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Abstract: Enrichment of cadmium ion (Cd2+) from the environment may lead to kidney disease and
weakened immunity in the body. Current techniques are not convenient enough to measure Cd2+

concentration in the environment due to low sensitivity and poor linear range. In this paper, a new
measurement technique is proposed using a new sensing electrode made of nano-copper-enhanced
carbon fiber. Nano-copper was deposited onto the surface of carbon fiber to enhance the
current concentration and mass transfer rate of Cd2+ during measurement, which improved the
electrochemical detection sensitivity significantly (by up to 3.7 × 108 nA/nM) and broadened the
linear range to 10~105 nM. This device provides a low-cost solution for measuring Cd2+ concentration
in the environment.

Keywords: cadmium ion; carbon fiber electrode; nano-copper; sensitivity for cadmium ion detection;
charge transferability

1. Introduction

Heavy metal ions such as cadmium ions (Cd2+) are highly toxic to human beings [1].
Cd2+ enrichment in human organs like kidney and bone can cause malfunctions in the metabolism
of calcium and urine protein, and possibly lead to osteocarcinoma and kidney failure. In addition,
cadmium is one of the major environmental pollutants in agricultural production and sanitation [2–5].

In the 1940s, serious cadmium-pollution-induced osteocarcinoma in Japan raised public awareness
of cadmium’s toxic effects for the first time [6,7]. Recently, another cadmium contamination event in
the Longjiang River caused 2.8 million fish deaths and serious threats to human health nearby [8]. If a
large number of people in an area get sick or die due to the contamination of cadmium, it is necessary
to consider whether the cadmium concentration in the area is over the acceptable limit. Accordingly,
a convenient method for measuring cadmium concentration is in great need.

To achieve this goal, many measuring methods for heavy metal ions have been developed [9].
Terahertz spectroscopy is one of the advanced techniques used. The sample is scanned by terahertz
spectroscopy using electromagnetic radiation (0.1 THz to 10 THz) and characteristic absorption peaks
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appear at corresponding frequencies in the spectrum [10–12]. However, this technique is often used to
measure caesium ions [13]. In fact, many different kinds of metal ions, including Cd2+, can cause a
detrimental effect on the human body, which is out of the detectable range of elements in terahertz
spectroscopy [14,15]. D’Auria’s group invented a protein-bounded biosensor for cadmium detection.
It achieved a high sensitivity of 2.5 µg/mL ~ 10 µg/mL and a lower detection limit of 0.5 µM. However,
its performance highly depends on the temperature and pH conditions because the sensing part is a
protein, i.e., metallothionein (MT) [16].

In recent years, electrochemical methods have become popular in detection of heavy metal ions
due to advantages such as high sensitivity, simple procedures, and short analysis time [17]. Aswathi
developed a sensor by depositing MoS2 onto a glassy carbon electrode (GCE) substrate, which achieved
a detection performance of Cd2+ of 1.0 × 10–12 mol/L [18]. However, the contact area of the GCE
(diameter = 3~5 mm) was much larger than that of the micro-electrode, which was made of carbon
fiber and had a diameter of 8 µm [19]. This issue may reduce the analyte diffusion rate of the electrodes.
As a result, GCE is not suitable for fast measurement of transient electrochemical reactions [20].

Recently, microelectrodes have been used for measuring heavy metal ions including
Cd2+ [21]. For example, a gold-based microelectrode fabricated by microelectromechanical
systems (MEMS) technology was used to measure Cd2+ in serum and achieved a sensitivity of
3.93 µA/nM [22]. A 64-microelectrode array can simultaneously measure Cd2+ and Hg2+ and reach
a sensitivity of 28 nA/nM [23]. A new hybrid nanocomposite microelectrode was composed of
one-dimensional multi-walled carbon nanotubes (MWCNTs) and two-dimensional graphene oxide
flakes. This microelectrode improved the linear calibration range for Pb2+ and Cd2+ to 0.5–30 µg/L and
the detection limits for Cd2+ to 0.61 nM (signal-to-noise ratio = 3, which is a threshold for evaluating
effectiveness of the measured signal) [24]. Nanocomposite modification on electrode may improve
the response time, sensitivity, and especially the linear sensing range and detection limit in Cd2+

measurement. Because the number of active electrons on the surface of the microelectrode could be
increased and more chances to contact analytes would be created for electrochemical reactions [25].

In this paper, a carbon fiber modified with nano-copper deposition is used for Cd2+ detection.
Optimal deposition times were tested experimentally and the results showed that a deposition time of
80 s could achieve the best sensitivity. In addition, the influence of pH was explored. The detection
limit of the microelectrode after modification with nano-copper was improved to 10 nM. The sensitivity
of the microelectrode was improved to 3.7 × 108 nA/nM. Finally, the proposed sensor was used to test
water samples from a river, lake, and running water.

2. Experimental Methods

2.1. Fabrication of the Carbon Fiber Electrode

The preparation process of carbon fiber electrode is described as follows (Figure 1A): (1) A copper
wire with a diameter of 100 µm and a length of 70 mm was inserted into a glass tube (inner diameter =

1.1 mm). (2) The glass tube was fixed by a holding device in the micromanipulator and the copper wire
was welded to the carbon fiber using an electric soldering iron. The welded copper wire and carbon
fiber were then moved to the centre of the glass tube. (3) The glass tube was calcined by the outer
flame of the alcohol lamp. When the tube centre was melted by the flame, the glass tube broke up into
two parts due to a preload force applied on its two terminals. (4) The carbon fiber was surrounded in
the glass tube and formed a carbon fiber electrode.
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Figure 1. (A) A schematic for demonstrating each step during the fabrication process of the carbon
fiber electrode. The digital images show a fabricated carbon fiber electrode and its tip shape. (B) The
current change during the deposition of the nano-copper onto the surface of the carbon fiber.

2.2. Nano-Copper Deposition and Electrochemical Measurements

To enhance the electrochemical performance (e.g., sensitivity) of the carbon fiber microelectrode,
nano-copper was deposited onto the surface of the carbon fibers by a potentiostatic method under
different reaction conditions. First, a carbon fiber was sequentially washed using acetone, isopropanol
and distilled water. After drying at 80 ◦C, the carbon fiber was cleaned using plasma for 30 s at the power
of 50 W. CuSO4 (0.3 g) was dissolved in 20 mL of supporting electrolyte (0.9% NaCl). The potentiostatic
method was applied on an electrochemical work station (Metrohm-Autolab PGSTAT302N, Metrohm
Autolab B.V., Utrecht, The Netherlands). A potential of 7.5 V was applied to the carbon fiber at room
temperature. Six groups of reaction conditions (depositing time = 40 s, 80 s, 120 s, 160 s, and 200 s)
were performed for the same type of carbon fibers, which aims to locate the proper depositing time for
the optimal sensitivity of carbon fiber. After electrodeposition, the modified carbon fibers were washed
with ethanol and distilled water in sequence to remove all loosely-bound nano-copper particles, and
then dried in a vacuum at room temperature.

During measurement, the prepared electrode was placed in an electrochemical cell containing the
analyte solution. The performance of the prepared electrochemical sensors was tested using analytical
grade chemicals including CdCl2, CuSO4, KCl, HCl, and NaOH, etc. Differential pulse voltammetry
(DPV) and electrochemical impedance spectroscopy (EIS) were carried out on the electrochemical
workstation (Metrohm-Autolab PGSTAT302N). The data were processed by using the softwares FRA
and NOVA 1.11. The three-electrode system was used in all electrochemical experiments. NaCl solution
(0.9%) was used as the supporting solution. Two groups of electrodes including carbon fiber modified
with and without nano-copper were used as the working electrode. Ag/AgCl and platinum wires were
used as the reference electrode and the counter electrode, respectively. Before each test, the surface of
the carbon fiber was washed by cyclic voltammetry (CV) scanning for 300 cycles in a 0.9% NaCl solution.
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3. Results and Discussion

3.1. Exploration of Nano-Copper Modification Conditions on the Surface of Carbon Fiber

3.1.1. Modification of Nano-Copper on Carbon Fiber

To observe the optimal performance of nano-copper, different depositing times (including 40 s,
80 s, 120 s, 160 s, and 200 s) were explored. The anode current with different depositing times were
recorded and plotted in Figure 1B, which showed that the anode current decreased from 150 µA to
20 µA at the end of each group. This indicates that the resistance decreased during the process of
electrodeposition due to the accumulation of free electrons [26].

To determine the optimal electrodeposition condition, six groups of carbon fiber electrodes
including a control group (the carbon fiber without nano-copper) were immersed in [Fe(CN)6]3− to test
their DPV response. [Fe(CN)6]3− is commonly used as a bentchmark for evaluating the performance
of electrochemical sensors. Figure 2a shows the DPV response of carbon fiber with and without
nano-copper for [Fe(CN)6]3−. The oxidation peak of the carbon fiber without nano-copper occurs at a
potential of 35 mV and its oxidation peak current is 1.96 nA. The difference between the peak current
and background current is defined as ∆I, which refers to the first point of Figure 2b. The oxidation
peak current dramatically increases to 4.1 nA for the carbon fiber with nano-copper that was deposited
under 40 s, and the oxidation peak shifts to 7 mV. When the deposition time is increased to 80 s,
the oxidation peak current changes to 4.3 nA. However, the oxidation peak current decreases with the
increase in deposition time, and its value decreases to 2.5 nA (∆I is 0.92 nA, shown in the sixth point of
Figure 2b). From the DPV responses in the [Fe(CN)6]3− experiment, 80 s was selected as the deposition
time for nano-copper modification.

3.1.2. Characterization of Charge Transferability

Electrochemical impedance spectroscopy (EIS) was adopted to verify the difference in charge
transferability between the carbon fibers with and without nano-copper. Figure 2c shows Nyquist plots
of the carbon fibers that were scanned in 5 mM [Fe(CN)6]3+. The appearance of a semicircle in a Nyquist
plot indicates that in the impedance model (see the inset in Figure 2c) there is a parallel connection
between the resistor Rct (charge transfer resistance) and the capacitor Cdel (double electric layer).
The calculated Rct in carbon fiber without nano-copper was 17.3 kΩ and that for carbon fiber with
nano-copper was 6.5 kΩ. A significant decrease (62.4%) in Rct reveals that the nano-copper deposition
is able to increase the electron transfer speed and enhance diffusion of reactive chemical species.

3.1.3. Morphologies of Carbon Fibers with and without Nano-Copper

To determine the mechanism of how the nano-copper deposition is able to enhance electrochemical
sensing performance, the morphology change of carbon fiber before and after nano-copper modification
was studied by SEM (S4800 microscope, Hitachi, Ltd. Hitachi, Japan). The inset in Figure 2b shows
that carbon fiber without nano-copper has a smooth cylindrical surface, and its diameter is 7 µm.
After depositing for 80 s, rough nano-copper was evenly grown onto the surface of the carbon fiber
and the diameter of the modified carbon fiber increased to 8.5 µm. The increased diameter and the
roughness of the surface improved the specific surface area significantly, which provided more reaction
sites for the bounding of the electrode and Cd2+.
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Figure 2. (a) Exploration of nano-copper modification conditions. Differential pulse voltammetry
(DPV) responses of 5 mM [Fe(CN) 6]

3− using carbon fibers modified with different deposition times.
(b) The measured ∆I for different deposition times (∆I was the largest with a deposition time of 80 s).
The SEM images of carbon fiber with and without nano-copper show significant surface morphology
changes. (c) Verification of charge transferability by the electrochemical impedance spectroscopy (EIS)
response for the carbon fibers with and without nano-copper (80 s and 0 s, respectively). (d) DPV
responses for 100 µM Cd2+ solution and supporting solution without Cd2+.

3.2. DPV Response Comparison of the Carbon Fiber Electrode with and without Nano-Copper

To compare the redox response of Cd2+ for the carbon fiber electrodes with and without
nano-copper, DPV was employed to test a 100 µM Cd2+ solution group and another control group of
solution without Cd2+. There was no oxidation peak (redox response did not occur) when carbon fiber
electrodes were tested in the control group of solution without Cd2+. For the carbon fiber electrode
without nano-copper, there was an oxidation peak at a potential of –751 mV with a value of 0.82 nA.
However, the oxidation peak current increased to 5.6 nA for the carbon fiber electrode with nano-copper
and the potential of the oxidation peak shifted to –696 mV. The significant improvement of the DPV
response may be attributed to the enlarged specific surface area and more reaction contacting spots
after nano-copper deposition [27].

In addition, the DPV measurement for the carbon fiber with nano-copper was repeated for five
times to test its stability. It can be seen from Figure 2d that the peak current stabilized around 5.6 nA.
This indicates that the electrode can achieve a steady response output for Cd2+ detection.
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3.3. The Influence of pH

It is well accepted that the pH of the aqueous solution would affect the electrocatalytic reaction in
the electrochemical redox process [28]. Thus, the influence of pH on detecting Cd2+ was investigated
for the carbon-fiber-modified electrode (Figure 3a). The pH changed from 2.7 to 6.6 and the ∆I was
used to compare the influence of pH. The ∆I slowly increased when the pH changed from 2.7 to 5.9.
When the pH achieved a value of 6.1, the ∆I increased to the maximum level (3.25 nA). After this,
the ∆I started to decrease. Therefore, pH = 6.1 was selected for testing Cd2+.Sensors 2019, 19, x FOR PEER REVIEW 7 of 12 
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Figure 3. (a) The influence of pH in the DPV response for Cd2+. The pH was changed from 2.7 to
6.6. (b) DPV responses of nano-copper-modified carbon fiber with different concentrations of Cd2+

from 10 nM to 100 µM. (c) The fitting result between ∆I (the difference between the peak current and
background current) and the concentration of Cd2+; ∆I = k lg(C) + b. (d) The DPV responses for the
mixing of foreign ions including K+, Na+, Cu2+, Hg2+, Al3+, (SO4)2-, and (NO3)-. (e) The fitting result
between ∆I and the concentration of Cd2+ in the presence of foreign ions.
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3.4. Determination of the Sensitivity, Detection Limit, and Linear Range for Cd2+ Measurement

To evaluate the performance including the linear range, sensitivity and detection limit of the
proposed carbon fiber electrode, Cd2+ solutions from 10 nM to 100 µM was used as the testing sample.
Figure 3b shows that the oxidation current increases with the concentration of Cd2+. When Cd2+

concentration is less than 1 nM and 5 nM in the supporting solution, there is no detectable current
response. When the Cd2+ concentration is increased to 10 nM, an oxidation peak was detected
(signal-to-noise ratio > 3) which is referred as the detection limit of the carbon fiber electrode for
Cd2+. The specific values of oxidized peak currents were evaluated and were linear fitted with the
log concentration of Cd2+ in the form ∆I = k lg(C) + b. The fitting result (see Figure 3c) shows that
the sensitivity of carbon fiber with nano-copper for Cd2+ is 0.3997 nA/nM and that the linear range
is the whole detection range (10 nM to 100 µM). In addition, the Cd2+ sensing performance of our
nano-copper-modified carbon fiber electrode and other electrodes in the literature are compared
in Table 1, which shows that the proposed electrodes have superiority in the detection limit and the
linear range.

Table 1. Comparison of Cd2+ sensing performance among our nano-copper-modified carbon fiber
electrode and other electrodes in the literature.

Electrode Type Detection
Limit (nM)

Sensitivity
(nA/nM)

Linear Range
(nM)

Detection
Method Reference

GCE modified with CNT/poly
pyrocatechol violet/bismuth 1.22 1.7 6.08~1820 ASV [29]

N-doped carbon quantum
dots-graphene oxide (NCQDs-Go)/GCE 45.3 0.16 0.67~683.6 ASV [30]

GCE modified with gold
nanoparticles(AuNPs) 0.045 / 0.0017~16.7 Colorimetri [31]

Mo6S9 /GCE 0.61 260 3.04~912 DPASV [32]
Nanocomposite based on

nanographene 0.023 405 1.52~30.4 DPASV [33]

Covalent anchoring of aryldiazonium
salt 2.2 8.83 × 106 25~500 SWASV [34]

Bi doped mesoporous
carbonxerogel/(GCE) 308 2.67 × 106 6810~7540 SWASV [35]

GCE modified with MWCNT 2.3 / / EIS [36]
Bismuth nanorib bons(BiNRs) sensor 0.88 1.2 × 106 6.08~304 DPASV [37]

Au-Ph-AuNP-glutathione(GSH)
electrode 0.01 9.17 × 107 0.1~10 OSWV [38]

Bismuthnanoparticle-porous/carbon
paste electrode(CPE) 4.93 1.22 × 106 6.08~608 SWASV [39]

Carbon fibre electrode modified with
nano-copper 10 3.7 × 108 10~105 DPV This work

3.5. The Selectivity of the Carbon Fiber Electrode with Nano-Copper

To determine the selectivity of our electrode, the DPV response was tested in the supporting
solution with foreign ions, including 500 µM K+, Na+, Cu2+, Hg2+, Al3+, (SO4)2–, and (NO3)–.
The amount of foreign ions was five-fold to 50,000-fold that of Cd2+. Figure 3d shows the DPV response
for the mixed solutions. During the voltage scanning range (from –1.1 V to 0.5 V), obvious oxidation
peaks occur around a potential of 224 mV. This is probably due to the presence of Hg2+, according to
the reported results in the literature [26,40].

There is also an inconspicuous peak around the potential of –300 mV, which may be the response
of Cu2+. However, the peak is mostly covered by the DPV response of Cd2+. The results reveal that
foreign ions have little effect on Cd2+ detection.

In addition, it was evaluated whether the foreign ions affect the linear range, sensitivity, and
detection limit of the proposed carbon fiber electrode. The curve between Cd2+ concentration and DPV
peak current was fitted (see Figure 3e). This indicated that the linear range and the detection limit did
not change when the interference was presented while the sensitivity was slightly decreased by 7.28%.
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3.6. Analytical Application to Water Samples Collected from Water Sources

To verify the performance of our carbon fiber electrode sensor for Cd2+ detection, water samples
collected from water sources around Jinan city, including the Daming Lake, the Black Tiger Spring,
the Xioaqing River, the Yellow River, and the Changqing Lake. Figure 4 shows the DPV responses
of these water samples with pH = 6.1. Their corresponding Cd2+ concentrations are shown in the
diagram in Figure 4b, which was obtained from the curve fitting result in Section 3.5. According to the
World Health Organization (WHO) guidelines for drinking water quality, cadmium ion concentration
must be less than 0.005 mg/L (0.3 µM). Otherwise, the cadmium ion would be a threat to the health of
the kidneys and other organs. The results revealed that the water in Daming Lake was not suitable for
drinking directly.
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Figure 4. Water samples collected from several typical water sources around Jinan city (including the
Daming Lake, the Black Tiger Spring, the Xiaoqing River, the Yellow River, and the Changqing Lake)
were measured using the proposed carbon fiber electrode with nano-copper. (a) The DPV responses of
the water samples. (b) The diagram for the Cd2+ concentration results of the water samples and their
comparison with the suggested concentration given by the World Health Organization (WHO).

4. Conclusions

In this study, a nano-copper-modified carbon fiber electrode was proposed and applied for Cd2+

inspection in drinking water. The detection limit, linear range, sensitivity and selectivity of the
proposed sensor were justified. DPV technology was used to record the currents generated by the
metal ions. The performance of the proposed carbon fiber electrode was also verified by measuring
Cd2+ concentrations of water samples collected from water sources. The experiment results indicated
that nano-copper deposition played a crucial rule in the improvement of the sensitivity of the electrode
and the attraction ability for Cd2+ ions.

Based on the results from this study, the next step for this sensor would be to integrate it into a
portable device and apply it to the monitoring of the enrichment of heavy metal ions in the human
body. The measuring results of Cd2+ concentrations could be sent to mobile phones by Bluetooth.
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