
of Structure A and B, respectively. If Structure A4 was replaced by Structure B4, its RI sensitivity
remained the largest. Meanwhile, the RI sensitivity had the largest growth rate when the structure
changed from A1 to B1. Obviously, the increasing trend of RI sensitivity was basically the same, and
this optimization method was effective for sensitivity enhancement.

I =
RIB −RIA

RIA
(7)
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Table 3. RI sensitivity for Structure B and comparison with Structure A.

Group
Number

Period High Thickness Sensitivity Increase Rate

a h t [nm] [nm/RIU] [%]

B1 300 150 20 533.24 18.5
B2 320 150 20 509.22 15.5
B3 340 150 20 390.9 5.6
B4 300 160 20 550.08 3.7
B5 320 160 20 532.71 17.4
B6 340 160 20 398.53 6.9
B7 300 170 20 486.06 8.1
B8 320 170 20 528.6 11.6
B9 340 170 20 457.86 11

As an example, Figure 7 indicates the spectral difference between Structure A4 (d = 40 nm,
h = 160 nm, and a = 300 nm) and Structure B4 (d = 50 nm, h = 160 nm, a = 300 nm, and p =

√
3/3a,

t = 20 nm). The RI sensitivity increased from 530.4 nm/RIU to 550.08 nm/RIU. This was because the
coupling area between different gold rings increased when new, smaller gold rings were added. When
adjacent SPP modulation occurred, the coupling between adjacent LSPRs was enhanced to improve the
RI sensitivity. It can also be seen that the absorption rate of the structure decreased to some extent. This
was because the increase in density and area of the gold ring made the metal more reflective following
the addition of the hexagonal internal gold rings. In particular, such a gold-ring array structure was
very convenient for coating a gas-sensitive film onto the inner and outer surfaces of the gold rings. In
the next section, we discuss the measurement of methane concentration by the combined use of LSPR
effect and gas-sensitive reaction.
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3. Results and Discussion

The gold-ring array structure can be used not only for refractive-index sensing, but also for gas
measurement by plating a gas-sensitive film onto the inner surface. Figure 8 describes the methane
sensor structure. According to the analysis in Section 2, even though Structure B4 had the largest RI
sensitivity, the spacing between the bigger gold ring and the smaller gold ring was too small to be
coated with methane-sensitive film. Therefore, we chose Structure B5 as the sensing platform. At the
same time, the sensing performances were compared between Structure A5 and Structure B5.
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Figure 8. Methane gas sensor structure: (a) 3D view, (b) top view, and (c) side view of Structure B.

On the basis of the principle of LSPR in Section 2, the variation of gas concentration led to a change
of effective permittivity and a shift of the resonance peak. It can be seen from Figure 9 that Structure
A5 and Structure B5 exhibited strong coupling at 802 nm and 902 nm, respectively. The electric field
diagram indicates that the plasmon resonance mode was significantly enhanced at 802 nm and 902 nm.
At the same time, the asymmetry of the charge distribution on the inner and outer surfaces of the
gold rings showed that the generation of the resonance peak was due not only to the dipole resonance
but also to the mode coupling. Since a periodic-swap array has better resonance coupling than a
single-loop or non-periodic-loop array, the smaller hexagonal periodic gold ring array can enhance the
coupling surface in order to magnify the plasmon resonance effect.
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Figure 9. Extinction spectra of Structure A5 and Structure B5 after coating and electric field distribution
of these structures at 802 nm and 902 nm wavelengths.

A UV-curable fluoro-silicone (UVCFS) nano-film with the inclusion of cryptophane A was selected
as the methane-sensitive film. This film can be fabricated with a capillary dip-coating technique.
Moreover, temperature and humidity have minimal effect on methane-sensitive films [26]. The
larger gold rings were coated with the methane-sensitive film to a thickness of t1 = 8 nm, while
the concentration of the target gas was derived from the measured refractive index of the film. The
refractive index of methane-sensitive film decreased linearly with an increase in methane concentration
within the range of 0–3% [27]. Moreover, for each 1% increase in methane concentration (CCH4), the
refractive index of methane-sensitive film (ne f f ) decreased by 0.0038 within the range of 1.4478–1.4364,
as shown by Equation (8). The gas concentration could be manipulated in the device shown in Figure 10.
The methane concentration was precisely controlled by two mass-flow controllers, and the gases were
mixed in a stainless steel helical tube between the controllers and the chamber.

ne f f = 1.4478− 0.0038CCH4 (8)
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Figure 10. Device for manipulating the gas concentration.

Figure 11 shows the extinction spectra at different gas concentrations of Structure A5 and Structure
B5, respectively. With an increase of gas concentration, the resonance wavelength had a linear blue
shift; the corresponding sensitivity curves are shown in Figure 12, Table 4 lists the calculated results;
the methane sensitivities were about −1.02 nm/% for Structure B5 and −0.394 nm/% for Structure A5.
With verification of the above results, the optimization method used in the previous section was also
applicable to the methane measurement here reported. If more target gases need to be measured, it is
only necessary to change the related gas-sensitive film. The proposed method is also applicable to
quantitative analyses of components concentration and qualitative analyses of gas composition.
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Table 4. Values of the calculated results. 
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4. Conclusions 

This study proposed an LSPR sensor based on a hexagonal periodic gold ring array. The RI 
sensitivity can be substantially enhanced by optimizing the design of the sensor structure. After 
coating a methane-sensitive membrane on the inner surface of the gold rings, this simple sensor 
structure was also found to be applicable to methane measurement. The maximum RI sensitivity was 
about 550.08 nm/RIU, while the methane concentration sensitivity reached a maximum of −1.02 
nm/%. The combined use of LSPR and a gas-sensitive reaction offers a new method for of gas 
composition analysis. 
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Table 4. Values of the calculated results.

Type of Gas The Structure The Sensitivity of Gas
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CH4
B5 −1.04

159A5 −0.394

4. Conclusions

This study proposed an LSPR sensor based on a hexagonal periodic gold ring array. The RI
sensitivity can be substantially enhanced by optimizing the design of the sensor structure. After coating
a methane-sensitive membrane on the inner surface of the gold rings, this simple sensor structure
was also found to be applicable to methane measurement. The maximum RI sensitivity was about
550.08 nm/RIU, while the methane concentration sensitivity reached a maximum of −1.02 nm/%. The
combined use of LSPR and a gas-sensitive reaction offers a new method for of gas composition analysis.
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