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Abstract: A nanocomposite of cross-linked bacterial cellulose–amino graphene/polyaniline
(CLBC-AmG/PANI) was synthesized by covalent interaction of amino-functionalized graphene (AmG)
AmG and bacterial cellulose (BC) via one step esterification, and then the aniline monomer was grown
on the surface of CLBC-AmG through in situ chemical polymerization. The morphological structure
and properties of the samples were characterized by using scanning electron microscopy (SEM),
and thermal gravimetric analyzer (TGA). The CLBC-AmG/PANI showed good electrical-resistance
response toward carbon dioxide (CO2) at room temperature, compared to the BC/PANI nanopaper
composites. The CLBC-AmG/PANI sensor possesses high sensitivity and fast response characteristics
over CO2 concentrations ranging from 50 to 2000 ppm. This process presents an extremely suitable
candidate for developing novel nanomaterials sensors owing to easy fabrication and efficient
sensing performance.
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1. Introduction

It is commonly regarded that high sensitivity, fast response and recovery times, as well as excellent
selectivity and functionality at room temperature are important parameters for the evaluation of gas
sensors [1,2]. Correspondingly, in the field of material sciences and chemical engineering, the quest
to discover advanced materials with excellent performance is perpetual and immediate [3–5]. In the
last few decades, research into functional materials with special nanoscale architecture has attracted
great interest and has presented enhanced properties in numerous applications. These include energy
storage application [6–8], catalysis application [9], medical applications [10], and gas sensing [3,11].
For gas sensing applications in particular, functionalized graphene-based, gas sensing materials have
been prominent and, as a result, the subject of much research, because of its large surface area, unique
mechanical, optical, thermal, magnetic, and electrochemical properties, and its variable conductivity,
which makes it available for electron transport phenomena with very high electrical mobility, in the
presence of oxidizing and reducing gases [5,11,12].

Polyaniline is commonly used in gas sensor materials due to its unique electrical conductivity,
redox properties, low production cost, easy preparation in solution, and good stability at room
temperature [13,14]. These properties are crucial in gas sensors as they lower the detection limit,
decrease the response time, and improve sensitivity. PANI can be synthesized by the oxidation of the
monomer aniline through the chemical oxidative polymerization method [15,16]. In in situ chemical
oxidative polymerization, the aniline monomer is oxidized by utilizing ammonium persulfate as the
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redox initiator, which has been effectively used to deposit the conductive PANI on both conductive
and nonconductive substrates [15]. Moreover, it is known that combined PANI with functionalized
graphene is an effective way to improve the sensing performance, not only due to the unique properties
of graphene but also the combined effect of both materials [17–19].

It is well accepted that the sensitivities of gas sensors are strongly affected by the specific surface of
the sensing materials used, so that a higher specific surface area is directly proportional to the sensitivity
and response times of the sensing material [20,21]. Bacterial cellulose (BC), as a special type of cellulose,
could be a promising flexible substrate due to its good chemical stability, excellent mechanical strength,
and biocompatibility [22–25]. Research indicates that BC is an excellent supporting material that can be
used as deposit nanofillers needed to create advanced BC-based, functional nanomaterials for various
technological applications, including gas sensors [25–27].

This is the first report on the nanopaper composites of cross-linked bacterial cellulose–amino
graphene/polyaniline (CLBC-AmG/PANI)-based carbon dioxide (CO2) gas sensors. As reported
in our previous work, the graphene surfaces were functionalized by using ethylenediamine
(NH2-(CH2)2-NH2), because it is well known that the amine groups are very sensitive and highly
efficient at adsorbing CO2 gas [28]. In this work, we designed and fabricated a flexible, freestanding
sensor using BC as the flexible substrate and AmG and PANI as active sensing materials. An easy
procedure for synthesizing CLBC/AmG nanopaper by the esterification between the carboxyl groups
of AmG and hydroxyl groups of BC was reported. In addition, the surface morphology and thermal
stability of the CLBC/AmG nanopaper were tested. Then, the PANI was polymerized in situ at the
surface of CLBC/AmG nanopaper and the CO2 sensing properties of the CLBC-AmG/PANI sensors
were investigated and the mechanism of the sensor was discussed.

2. Materials and Methods

2.1. Materials

Bacterial cellulose (BC) nanopaper was appropriated from Nanonovin Polymer Co. (Mazandaran,
Iran). Amino-functionalized graphene (AmG) was synthesized in our lab. Graphene oxide (GO),
aniline (ACS reagent, ≥99.5%), N,N-dimethylformamide (DMF, 99.8%), ethylenediamine (EDA, ≥99%),
N,N′-Dicyclohexylcarbodiimide (DCC, 99%), ammonium persulfate (APS,≥98.0%), and 5-Sulfosalicylic
acid dihydrate (SSA, ≥99%) were all received from Sigma-Aldrich (Oakville, ON, Canada). Deionized
(DI) water was used for all the experiments.

2.2. Synthesis of CLBC-AmG Nanopaper

As shown in Figure 1, the synthesis of AmG (10 mg) was as reported previously in [28], and BC
(50 mg) in DMF (50 ml) were stirred for 1 h. Under vigorous stirring, DCC (100 mg) was added as a
dehydration reagent. The esterification between the carboxyl group (-COOH) of AmG and hydroxyl
group (-OH) of BC was conducted under N2 atmosphere at 80 ◦C for 48 h to create the crosslinked
bacterial cellulose–amino-functionalized graphene (CLBC-AmG). Then the CLBC-AmG fibers were
washed several times with ethanol and DI water and then dried under vacuum at room temperature
(RT) for 24 h.

2.3. Fabrication of CLBC-AmG/PANI Nanopaper Electrodes

The PANI on the surface of CLBC/AmG nanopaper was grown by in situ polymerization. The
two solutions were kept for 1 h in the refrigerator at 5 ◦C before immersing the CLBC/AmG and
mixing. The CLBC-AmG nanopaper was immersed in 50 ml DI water of (2.45 g) SSA and (1.86 g)
aniline (solution 1). Then 50 ml DI water of (4.45 g) APS (solution 2) was added dropwise into solution
1, which was stirred in an ice-water bath for different polymerization times: 30 min, 1 h, and 2 h.
Finally, the period of 30 min was chosen for further studies because it reported more flexibility and
good electrical conductivity for sensing purposes. Next, the flexible electrodes of CLBC-AmG/PANI
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were rinsed three times by DI water and ethanol until the residual oxidant was removed (see Figure 2).
For comparison, the BC/PANI electrodes were prepared without AmG by a similar procedure. Finally,
the samples were left to dry in air at room temperature (RT). All samples were cut into square pieces
(20 × 20 mm) and fixed onto glass slides by applying copper tape to provide the appropriate electrical
connection between the sensing substrate and measuring device. At the end, the electrodes were stored
at RT under vacuum for two months until the sensing properties were investigated.
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Figure 2. The schematic diagram of the process preparation of This is the first report on the nanopaper
composites of cross-linked bacterial cellulose–amino graphene/polyaniline (CLBC-AmG/PANI)
flexible electrodes.

2.4. Characterization Methods

A Raman microspectrometer was recorded on a Renishaw InVia Raman microscope (Renishaw,
Mississauga, ON, Canada) at an excitation laser wavelength of 514 nm. Thermogravimetric analysis
(TGA) was performed using Q5000 TGA (TA instruments, USA) under a nitrogen atmosphere in
the temperature range 20–800 ◦C, with a heating ramp of 10 ◦C min−1. Images using a scanning
electron microscope (SEM JSM-7600TFE, FEG-SEM, Calgary, AB, Canada) were collected to study the
morphology of the nanocomposites with a very thin layer of (1 nm) gold coating.

2.5. Measurement of Gas Sensors

The performance measurements of the fabricated CLBC-AmG/PANI electrodes as a CO2 sensor
was similar to that which was described in our previous paper. The measurements of the gas sensing
properties were tested under laboratory conditions (35–40% relative humidity, RT) using a PalmSens3
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(PalmSens EmStat+Potentiostat w/Bluetooth, Compact Electrochemical interfaces, BASi®, West
Lafayette, IN, USA) and the mass flow controllers (MFCs) (MKS instruments Inc., 1179C mass-flow®,
Kanata, ON, Canada) were used to control the flow rates of the injected gases.

The measurements were obtained using a static process: Initially, the sensor was put into a glass
chamber with an inlet and an outlet for gas along with electrical connections. The chamber was first
injected with N2 via a micro-injector through a rubber plug to measure the initial resistance of the
sensor. Then a CO2 gas (50–2000 ppm) was injected into the chamber. When the response reaches a
constant value, the sensor was exposed to N2 to remove CO2 and the recovery behavior of the sensor
was investigated.

3. Results and Discussion

3.1. Characterization of CLBC-AmG and CLBC-AmG/PANI Nanopaper

The structure of AmG and CLBC-AmG were studied by using Raman spectra, both the AmG and
CLBC-AmG nanopaper have two characteristic peaks at 1595 and 1349 cm−1 corresponding to the G and
D bands, respectively (see Figure 3a) [29,30]. The G band indicates the graphitic structure or whiskers
like carbon, whereas the D band refers to the disorder in chemically-functionalized graphene sheets.
The intensity ratio of D and G bands (ID/IG) is used to infer the degree of chemical functionalization in
the carbon materials. The CLBC-AmG showed a higher ID/IG intensity ratio (1.1) than the AmG (0.97),
which is ascribed to BC nanopaper intercalating between the AmG sheets which resulted in increased
disorder in the graphene sheets.
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Figure 3. (a) Raman spectra of amino-functionalized graphene (AmG) and cross-linked bacterial
cellulose–amino graphene (CLBC-AmG) nanopaper. (b) Thermogravimetric analysis (TGA) curves of
bacterial cellulose (BC), AmG, and CLBC-AmG nanopaper.

A TGA was conducted to observe the thermal stability of the AmG, BC, and CLBC-AmG. As shown
in Figure 3b, the AmG exhibited good thermal stability and large weight loss starts at temperatures
of about 449 ◦C, as the result of the decomposition of amino-carbons, corresponding to previously
reported results for the functionalization of graphene with amino groups [28]. The three stages of
weight loss can be observed for BC at an initial stage of 35–310 ◦C, which could be mostly attributed to
the moisture evaporation. The major weight loss occurred at the second stage 310–410 ◦C, and a final
weight loss 410–800 ◦C as the result of degradation and decomposition of the cellulose backbone [29].
In the CLBC-AmG samples, the AmG can considerably improve the thermal stability of BC nanopaper,
as shown in Figure 3b.

The morphology and structure of BC, CLBC-AmG, and CLBC-AmG/PANI nanopaper are presented
in Figure 4a–e. In Figure 4a, the SEM image of BC shows an interconnected, three-dimensional (3D),
nanoporous network structure. After the crosslinked BC/AmG via one step esterification, the AmG
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sheets are clearly interlocked within the 3D web-like arrangement of the BC nanopaper by covalent
bonds, as covalent bonding occurs between the reactive groups of both BC and AmG (see Figure 4b).
After in situ polymerization, the surfaces of CLBC-AmG are fully covered by hierarchical PANI, which
indicates that the PANI are uniformly grown on the surfaces of CLBC-AmG (Figure 4c) [31]. Moreover,
the PANI and AmG can be distributed into the BC and forms many channels to provide effective
electrolyte transport and active site accessibility, as shown in the cross-section of CLBC-AmG/PANI
compared with BC/PANI (see Figure 4d,e) [31]. It should be noted that the freestanding electrode of
CLBC-AmG/PANI has good flexibility and can be easily bent, as shown in Figure 4f.
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Figure 4. (a–c) Scanning electron microscope (SEM) micrograph of bacterial cellulose (BC), cross-linked
bacterial cellulose–amino graphene (CLBC-AmG), and cross-linked bacterial cellulose–amino
graphene/polyaniline (CLBC-AmG/PANI). (d,e) Cross-sectional SEM images of bacterial
cellulose/polyaniline (BC/PANI) and CLBC-AmG/PANI. (f) Photograph of CLBC-AmG/PANI nanopaper.
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3.2. Evaluation and Discussion of Sensor Behavior

We investigated the sensing performance of the CLBC-AmG/PANI for CO2 in terms of percentage
response, which is defined by the percentile resistance change when the sensors are exposed to CO2 as
follows: Percentage response = (Rg − R0)/Rg × 100, where R0 and Rg are the resistances of the sensor
before and after exposure to CO2, respectively. The response and recovery times of the sensor was
defined as the time required to reach 90% of the final resistance.

The performance of the CLBC-AmG/PANI and BC/PANI were studied to verify whether the
fabricated CLBC-AmG/PANI have any enhanced CO2 sensing properties compared with BC/PANI.
Figure 5a shows the response of the sensors to 50, 150, and 250 ppm of CO2. It was indicated that the
sensors based on CLBC-AmG/PANI nanopaper exhibit resistance increasing, fast and stable response
to CO2 at RT. It was reported that, upon CO2 molecule adsorption, the electrons are released at the p–n
junction, which might increase the thickness of the depletion layer [32,33]. Thus, when the thickness
of the depletion layer at the interface, between the p-type PANI and n-type AmG in AmG/PANI
sensors increased, the resistance also increased [33,34]. Besides, the resistance can be increased due to
the reaction between the CO2 and primary amine functional groups to form carbamate, where the
number of free amines are reduced and subsequently the proton mobility is reduced, which in turn
increases the resistance [34]. Furthermore, the CLBC-AmG/PANI sensors were then exposed to various
concentrations of CO2 gas (50, 150, 250, 550, 1500, and 2000 ppm) and the corresponding response of the
sensors were recorded. The sensitivity of the CLBC-AmG/PANI-based CO2 sensor was the maximum
at 2000 ppm with good response times (~20 s), as shown in Figure 5b. Figure 5c exhibits the sensitivity
of the sensor as a function of CO2 concentration from 50 to 2000 ppm. The sensor has a wide detection
range towards CO2 gas: The response greatly increases with the CO2 concentration, and is nearly
linear with the correlation coefficient close to 0.9867. The limit of quantification (LOQ) of the sensor
is defined as the lowest concentration of CO2 that can be detected, LOQ = 10 × standard deviation
(SD)/slope [35,36]. The detection limit was repeated three times with SD = 2.62. The calculation of
LOQ for the CLBC-AmG/PANI sensor is ~26.55 ppm. It was noted that the sensing properties of the
CLBC-AmG/PANI sensor toward 550 ppm CO2 gas at RT and under humidity levels of 0%, 40%, and
80% relative humidity (RH) were tested (see Figure 6a). No remarkable change in the sensitivity of the
CLBC-AmG/PANI sensor with the increase in the relative humidity was observed, yet the response
time slightly increased as the relative humidity increased. Moreover, the selectivity is another key
factor for the evaluation of a gas sensor, and the results are shown in Figure 6b. The CLBC-AmG/PANI
sensors were exposed to various gases of ammonia (NH3), hydrogen (H2), and carbon monoxide (CO)
at 550 ppm. We observed that the response to CO2 gas displayed more than thrice the magnitude
in comparison with the other analytes. It clearly demonstrates that the sensor CLBC-AmG/PANI
nanopaper show an excellent selectivity and can be used as a viable candidate for the detection of
CO2 gas.

In our previous publication, we introduced AmG/PANI electrospun nanofiber composites for
detecting CO2 gas. The device features a chemoresistive sensor that can detect the concentration of
CO2 accurately. In this sensor, the functionalized graphene with polyaniline as the active material was
deposited onto the surface of the electrospun nanofiber substrate of poly(methyl methacrylate) (PMMA).
Despite the success, the sensor exhibited less flexibility. In this work, we present a freestanding CO2

sensor with excellent flexibility and manageability, a high response and high selectivity to CO2 at
RT. In addition, it should be noted that the sensing performance of the CLBC-AmG/PANI nanopaper
exhibited better sensitivity and fast response time at RT compared with the previously reported CO2

sensors, as shown in Table 1. However, the sensor is irreversible and non-reusable at RT. In conclusion,
the CO2 sensor based on the CLBC-AmG/PANI shows superior flexibility, high selectivity, and accurate
detection of CO2 concentrations ranging from 50 to 2000 ppm, and this concentration range sufficiently
covers the need for CO2 detection for many environmental and industrial applications.
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Table 1. Comparison of sensing performance of our proposed CO2 sensor with other published
CO2 sensors.

Materials. Range of CO2
Concentration (ppm) Response Time (s) Temp. (◦C) Ref.

La2O2CO3 nanorods 100–3000 15 325 [37]
La-loaded ZnO 500–5000 90 400 [38]

LaOCL-doped SnO2 nanofibers 100–20,000 24 300 [39]
ZnO nanoflakes 200–1025 <20 250 [40]

CLBC-AmG/PANI nanopaper 50–2000 >20 RT This work

Lanthanum dioxide carbonate (La2O2CO3), lanthanum (La), stannic oxide (SnO2), zinc oxide (ZnO), and cross-linked
bacterial cellulose–amino graphene/polyaniline (CLBC-AmG/PANI).

4. Conclusions

We have developed a sensitive room-temperature CO2 gas sensor based on the CLBC-AmG/PANI
nanopaper, which was formed by crosslinked BC and AmG via covalent interaction and the PANI
was deposited onto the CLBC-AmG surfaces. The CLBC-AmG nanopaper was characterized using
SEM, Raman, and TGA techniques. The sensor exhibited a high sensitivity (50 ppm) and selectivity
for CO2 gas, including superior flexibility and manageability. The sensor responses showed a nearly
linear relationship with CO2 concentration. Since the preparation process for the CLBC-AmG/PANI
sensors was easy and the sensing performance reliable, we believe it has great potential for the sensitive
detection of CO2 gas in different fields.
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