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Abstract: This work presents an ultrasound tomography imaging system and method for quantitative
mapping of the sound speed in liquid masses. It is highly desirable to be able to inspect vessel
fluid mass distribution, notably in the chemical and food industrial operations. Optimization of
industrial reactors has been crucial to the improvement of industrial processes. There is a great need to
investigate how and if tomographic imaging sensors could aid the automatic control of these process
tanks. Single-measurement ultrasound techniques and especially spectrometric methods have been
a subject of study of industrial applications. Tomographic systems provide key multi-dimensional
and spatial information when compared to the well-established single-channel measurement system.
Recently, ultrasound tomography has attracted a great deal of interest in a wide spectrum of industrial
applications. The system has been designed as 32 piezoelectric ring-array positioned in a 30 cm
tank, with an excitation frequency of 40 kHz. Two-dimensional transmission travel-time tomography
was developed to reconstruct the fluid mass distributions. Prior experiments are mainly based on
inclusions of a few centimetres and on a liquid solution of different concentrations. They have been
conducted to test the spatial and quantitative resolution of the ultrasound imaging device. Analysing
the reconstructed images, it is possible to provide accurate spatial resolution with low position
errors. The system also demonstrated inclusion movement with a temporal resolution of 4 frames per
second (fps) in dynamical imaging sense. Sound velocity quantitative imaging was developed for the
investigation of ultrasonic propagation in different liquids. This work, for the first time, shows how
quantitative sound velocity imaging using transmission mode time of flight data could be used to
characterize liquid density distribution of industrial reactors. The results suggest that ultrasound
tomography can be used to quantitatively monitor important process parameters.

Keywords: ultrasound computed tomography (USCT); travel-time tomography; sound-speed
imaging; liquid compounds; solution concentration; industrial monitoring; industrial reactors;
fluid mixing; fermentation; crystallization

1. Introduction

Industrial process tomography plays an important role in many sectors of the industry such as
manufacturing as well as in food and pharmaceutical operations. The growing necessity to monitor
process plant activities leads to the further improvement of online procedures, making tomography an
appealing technology. Nowadays, industrial reactors such as chemical reactors, crystallizers, complex
stirrers are in a great need of on-line monitoring and automatic control, with the state-of-the-art
research positioning on tomographic automated control for optimal solutions.
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Ultrasonics have been extensively used for imaging and online monitoring industrial processes.
Ultrasounds have a non-destructive and non-invasive property and they can provide quality
information as it travels with varying speeds in different media. Devices based on ultrasonic
measurements offer many usages in the industrial sector, such as in non-destructive-testing (NDT) [1–3].
Ultrasound tomography systems find a great need in conducting pipes and flow/gas imaging, which
is a widespread process in the chemical, oil and gas, pharmaceutical and energy industries [4–6].
Ultrasonic single-measurement systems have been applied thoroughly in fermentation, solidification,
and crystallization processes in the food or pharmaceutical industry [7–9]. These techniques have
been already proposed as a promising method to determine the density of slurry mixtures, which is
important in characterizing the extent of crystallization [10–12]. Ultrasonic spectroscopy usually
offers a low-cost solution and thereafter is a highly distributed technique in slurry (binary) mixture
characterization processes [13–15]. Spectroscopy is used, especially, in processes with some phase
changes in material, such as the nucleation or solidification in the crystallization process, as ultrasound
propagation is being affected by the density and compressibility of the materials. The use of ultrasonics
is therefore appropriate to monitor the fermentation process [16]. Moreover, several equations have
been proposed concerning ultrasonic velocity in relation to density and compressibility of binary
mixtures. Among the most commonly used are the equations of Urick et al. [17].

Nevertheless, tomographic ultrasound imaging offers a great alternative to traditional ultrasonic
single measurement techniques, as it provides methods of sampling a substantial volume rather
than a single point, with an automated way of data collection and processing. Semi-batchwise tank
precipitators are often used in crystallization, fermentation, and other processes of chemical or food
industry. Crystals or food solid parts are being produced by mixing miscible liquids. The quality of
solid products is based on particle size, morphology, and purity. Fluid interaction is critical to result in
good yield. Therefore, suspension uniformity has been always a crucial factor for crystallization and
thereafter, the controlling of the stirring and injection process are important parameters. Tomographic
solutions tend to be a reliable method of inspecting the distributions of suspension during the injection
and mixing process. Earlier works explored the benefits of electrical resistance tomography (ERT) in
such setting [18–20], which presented good performance. Ultrasound computed tomography (USCT)
could be extremely useful to characterize the density of different solutions during prior stages of
the process (before nucleation), but can also aid the latter stages by monitoring the distribution of
crystalline suspensions. Therefore, USCT is currently under great attention by the research community,
especially in crystallization and fermentation processes that occur in batch reactors, applying all new
computational aspects of tomography in these specific applications [21,22].

This article presents an online monitoring, sound-speed transmission USCT system, for industrial
tanks, based on the arrival time of flight (TOF) data. The developed USCT system is divided into
three basic components: A multi-piezoelectric sensor, a sensing electronic setup for data acquisition,
and a computer system for image reconstruction. Circular pipeline-based sensors measure an entire
cross-sectional volume. Figure 1b displays the circle-wise sensor setup and subsequently the “sensing
zone” of the tank. The main purpose of this work is to investigate ultrasonic wave propagation
in liquids inside industrial reactors. The innovative approach of the sound-speed imaging has the
potential to be of great advantage to processes that want to distinguish between liquids of different
densities or even liquid/solid particle formations within an industrial tank. Such slurries can easily be
found in fermentation and crystallization processes.
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Figure 1. Setup of a ring of 32 ultrasonic transducers in a fan beam architecture. (a) One actuated 

transmitter. (b) Measurement’s principle of a 32-electrode USCT system. 
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describing the main functionality of transmission tomography. Black squares, positioned in a circular 

formation, present the transducers. They work as both transmitter and receiver, mounted at the outer 

boundary of the phantom. The tomographic instrument measures the time needed for a wave to 

overcome the medium. Figure 1b presents the modelled wavefront’s propagation with the blue lines. 
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Figure 1. Setup of a ring of 32 ultrasonic transducers in a fan beam architecture. (a) One actuated
transmitter. (b) Measurement’s principle of a 32-electrode USCT system.

2. Transmission Forward Model

This work is based on the transmission mode of actuated pulses. Recording waveforms from the
sensors help reconstruct sound-velocity profiles, using the TOF of the first arrival pulse. Figure 1a
depicts the experimental tank with the tomographic setup. In Figure 1b, there is a 2D scheme describing
the main functionality of transmission tomography. Black squares, positioned in a circular formation,
present the transducers. They work as both transmitter and receiver, mounted at the outer boundary
of the phantom. The tomographic instrument measures the time needed for a wave to overcome the
medium. Figure 1b presents the modelled wavefront’s propagation with the blue lines. Each spherical
wave can be approximated by a cone of rays and subsequently, every plane wave by a fan of rays.
Using the recorded TOF values, one can calculate the average sound-speed for the path. In some cases,
the acoustic properties of materials differ too much, the sound cannot penetrate the inclusion, so the
particular pulse is blocked. To be able to model this measurement in tomographic setting, models of
ray-based approached are investigated and compared here.

First, a thin line approach leading to “sparse” interaction between image pixels and intersection
line is considered. Using the time data and knowing the exact distance, one can compute sound-speed
data, which represents the average sound velocity of each one of the waves-rays (1):

S =
D

∆m
(1)

where D is the distance of the travel-path of each ray, S is the computed average sound velocity of a
ray and ∆m is the TOF data. The average sound speed of an acoustic wave that travels through path l,
between an emitter and a receiver is represented by sm (1 < m < M) and it can be expressed by the
following path of a line, where M is the total number of paths in multi-sensor array measurement.
This line is expressed by the integral of the spatial distribution of the sound speed of the domain
(sound velocity distribution):

sm =

∫
l
V(l) dl (2)

To algebraically reconstruct data, first of all, one needs to discretize the domain. The equation below
describes the reconstruction problem with linear algebra:

Vm =
N∑

n=1

wm,n sn (3)
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where sn is the sound speed produced by the nth_cell, 1 < n < N and wm,n is the weighted value that
describes how much each specific wave-ray affects the domain, namely the pixels. These weighting
values have been computed by an algorithm, which checks the distance of the ray to the centre of
the pixel. Changing the assigning values process, by treating the pixel as a circle, one can reduce the
computation costs [23].

A tomographic inspection consists of many of these rays, whose amount depends on the angle of
emission beam. All these ray equations form a system of linear equations, the so-called forward problem.

s = A V (4)

where s = [s1, s2, . . . , sM]T is the vector of calculated sound-speed values from the measured TOF
values, V = [V1, V2, . . . , VM]T is the vector that contains the discretized values of the sound-speed
spatial-distribution, and A is a M x N sensitivity matrix, containing the weighted values wm,n,
and normalised in the range of (0–1) by the sum value in every pixel of the domain. A single frame of
matrix A is depicted in Figure 2 in “Sparse” section.
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Figure 2. Left: Sensitivity maps depicting the different form of ray in each method. Middle: Full
frames of sensitivity matrices produced by all the proposed methods for 150 degrees of angle of the
beam. Right: Full frames of sensitivity matrices produced by all the proposed methods for 90 degrees
of angle of the beam.

The previous method faces a few important limitations and drawbacks. This straight-ray model
has been demonstrated to be inappropriate for obtaining accurate USCT images [24], lacking a good
uniform distribution of values, an innate problem of tomographic coverage. The main problem is that
this method introduces sparsity in the sensitivity matrix. Another problem is that while the resolution
of reconstruction increases, more “ray artefacts” show up in the results. However, regularization
techniques could sometimes overcome these artefacts, but they cannot always do so [23]. Therefore,
an alternate approach of ultrasound transmission tomography sensitivity kernels was applied. This is
the “Thick Lines” method [25], whose single-frame plot is depicted in Figure 2. Regarding this model,
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the sensitivity map for any two transducers is a straight line with a certain width, equal to the width of
the transducer. From experience, the number of transducers, as well as the size of the pipeline are
determining the width of the ray [26].

Upon evaluation of the “Thick Lines” full-frame plots, as depicted in Figure 2, many discontinuities
could be noticed. Due to this lack of uniformity, another model needs to be considered. The proposed
model is based on the “Thick Lines” approach. We call this model “Smoothed Thick Lines” and it has
been constructed by smoothing every single map of sensitivity matrix using a Gaussian filter with
standard deviation. The smoothing had to account for a specific direction in order to produce a thick
line with higher sensitivity in the central region, and gradually decreased sensitivity layers on its left
and right. This approach is presented at the bottom of Figure 2. This new sensitivity matrix calculation
method provides smoother results, overcoming previously seen discontinuities, as depicted in Figure 2.
In this way, its sensitivity full frame is also smoother than in the previous method. This smoothing
introduces uniformity in values of distribution, and subsequently, slightly better results even when
using single-step reconstruction algorithms. Producing a reliable sensitivity matrix, the angle beam of
emission plays a significant role. Having to decide between a case of a full angle of 150 degrees and
a half angle of 90 degrees, their full-frame plots have been presented in Figure 2. From these plots
one can easily notice that the 90 degrees angle of the beam provides higher sensitivity in the centre
and lower in the edges, which is a fact that describes the physical operation of the system. Eventually,
the more uniform the sensitivity distribution is in the region of interest (ROI), the higher the spatial
resolution gets [27,28].

3. Sensitivity Matrix Analysis

To evaluate the performance of each of these approaches to the forward and inverse problem in
UCSST, an evaluation of the forward model and ill-posedness of the inverse problem is considered.
Singular values decomposition (SVD) provide the means to study the ill-posedness of an inverse
problem, by decomposing the sensitivity matrix A. SVD of A is

A = UΣVT =
n∑

i=1

uiσιvT
i (5)

where U = (u1, u2, . . . , un) ∈ Rmxn and V = (v1, v2, . . . , vn) ∈ Rmxn are matrices with orthonormal
columns called singular vectors, UTU = VTV = In and the diagonals of Σ includes the singular values,
which are positive numbers (σ1, σ2, . . . , σn) sorting in non-decreasing order. The plot of singular values
decomposition (SVD) of different sensitivity matrices helps to understand the level of ill-posedness.
Plotting the base 10 logarithmic scales of the singular values as shown in Figure 3a. Figure 3a displays
SVD values of different sensitivity matrices. It is clear that the “Smoothed Thick Lines” approach
is more ill-posed when compared to the other two methods. According to this curve, the “Sparse”
method is giving us the least ill-posed solution, and on the other hand, the “Smoothed Thick Lines” is
giving us the most ill-posed problem. In terms of reconstruction, the best result can be achieved with
the “Smoothed Thick lines” method, due to its inherent regularization. The “Sparse” and “Smoothed
Thick Lines” techniques are assumed as hard-field and soft-field methods. The “Thick Lines” technique
goes in between.

TOF raw measurements could not be well described by a hard-field tomography model as
the “Sparse” method, due to wave characteristics and nature. Other reasons for the low spatial
resolution could be caused by dimensions of sensors (not being a point source for example), total count,
and technical issues. In this case, a system matrix with a slight soft-field approach matches our need.
As both “Thick Lines” and “Smoothed Thick Lines” overcome the “Sparse” method. In conclusion,
the smoothing factor for computing the sensitivity matrix seems to affect positively the results,
making regularization sometimes inessential.
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Figure 3. (a) Singular Values of all the different methods of the sensitivity matrices. It helps to
characterize inverse problems according to their ill-posedness. (b) Plots of synthetics data produced by
all the different methods of sensitivity matrices against the background measurement.

To evaluate sensitivity matrices further, the values of the experimental background measurement
data (without any inclusions to the medium) is compared with the, produced, synthetic background
data, using all the different sensitivity matrices. Figure 3b presents experimental data with the blue
coloured curve and all synthetic data, from different sensitivity matrices, in other colours. These values
are TOF data and always have a repeatable pattern, due to the circular shape of the tomographic
setup. Synthetic data have been produced by solving the forward problem, using a uniform sound
speed distribution in the ROI. The closer these data get to the experimental data; the more efficient
our sensitivity matrix is. Upon observation of signal-forms of four different sensitivity matrices, it is
noticeable that “Thick-lines” approach produces better data than the “Sparse” one, and consequently
“Smoothed Thick Lines” seems to produce the closest data to the real experimental values.

4. Inverse Problem

To reconstruct the image, each sensitivity matrix is multiplied by its corresponding sensor loss
value; Similar to sensor loss values back projection to the image plane individually. Then, these matrices
are summed to provide the back-projected acoustic velocity distributions, which will be represented by
the colour level [29]. The linear inverse problem in travel-time ultrasound tomography can be defined
as the retrieval of the change in time of travelling of the pulse ∆m from a change in the sound velocity
in the domain ∆V. Equation (1) is a linear equation that describes the forward problem principal
concept. System matrix A is computed by the foundations of propagation of rays in space, as described
in the previous section.

∆m = A ∆V + e (6)

where A is the forward operator and e is the noise in the measurement. ∆V is defined as the acoustic
velocity profile of the scanned region in different discrete times and ∆m as the TOF measurements.
If the inverse of A existed, then Equation (1) could be solved directly. However, traditionally, acoustic
tomography presents a much smaller number of measurements than the number of reconstructed image
pixels. Subsequently, the sensitivity matrix A is not a square matrix and not invertible. A common
technique to solve the inverse problem, is to use the transpose matrix of A.

∆V ≈ AT ∆m (7)

Total variation regularization (TV) was introduced by Rudin, Osher, and Fatemi [30]. It is an
iterative regularization algorithm. TV de-noising is an effective filtering method for recovering and
reconstructing piecewise-constant signals, all while being a deterministic technique, which safeguards
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discontinuities in image processing tasks [31,32]. The essence of the regularization methods is to
transform the solution of Equation (6) into an optimization problem. The total variation problem is
defined as:

minA(∆V) = ‖(A ∆V + e) − ∆m‖2 + a ‖∇∆V‖1 (8)

where a is the regularization parameter, ∇ is the gradient, and ||.||1 is the l1−norm.
TV regularization can be isotropic or anisotropic on the smoothness terms. The isotropic TV norm

is L2-based and non-differentiable, while the anisotropic norm is L1-based and less time-consuming.
Isotropic regularization schemes relax smoothness constraints at boundaries. Anisotropic formulations
let smoothing occur along the borders, but not in a transversal manner [33]. A characteristic difference
between these two widely used TV regularization methods is that the isotropic TV is rotationally
invariant. The rotational invariance of this method is known to cause geometric distortions, by favouring
edge orientations aligned with co-ordinate axes. Isotropic TV regularization is expressed by (9):

RITV(V) =
∑

j

‖D j V‖2 (9)

And anisotropic TV regularization is expressed by (10):

RITV(V) =
∑

j

‖D j V‖1 (10)

D j represents a finite-difference approximation of the spatial image gradient and V is the image.
An isotropic version of the TV functional is given by Equation (11), as used in this work.

‖∇∆V‖2 =
∑

i

√
(∇x ∆V)2

ι +
(
∇y ∆V

)2

ι
(11)

Then, the problem to be solved is the constrained optimization problem, as shown in Equation (12).

xa = argmin ∆V (α ‖∇∆V‖2) such that ‖A ∆V − ∆m‖2 < p (12)

5. System Design—Measurement Data

The proposed USCT system consists of a big tank of 350 mm with a ring of 32 piezoelectric
transducers aligned in a circle, located in a layer of 330 mm inner area diameter, as depicted in Figure 4.
These sensors are mounted on the tank, and use a centre frequency of 40 kHz, with a sound pressure
level close to 97 dB (30 cm/10 V rms). The reason to choose such a frequency is quite important, relating
to the directivity of the emitting sensors. Piezoelectric transducers have a specific pattern of emission,
related to their design. While the frequency is going higher, the directivity of sensors becomes narrower.
Narrow emission patterns would lead to a sparsely scanned ROI.
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Transducers of MHz of excitation frequency are inappropriate for tomographic application,
because of their narrow directivity. Sensors of a few hundred kHz can have better angular coverage.
In this work, piezoelectric transducers of 40 kHz are used. The used tank is made from polypropylene
profax plastic, due to its low acoustic impedance. The acoustic attenuation of the plastic tank is
5.2 dB/cm with a thickness of 1 cm. The sensors are attached on the outer surface, being non-destructive,
pulses travel through the thickness of the tank. It is important for the tank to be composed of “friendly”
acoustic materials, so pulses travel without being attenuated.

The concept of the developed ultrasound tomography is based on a parallel data transferring
architecture. Its main attribute is the active measurement probes, controlled by, an external module,
a CAN bus, as shown in Figure 5a. This is a less time-consuming transferring and receiving data
method. This design can exclude a switching part from the system, while the receivers should be in
the “receiving mode”. Subsequently, a multiplexer introducing additional delays is neglected. Active
measuring probes are divided into digital and analogue parts. The digital part is responsible for
sending measurement data to the tomography controller, via the bus. The analogue part has been
adapted to work with a piezoelectric transducer operating at 40 kHz, as shown in Figure 5b. The active
probe can work both as a receiver of an ultrasonic signal and as a transmitter. The main controller
of the tomography is responsible for managing the measurement sequence, setting the active probes
in the transmit/receive mode, as well as storing collected results from the other probes. The probes
are designed so that they can be placed very close to each other. Power lines, communication buses,
and break lines were carried out using RJ-12 cables [34].
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The time of one measuring frame depends on the ultrasonic reflection and backscattering factor
inside the tank. Therefore, consecutive sensor actuations could be undertaken, only once these pulses
are completely attenuated. Figure 6a shows the recorded signals and b shows the geometric paths of
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the transmitted and reflected recorded signals. This is a serious problem, as these reflections extend the
time of a single measurement past the time a pulse needs to travel within the tank (transmission time).
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Figure 6. (a) Display of transmitted, received, and filtered pulse of a single measuring frame. (b) Three
possible ways of receiving information by the propagation of the waves. The circular perimeter displays
the tank and the dark blue circle inside it displays the object. The form of a received signal.

In the case of the test container with 32 measurement probes, obtaining data for one image takes
about 240 msec. In this way, the temporal resolution of the system is about 4 frames per second,
which also accounts for reconstruction algorithms time to be performed. Ultrasounds as a mechanical
wave, while interacting with the material of the domain, could be transmitted, refracted, diffracted,
and reflected. All these ultrasounds properties are dependent on the ROI characteristics and materials
and type and frequency of the wave. When an incident wave passes through two different materials,
its energy transforms to transmitted, refracted, diffracted, and reflected energy according to materials
acoustic impedance and the geometry of the event, according to Schnell law. The transmission
travel-time tomography is based on the time that the transmitted pulse needs to pass through the
scanned area. To compute the sound-speed distribution the system must record the transmitted pulse
in each emission frame. When there are big divergences in densities of the ROI, namely, when the
materials inside the ROI are in a different phase (liquid/solid), the transmitted mechanical waves lose
a lot of their energy due to the great difference in the acoustic impedance of materials under test.
Therefore, in such cases, the picked signal is not the transmitted one and subsequently, the sound-speed
imaging is not accurate. In conclusion, the proposed sound-speed method can work on cases in which
the acoustic impedance does not dramatically change.

5.1. TOF Data Acquisition

While an active probe sends an ultrasonic signal of five cycles (tone burst), the rest of the probes
are in receiving mode. Active probes measure the time from the moment the signal is sent to when it is
picked up by individual transducers (TOF). The sequence repeats until every probe produces a signal,
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and therefore, their respective times are collected. Figure 6a shows the signal waveform of one pair
of transducers.

A rectangular signal is fed to the ultrasound transducer, in order to force transmission. The obtained
signal is also transformed into a rectangular signal (processed signal,) so that it can be read and sent
to the microcontroller. The red segment is the measured delay caused by transmission to the control
unit. Thanks to the active measuring probes, transfer of analogue signal is reduced to a minimum,
and interferences reduced. The probes communicate with the main unit via the digital CAN bus.
The concept of an active probe enables the switching system to work independently from the rest of
the system.

5.2. Filtering Method

USCT devices are each unique, as they intrinsically bear different types or volumes of noise.
The “Deleting Outliers” statistical, filtering method was used to handle this noise for all the datasets [34].
D.M. Hawkins describes the notion of an outlier, as an observation that deviates so much from the other
observations as to arouse suspicions, considerably, generated by a different mechanism [35]. In our
case, “outlier” TOF values usually are generated from back-scattering or reflected signals. An iterative
implementation of the Grubbs Test which checks one value at a time, was used to identify the outlier
signals. In any given iteration, the tested value is either the highest value, or the lowest, and is the
value that is furthest from the sample’s mean [36].

In Figure 7, the uniform pattern describing the background data, drives us to the conclusion that
the developed system provides a high signal-to-noise ratio (SNR). However, unexpected higher values
are found in full data. This exposes the system for collection of back-scattered, and reflected pulses.
These back-scattered pulses may occur from the surfaces of inclusion(s). This is considered as noise
in the transmission tomography data acquisition. In Figure 7a, one can also notice the tremendous
effect of the “outlier method”. The blue part of the curves is the part of the curve that has been
deleted. This filtering method has been applied to all background, full and, also, difference data
before the reconstruction performs. Moreover, reconstructions, using a single-step algorithm such as
linear back-projection (LBP), are depicted in Figure 7b. The reconstructions from left to right are using
unfiltered data and filtered data, respectively.
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6. Experimental Results

This section shows the experimental processes and results. Experiments, which are presented
in the first section, aim to study the behaviour of the wave propagation in liquid masses using static
inclusions of different shapes and setups. The purpose of these experiments is to test the system
efficiency in spatial resolution. Factors that affect spatial resolution in USCT are the size and number
of sensor elements, according to the dimensions of the ROI, but also to the sensitivity models and
regularization algorithms. The experiments that are presented in the second section, are focused
on the quantitative information of sound-speed imaging. Our applied experiments are based on
the correlation between sound-speed calculated values and liquid density. The “Smoothed Thick
Lines” sensitivity matrix method with 90 degrees angle of the beam was used for the reconstructions.
An image resolution of (64 × 64) pixels, with pixel spacing to 5.15 mm, was used for visualizing the
results. Furthermore, the isotropic TV with a fixed regularization parameter was used for all the
experiments, and chosen experimentally.

6.1. Qualitative Resolution Experiments

The inclusions consist of cylindrical objects of 2.8 cm (pipe) and 5.8 cm (bottle) diameter. The objects
are empty (filled with air). Figure 8a displays the tank with the inclusion mechanisms and the inclusion
objects as well. Several disparate positions of the inclusions and some other positions of multiple
inclusions are applied to evaluate the reconstruction accuracy of our system, as depicted in Figure 8b.
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error in mm.
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Moreover, to thoroughly test the accuracy of algorithms, two objects were placed in different
positions, focused on three specific separating distances. The left column presents the geometry
of the experiments, the middle column the TV reconstruction, and the right one the position error.
Black circles represent the true position of the inclusions, while the red dots represent their centres.
Black dots represent the centre of mass of the images. The Euclidian distance between the image centre
of mass and the true circle has been calculated. The minimum distance value is 4.6 mm, the maximum
is 30.1 mm and the average value of all the distances is 12.4 mm. Air inclusions experiments show
a significant low percentage of position error. This is a very good indicator of a system’s accuracy.
However, in USCT and especially in travel-time imaging, reflections and back-scattering are always an
issue. The more back-scattering effect takes place, the more noise is included in our measurements.
Back-scattering is most intense, when objects are placed close to one another. Making reconstruction a
more challenging task.

Applying many different topologies of multiple inclusions, our method has proved efficient,
providing relatively good results. The above experimental results show that our proposed reconstruction
methods work well in challenging cases of inclusions, as good quality images could be produced, with a
significant low position error. Furthermore, the 32-channel USCT system is tested under a dynamical
scenario. Processes occurring in industrial reactors are mostly dynamical, in which stirring is taking
place, and therefore, inserting significant disturbances on the pressure field inside the tank. While
ultrasound is completely dependent on pressure fields, an important amount of error could arise from
measurements. Therefore, an online monitoring system should always overcome this dynamical error
factor. To test the response of the system regarding the dynamical error factor, an inclusion was placed
in the tank and continuously moved, all while capturing frames. This movement changed the dynamics
of the tank and added a significant amount of disturbance to the pressure field. The movement started
from the centre to a corner, and then continued around the boundary area in three cycles. Figure 9
displays a dynamic experimental process. A time-variant version of the above TV algorithm was
used [37]. The figure shows the reconstruction of a single inclusion moved in 100 locations, within the
region of imaging. In this case, data acquisition was performed in situ, while the inclusion was moving.
The results are meaningful, in filtering the noise by the moving factor. Moreover, an algorithm of
motion tracking was developed, as covered in the latter stage. By post-processing the data captured
from the device, the algorithm is able to reconstruct the trajectory of movement of the inclusion over
time, as shown in Figure 9.
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Figure 9. Left: Reconstruction of a moving object in 99 locations within the region of imaging in
every 10 frames. Right: Trajectory of the movement of the sample with shape reconstructed with time
(Z axis is time).

6.2. Quantitative Resolution Experiments

Experiments were carried out to test the response of developed sound-speed imaging algorithms,
which could be used in industrial reactors inspecting tool in liquid-mixing processes. This is a
preliminary study, based on static experiments of different density liquid characterizations. Density
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factor is important in many industrial reactors. For example, in a crystallization process, suspension
density is increased as crystal yields. Inversely, in a grape fermentation scenario, liquid suspension
density is lowered as the sugar turns to alcohol. Liquid density monitoring could positively impact
these processes. Moreover, a sound-speed imaging tomographic system would help characterize
the uniformity of several binary or ternary mixtures inside industrial tanks. In this way, the stirring
process could start as soon as liquid mixture non-uniformity is detected. The stirring in industrial
tanks mostly is to make the liquid mixtures be in a uniform state as changes usually occur
regionally. Figure 10 depicts the experiments that have been carried out aiming in the sound
velocity characterization of liquid solutions with different densities. Sucrose/water solutions were used
in different unsaturated concentrations.
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Figure 10. (a) Experimental setup. (b) Experiment with a slurry mixture of sucrose/water. The scale of
reconstructions is in sound-speed units (m/s).

These solutions proved to be a difficult case for characterization because of the small density
changes between them. This fact proves the accuracy of the developed TOF sensors and the good
quantitative resolution of the tomographic device. Plastic cups filled with a different particle
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concentration solution each time they were used for this process. The receiving tank was filled
with tap water in the room temperature. Background data have been taken using a plastic cup filled
with tap water. Full data have been taken using a plastic cup with the sucrose/water binary mixture.
Using subtraction imaging, one can achieve to neglect all the cup thin, plastic surface effect in the
capturing signals.

Figure 10a displays the experimental process while 10b displays the quantitative imaging
results. Six unsaturated solutions of 20%, 33%, 42.86%, 50%, 56.52%, and 60.78% of mass/volume %
concentrations of white granulated sugar (sucrose) and tap water at 20 ◦C were created, while the
saturation point of this mixture is 66.7% m/vol. The mass calculated in grams and the volume in
mililitres (gr/mL). These solutions were used as inclusions in the tank, which was filled with a medium
of tap water at 20 ◦C. The concentration points were matched with density values, according to the
study of Resa et al. [16]. Three consecutive measurement frames have been taken each time and the
average value of them is stored. Figure 10b displays, at left, the subtracted TOF data in µs units and at
right the sound velocity reconstruction in m/sec units, for every experiment. An adaptive filtering
method was applied for the subtracted data. Every value that can be characterized as an outlier and,
at the same time, exists fewer times than the 1

4 of the total sensor number, is deleted from the dataset.
This filtering technique proves to be a consistent and accurate noise removal method. The sound
velocity of inclusion calculated using the mean value of the segmented circular area.

Table 1 provides with the numerical values of the experimental process. The table displays
density values related to the binary mixture concentrations, single TOF measurements provided by
the tomographic device and calculated sound-speed value provided by the sound-speed imaging
software. Density values assigned to different concentrations of sucrose/water binary mixtures based
on Resa et al. studies [16]. In this work, Resa et al. calculated a function between density and sucrose
concentration in binary unsaturated solutions of sucrose/water. They conducted a single-measurement
ultrasonic study on sucrose/water binary mixtures in 30 ◦C using piezoelectric sensors of 2.5 MHz
centre frequency. They evaluated their experimental work by mathematical relations described by
Urick’s [17] and Natta-Baccaredda’s [38] prior works.

Table 1. Velocity results from the experimental work.

Numerical Table of Experiments

Mass Concentration
Background—Full Measurements Density Single TOF Measurements

(1-16 Transducer) Scale of Reconstruction (Velocity)

0% gr/mL 995.3 (kg/m3) 162 µs -
20% gr/mL 1075 (kg/m3) 161 µs 1480–1513.93 m/s
33% gr/mL 1134 (kg/m3) 159 µs 1480–1577.31 m/s

42.86% gr/mL 1184 (kg/m3) 158 µs 1480–1617.65 m/s
50% gr/mL 1224 (kg/m3) 157 µs 1480–1660.87 m/s

56.52% gr/mL 1259 (kg/m3) 157 µs 1480–1661.51 m/s
60.78% gr/mL 1284 (kg/m3) 156 µs 1480–1755.86 m/s

These works present formulas that mainly describe the relationship between changes in the
chemical composition of solutions and changes in the propagation velocity of sound. Urick’s study of
liquid mixtures is based on the linearity of the adiabatic compressibility and density with the volume
concentration (13), (14). The sound velocity formula arises in (15):

p =
∑

i

ϕιpi (13)

k =
∑

i

ϕιki (14)

c =
1√

(
∑

i ϕipi)(
∑

i ϕiki)
(15)
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where c is the sound velocity, k is the adiabatic compressibility, p is the density, and ϕ is the volume
fraction. Based on this study, density values were assigned to the specific concentrations of liquid
solutions used in our experimental process. Eventually, the work of Resa et al. is used as a gold standard
to evaluate our experimental work. The third column of Table 1 presents the single measurements,
which come from the 1st and 16th sensors, accounting for the existence of inclusion in the trajectory of
the emitted pulse. The TOF data slightly decreases while the concentration of sucrose becomes higher.
The fourth column displays the sound speed scales of all the reconstructions.

Figure 11 displays with black dots the results related to the experimental work and with blue
dots, results extracted by the work of P. Resa et al. [16]. A linear interpolation has been applied to
the literature values and a polynomial regression method to the experimental ones. As expected,
the results follow an increasing function as the concentration of sucrose increases in the binary mixture.
The tomographic graph (black colour) and the “gold standard” graph (red colour) are following the
same ascending trend, which is very optimistic. The relatively lower values arise from the fact that
the experiments have been occurred in lower temperature close to 20 ◦C, while the experimental
process of Resa et al. occurred at 30 ◦C. The system provides good absolute values. Translating
the concentration values of the sucrose/water solutions to density values, important concepts can be
extracted by this work. The developed sound-speed imaging has been proven as having an accurate
quantitative resolution. The most challenging reconstruction is the one with the liquid solution of 20%
m/vol concentration which leads to a difference in density of 80 kg/m3 between the inclusion and the
medium. The fact that the developed system can respond so accurately to such challenging changes
is very optimistic. Moreover, multiple reconstructions with different concentrations proved a great
efficiency of the system to distinguish liquids of density differences up to 40 kg/m3, which is assured
by the different results between the 50% and 42.86% solutions.
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In lower than 10% concentration change, which means density change of 35 kg/m3, such as in
the case of 56.52% concentration, the calculated sound velocity value is not perfectly matching the
expected one, according to the trajectory of the relative graph. These quantitative results prove great
feasibility and efficiency of USCT in characterizing different densities of liquid solutions.



Sensors 2019, 19, 5117 16 of 18

7. Conclusions

This study demonstrated the effectiveness of a newly developed online sound speed travel-time
USCT system to inspect liquid mixtures of different densities. The study shows for the first-time
sound-speed tomographic imaging to monitor liquid elaboration processes. The system is based on
two-dimensional travel-time ultrasound tomography with a central excitation frequency of 40 kHz.
Three types of experiments were applied to test the spatial and the quantitative resolution and the
system response to a dynamical scenario. The system provides satisfactory results regarding the
spatial resolution, being able to detect the position of objects of a few centimetres in size. A dynamical
experiment, using a moving object and capturing continuous data, showed the dynamical imaging
ability with 4 frames per second speed. Such a temporal resolution is suitable for several industrial
processes. Furthermore, the sound-speed imaging provides reliable results for the characterization of
liquid solutions based on the distribution of sound velocity distributions. This work provides good
performance for sound-speed imaging for solutions with small differences in density. For the first time,
meaningful quantitative data have been presented in the industrial USCT field, providing a clear relation
between sound-speed imaging and density characterization of liquid solutions. The advantages lie in
material distinguishing for liquid mixing cases, in characterizing uniformity of mixtures and finally in
calculating approximate sound speed and subsequently density distributions of liquid mixtures.
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