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Abstract: High-precision indoor positioning is important for modern society. This paper proposes
a way to achieve high positioning accuracy and obtain a trajectory close to the actual path in a
common application scenario by smartphone without the use of a complicated algorithm. In the actual
positioning process, a stable signal source can reduce the signal interference caused by environments.
Bluetooth low energy has its own advantages in indoor positioning because it can be seen as a more
stable signal source. In this study, we used smartphones to record the changing Bluetooth signals
and used a basic nearest neighbor, weight centroid, and probability-based method, which we called
an advanced weighted centroid method, to obtain position coordinates and the motion trajectory
during the experiment. We used a weight centroid method based on least squares to solve the
overdetermined problem. This can also be used to calculate the initial position of the advanced weight
centroid. The advanced weighted centroid method introduced a Gaussian distribution to model the
distribution of the signal. Translating a deterministic problem into a fuzzy probability problem aligns
more with positioning facts and can achieve better results. Experimental results showed that the
root-mean-square error (RMSE) of the dynamic positioning result obtained through the probabilistic
method was within 1 m and had a more consistent trajectory. Moreover, the impact of the number of
iBeacons on the positioning accuracy has been discussed, and a reference for iBeacon placement has
been provided. In addition, an experiment was also conducted on the effect of signal transmission
frequency on accuracy.

Keywords: indoor positioning; Bluetooth low energy; nearest neighbor; advanced weighted centroid;
iBeacon; probability distributions

1. Introduction

Location information plays an important role in the social economy and people’s lives. One study
showed that humans spend almost 70% of their time indoors [1]. Therefore, obtaining an accurate
indoor location has become especially important. The widespread use of smartphones and mobile
internet have made real-time precise positioning possible, and this method is gradually being applied to
various situations. For example, merchants use it to send advertising to customers nearby, and airport
passengers can track their luggage in real time.

The common methods for indoor positioning mainly include nonradio technologies and wireless
technologies. Nonradio technologies always include magnetic positioning, inertial measurements,
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and visual positioning. Wireless technologies include wireless fidelity (Wi-Fi), Bluetooth, and radio
frequency identification (RFID)/near-field communication (NFC). Nonradio technologies like magnetic
positioning [2] need to collect data in advance of making positioning calculations; however, because the
magnetic field is susceptible to environmental interference, determining an initial position is difficult.
Inertial navigation is prone to accumulation of errors, and trajectories can also drift [3]. Vision-based
positioning [4] takes a large amount of computation time because it requires an image to be processed,
and it is more sensitive to environmental changes. For example, a significant change in illumination can
cause feature point matching to fail and thereby affect the positioning result. Therefore, we considered
using wireless technologies for positioning. Our method did not require the collection of data in
advance. The source of the signal was also a more stable Bluetooth low energy (BLE) source, and there
was no accumulation of errors. This represents a viable improvement in positioning methods.

Currently, in the field of wireless positioning, it is common to obtain location information via
methods including the global positioning system (GPS), RFID, ultrasonic technology, ultra-wideband
(UWB) technology, ZigBee, Wi-Fi, and Bluetooth low energy [5–7]. Of these, GPS can obtain position
results with high precision in outdoor environments. However, for indoor environments, building
occlusion interferes with GPS signals and prevents location information from being acquired [8].
Furthermore, although RFID, ultrasonic, UWB, and other technologies have a high positioning
accuracy, their deployment cost is high, and they cannot be applied widely to usual application
environments. Thus, because of the convenient configurations and good positioning effects, Wi-Fi
and Bluetooth are widely used in indoor positioning [9]. The signals they send can be received
by smartphones, which commonly have built-in Wi-Fi and Bluetooth sensors. Smartphones, as an
indispensable tool for modern people, can be a convenient choice for positioning in daily use.

Some indoor positioning methods focus on Wi-Fi, as it is now equipped in most indoor
environments. However, in practical applications, Wi-Fi is susceptible to environmental changes,
resulting in poor positioning accuracy. The development of BLE technology has attracted great interest
in recent years, and it is considered by some researchers to be a more advantageous indoor signal
source than Wi-Fi. Several studies have analyzed the signal characteristics of BLE and Wi-Fi and used
the same positioning algorithm to compare the different positioning results obtained via different signal
sources [10,11]. Compared to Wi-Fi, the iBeacon—a BLE implementation protocol from Apple [12]—has
the characteristics of low power consumption, a smaller device size, better anti-inference systems, and
easy arrangement. Therefore, BLE is suitable and effective for applications in the practice of indoor
positioning [13].

Apple released the iBeacon standard in 2013, based on BLE 4.0. With the reduction in the cost of
BLE devices over time, BLE is supported by almost all smartphone operating systems [14]. In addition,
the Google EddystoneTM open standard, launched in 2015, provides a new and rich broadcast format
that supports multiple frames [15]. This promotes the rapid development of Bluetooth iBeacon
platforms deployed and embedded in smart devices.

Both Wi-Fi and Bluetooth broadcast a signal comprising specifics encoded to the surroundings.
The process of indoor positioning includes obtaining the received signal strength indication (RSSI)
through a smartphone under dynamic conditions, obtaining path trajectories and smartphone
coordinates via a certain algorithm. Several such methods have been proposed over the years.

The nearest neighbor is a simple and applicable method that determines the nearest iBeacon by
finding the maximum value of the received signal, and it considers the nearest iBeacon position as
the position of the smartphone location [15]. However, the positioning results are poor, and with
the expansion of the experimental area, the positioning accuracy declines significantly, especially
when there is a small number of iBeacons. In other words, positioning accuracy is directly affected by
iBeacon arrangement; therefore, achieving a higher accuracy requires a larger number of iBeacons.
Furthermore, this positioning method is commonly used in real application scenarios. [16].

Weighted trilateration uses geometric relationships to determine where a smartphone is located.
It obtains a location by calculating the distance to multiple iBeacons through RSSI and a signal
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attenuation model [17,18]. Of course, position can also be determined by the angles to iBeacons. Weight
selection is usually determined according to the Euclidean distance [19]. Although this algorithm
can theoretically obtain more accurate positioning results than nearest neighbor while ensuring
low complexity, in reality, indoor signal propagation is often complicated because of the signal’s
vulnerability to interference. There are often problems, such as the fact that multiple circles cannot
be crossed at one point and become overdetermined, resulting in loss of positioning accuracy; this
problem has been the focus of previous studies [15,20]. The fingerprint algorithm is another commonly
used positioning algorithm with online and offline phases. The offline phase mainly collects data
to build a fingerprint database. In the online phase, a user’s current position is determined via the
real-time processing of the iBeacon or Wi-Fi fingerprint [18]. In general, the offline fingerprint database
is matched with online positioning through deterministic algorithms [21] and probability-based
algorithms [22]. The advantage of fingerprint positioning is that there is almost no need to know
the coordinates of any iBeacons, and the positioning accuracy is relatively high. However, a high
workload is required to establish the offline fingerprint database. In addition, this technique does not
easily adapt to large changes in the environment. Positioning accuracy is excessively dependent on the
accuracy of the fingerprint library. Therefore, several studies were conducted to solve these problems.
Huang et al. [13] proposed combining Bluetooth and Wi-Fi to improve the acquisition accuracy of the
fingerprint database. Zuo et al. [23] proposed reducing the workload of fingerprint database collection
through interpolation.

Different positioning algorithms have their own application scenarios and conditions under which
they are applicable, but few studies have used the probability distribution of RSSI itself for positioning.
We were inspired by the probability algorithm used for fingerprint-database matching, which uses
a Gaussian distribution to obtain the probability of the smartphone location [11]. In this technique,
for each RSSI value received, the possible location of a smartphone is considered as a range rather
than as coming from a specific point. Based on this idea, Hansson and Tufvesson [24] divided an
experimental site into equal-sized grids and calculated the probability that the smartphone would be
distributed in different grids. The grid with the highest probability was considered the location of the
smartphone. They used Wi-Fi as the signal source, and the error obtained under static conditions was
within 10 m. It is difficult to use this to meet the requirements of high-precision indoor positioning.

The goal of this study was to obtain the absolute two-dimensional location conveniently in a
normal environment without harsh conditions. Therefore, because we do not always pay attention to
the height of a mobile phone in indoor use, this study did not consider a three-dimensional situation,
thus reducing the number of calculations required. Wi-Fi was no longer used as a signal source,
instead we used a more stable and lower power-consuming BLE for positioning. We used the nearest
neighbor algorithm as the basic positioning algorithm weight centroid, and we focused mainly on
developing an advanced weighted centroid algorithm using probability distribution. Compared
to previous probability-based methods, the least-squares method was used to solve the problem of
overdetermination in the algorithm. We did not use dedicated signal receiving equipment. Our signal
receiving device was a smartphone because it has become an indispensable tool for our daily use.
The error obtained in the experiment was less than 1 m when using Bluetooth; as such, we were able
to get high precision using a simple algorithm. We also avoided the labor of building a fingerprint
database in the early stage of the algorithm, which is complex to implement. Therefore, this method
strikes a good balance between the complexity of obtaining a position and ensuring its accuracy.
This technique also has strong applicability and a good fault tolerance. Moreover, while our focus
was on accuracy, we were also able to determine whether the positioning of the path was reasonable
and the degree of agreement with the real path. We also discussed how the number of iBeacons
affected positioning accuracy. We have explored whether the signal transmission interval influenced
the positioning results.

The remainder of the article is structured as follows. Section 2 details our positioning algorithm.
In Section 3, we show the implementation of our experiments and the devices we used in the
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experiments. In Section 4, we demonstrate the positioning results using different algorithms, and
we explore how the density of the iBeacon devices affected the accuracy of the experimental results.
Finally, Section 5 presents our conclusions.

2. Methods

This section introduces the radio signal attenuation model and three positioning methods.
The results of the positioning are given in Section 4.

2.1. Signal Characteristics and Radio Signal Attenuation Model

To determine the characteristics of RSSIs from beacons, we collected RSSIs through a smartphone
at a certain distance from a beacon for 7 h. During this period, we randomly walked around the beacon
to simulate the signal characteristics under real conditions. By counting the signal values, we obtained
an RSSI distribution histogram and fitting curve, as shown in Figure 1, according to which the RSSI
obtained at a fixed position fit well with a Gaussian distribution.
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Figure 1. Signal value distribution characteristics accepted at 1.5 m. RSSI, received signal strength indication.

Several experiments have demonstrated a logarithmic relationship between signal strength and
distance [20,25,26]. Bluetooth signal propagation is formulated using the following well-known radio
signal attenuation equation:

PL(d) = PL(d0) + 10nlog
(

d
d0

)
+ Xδ, (1)

where PL (d) is the RSSI at distance d from the signal source; PL (d0) is the RSSI when the value of
d0 is taken as reference distance; n represents the path loss exponent and is closely related to the
surrounding environment [27]; and Xδ is a Gaussian random error factor with a mean of 0. However,
we used a simplified formulation in real calculations based on Equation (1), with a reference distance is
of 1 m; it is expressed as follows:

P = A− 10nlogd, (2)

where P indicates the RSSI when it is at distance d from a signal source, and A indicates the signal
strength 1 m from the source. The expression of the distance can be derived from Equation (2) as follows:

d = 10
A−P
10n . (3)

2.2. Nearest Neighbor

This is the basic algorithm that we used in our experiments, given its advantages of simple
operation, low complexity, and easy implementation. We were able to record a series of Bluetooth
signal values using a smartphone and then sort the values of these signal strengths. The position of the
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iBeacon with the highest RSSI was considered our current location. The series of signal values can be
given as follows:

Rn,t = {rn, rn−1, rn−2, · · · r1}

Sn = max(ri), riεRn,t (4)

where Rn,t is a dataset that collects signals transmitted by different iBeacons b at time t, and Sn is the
location of the iBeacon that emits the maximum RSSI.

However, as the experiment included asynchronous measurements, and the signal was unstable,
the use of the nearest neighbor algorithm alone caused a large deviation between the previous and
following steps. Moreover, in the experiment, we found that the last positioning point was in front of
the device, while the next positioning point could return to a previous position, indicating that the
path was backward. This was obviously inconsistent with the actual situation.

2.3. Weighted Centroid

In various indoor positioning algorithms, trilateration is a method that is simple and easy to
implement. Theoretically, if the distance from the smartphone to three or more iBeacon nodes is known,
the latter can be used as the center of the circles, and the distance to the smartphone would be the
radius; these circles will intersect at a point. The common point at the intersection of these circles is the
location we want, as shown in Figure 2a.
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According to Equation (3), we can determine the length of the radius. The coordinates of a
smartphone can be obtained by solving the following equation:

ri =

√
(x− xi)

2 + (y− yi)
2. (5)

However, because the signal is disturbed and attenuated when an obstacle is encountered—and
owing to the multipath effect and measurement error of the iBeacon itself—these circles do not intersect
at one point. Furthermore, if the part of the junction was an area (Figure 2b), or if there was no common
area (Figure 2c), using this algorithm alone could not provide a convincing positioning result.

As we often obtained more than three signals in the experiment, we faced the problem
of overdetermination, which can generally be solved using the least-squares method [3,28].
The least-squares (LS) method is a mathematical optimization technique that obtains the best match
for the data by minimizing the sum of the squares of the errors. The objective function is constructed
as follows:

fi(x, y) = ri −

√
(x− xi)

2 + (y− yi)
2, (6)

min(x, y) = min
m∑

i=1

[ fi(x, y)]2, m ≥ 3. (7)
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It is difficult to solve the nonlinear Equation (6) directly. Therefore, we transformed the problem
into an optimization problem in Equation (7). Equation (7) could then be solved to obtain a more
satisfactory result.

To simplify the calculations, we let fi(x, y) = 0 in Equation (6) and squared both sides to obtain

x2 + y2
− 2xxi − 2yyi = d2

i − x2
i − n2

i . (8)

Next, we set x2 + y2 = z to obtain the following equation:

z− 2xx1 − 2yy1 = d2
1 − x2

1 − n2
1,

z− 2xx2 − 2yy2 = d2
2 − x2

2 − n2
2,

· · ·

z− 2xxm − 2yym = d2
m − x2

m − n2
m.

(9)

Thus, if we define the following:

A =


1 −2x1 −2y1

1 −2x2 −2y2

· · ·

1 −2xm −2ym

, (10)

z =


z
x
y

, (11)

and b =


d2

1 − x2
1 − n2

1
d2

2 − x2
2 − n2

2
· · ·

d2
m − x2

m − n2
m

, (12)

then Equation (9) can be written as follows:

Az = b. (13)

The LS technique can now be applied to calculate z. Therefore, the coordinates of target point
(e, n) can be obtained as follows:

z =
(
ATA

)−1
ATb. (14)

The weighted centroid algorithm is used to estimate the coordinates of unknown points.
The centroid is the point where the abscissa and ordinate are defined by the average of the surrounding
N points. However, in practical applications, not all points have the same impact on the outcome.
We usually use weighted methods to consider more relevant points for a larger proportion of the
results. To ensure that higher RSSIs received higher weights and greater priority, we used Equation (15)
to convert the RSSI unit to dBm.

RSSIPi = 10RSSIi/10, (15)

where RSSIPi represents the transformed result in mW.
Each RSSI was weighted, and a set of smartphone coordinates was calculated using Equations

(16) and (17), respectively, as shown below:

wi =
RSSIPi∑

PSSIP
, (16)
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Poss =

 N∑
i=1

wixi,
N∑

i=1

wiyi

, (17)

where wi is the weight, and Poss indicates the coordinates of the smartphone.

2.4. Advanced Weighted Centroid

Similar to the weighted centroid algorithm, the advanced weighted centroid algorithm also
processes RSSIs to obtain location coordinates. The difference is that we used a mathematical model
to convert the original fixed position into the probability of being distributed at different locations.
By superimposing the probability distribution around each iBeacon, the position obtained by the
weighted centroid algorithm was taken as the initial value, and the location of the maximum value was
considered to be the coordinates of the smartphone. The basic framework of the algorithm is shown in
Figure 3.Sensors 2019, 19, x FOR PEER REVIEW 7 of 18 
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The method we used introduced a Gaussian distribution based on the triangulation algorithm
to improve the positioning accuracy. Through the above analysis, we already knew that, given an
RSSI, a smartphone may not necessarily be located on the circumference, as calculated by Equation (4),
but could in fact be located at any point in the experimental space. The probability of the smartphone
being positioned at different distances from the signal source varies, with the probability that it exists on
the circumference being highest. The probability of each of the different locations generally represents
a Gaussian distribution. Therefore, we meshed the entire area with an interval, for example 0.1 m,
and regarded every iBeacon as the center of each Gaussian distribution. Thus, we could obtain the
probability density for smartphones on different grids. As shown in Figure 4, different iBeacons
generate different probability distribution maps; thus, every grid has multiple probability density
values, and the number of these values is equal to the number of iBeacons [29]. By summing these
values, the highest grid can be considered the current location of the smartphone.
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The Gaussian distribution represented in Equation (18) has two important parameters:
mathematical expectation representing the mean value µ and a standard deviation representing
the degree of dispersion σ.

f (x) =
1
√

2πσ
exp(−

(x−µ)2

2σ2
). (18)

As shown in Figure 4, the highest point in the image, shaped like a ring, represents the circle
shown in Figure 2 and is the most likely location of the point. Based on this idea, the expectation can
be obtained through Equation (3), and the distance to the circle can be expressed as below:

∆dk =

√
(x(k) − xc)

2 + (y(k) − yc)
2
− d, (19)

where (xc, yc) is the center of the circle and the coordinate of the iBeacon, and ∆dk indicates the distance
between each grid point and circumference with radius d. This formula represents the degree of
deviation of each grid point from the average level. It can be analogized to x− µ in Equation (18).

The probability that a smartphone is distributed at different positions can be expressed as follows:

pi j(k) =
1

√

2πσ2
·e
−∆dij(k)

2

2σ(d)2 , (20)

where σ is the standard deviation for the Gaussian distribution. The standard deviation reflects the
degree of dispersion between individuals within a group. In Figure 5, the curve shows the shape of
the concave function, indicating that the same change in distance corresponds to different changes
in RSSI. In our algorithm, every smartphone corresponds to several iBeacons, each of which has a
corresponding σ.
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From Equation (20), we can see that path losses n and A indicate that the RSSI at 1 m had a
significant influence on result P. Although σmay not have the same effect on the result, it is an important
parameter in this algorithm. The standard deviation changed with the distance; the farther from the
iBeacon, the larger the variance and the larger the standard deviation were [3]. Equation (21), shown
below, was used to calculate σ:

σ(d) = α+
d
β

, (21)

where α and β are constant and obtained empirically. In the actual experiment, the equation was
adjusted; we let α = 5 and β = 3.

To obtain the final probability of each grid, we needed to account for the probabilities from each
measurement. The operation is as follows:

gi j =
N∑

k=1

pi j(k). (22)

The position coordinates at which the smartphone is most likely to be located are where gi j is the
maximum. Figure 6 shows the probability distribution contour map considering the observations of
multiple iBeacons within the test site. This schematic was drawn mainly from the results obtained
through computer simulation experiments. It can be seen intuitively that the closer the simulation
approached the real position, the higher the probability became. The simulation results obtained
through this method were very close to the true position.
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In the actual calculation, we did not divide the grid; instead, the maximum value was obtained by
optimizing an objective function, Equation (22), equivalent to finding the grid with the smallest value.
We used the quasi-Newton algorithm, which is well-recognized and effective [30], as our optimization
method. The initial value of the optimization was the position coordinate obtained via the weighted
centroid method.

3. Experiment

In this section, we present the implementation of our experiments, the devices used, and how
data were processed.

3.1. Device and Software

The iBeacon used (Figure 7a) was part of the Max iBeacon series from Bright iBeacon (Bright
Beacon in Chongqing, China). This product has a very low energy consumption and can run for two
to three years on two AA batteries. The nRF51822 chips [31] (NORDIC in Oslo, Norway) built into
these devices are ideally suited for BLE and 2.4 GHz ultra-low-power wireless applications. We set the
transmission time interval to 0.1 s to help us obtain more data and for ease of data processing.
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meter from Leica Geosystems.

Based on the results of previous experiments [3,23], we have acquired considerable prior knowledge
about laying iBeacons. We investigated the experimental site in advance to determine the deployment
of the iBeacons in the experiment. The iBeacons were placed in a rectangle and distributed evenly in
the network at 1.2 m above the ground. This way, we were able to disregard the results of different
distribution characteristics. When we first started the experiment, we placed more iBeacons for extra
observations to allow us to explore how the number of iBeacons influenced the accuracy of the results
by continuously reducing the number of iBeacons placed. We recorded the signals sent by iBeacons
through our own Android application on an OPPO N1 smartphone (OPPO in Dongguan, Guangdong,
China) and an Honor 8 smartphone (HUAWEI in Shenzhen, Guangdong, China) running the Android
7 operating system.

As our positioning was not static, the true path coordinates were known before precision
calculations. The distance to the two coordinate axes was measured, based on the previously
established coordinate system, using the laser range finder on continuous trajectories. We used the
DISTO D110 from Leica Geosystems (Leica in Wetzlar, Hessen, Germany), which has an accuracy of
0.0015 m (as shown in Figure 7b), in our experiment.

3.2. Experimental Sites

Our experimental sites were an 18.97× 12.76 m conference room and a 6.64× 5.63 m office. During
the experiment, some people walked around randomly to simulate positioning in a real scene.

The conference room was an open room with some tables and chairs that were placed as in
Figure 8a. We placed the table in the center of the conference room. This allowed the tester to walk along
a looping path around the desks. In this experimental scenario, we used a total of 25 iBeacons, and they
were placed in a 5× 5 grid at 3 m intervals. The position of the iBeacon is shown in Figure 9. The way we
arranged iBeacons was based on experience in previous experiments. It has been found that placement
like this can excellently avoid the situation of three or more circles having no intersection. The route
we planned was a closed rectangular route surrounded by iBeacons. In this way, it is convenient to get
the real path during the experiment, and the positioning result can be better displayed.

The office was a small room containing several desks and other items. The iBeacon placement
was similar to the previous experimental scene. As this room was smaller, we used 19 iBeacons
and placed them in a rectangular-like grid. The arrangement of more redundant iBeacons facilitated
the subsequent study of the relationship between the number of iBeacons and positioning accuracy.
As some desks in the office could not be moved, we placed the iBeacon on the partition of the desk.
The spacing between each iBeacon was approximately 2 m. The positions of the iBeacon are shown
in Figure 10. We also designed a loop motion trajectory in the aisles between the tables. This route
mainly used the existing aisles in the office. This was a good way to simulate the route people would
walk in the office.
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3.3. Data Processing

Before the experiment started, we needed to measure the RSSI at 1 m and obtain the path loss
value at the experimental sites. The measurement was performed continuously for 30 s at a distance of
1 m from the iBeacon, and the average value was taken as the value of A in Equation (3). The path loss
values in the experimental scenario were deduced using the RSSI at different preknown distances, and
LS regression was used to obtain the path loss value.

We set the iBeacon transmit power interval to 0.1 s and averaged 10 values to reduce the volatility
of the environment and system itself. Thus, our position was updated every second, which was in line
with human walking habits.

We entered the pre-processed data into the model to obtain the final positioning results. This result
was verified with the accuracy of the coordinates obtained using a laser range finder. Both accuracy
verification and picture drawing were performed using MATLAB (MathWorks in Natick, MA, USA).

4. Results and Discussion

In this section, we discuss the experimental results including the trajectory and accuracy analyses
obtained through the different algorithms. In addition, we showed how the density of iBeacons
influenced the positioning accuracy.

4.1. Positioning Trajectory Analysis

Figure 9 shows the positioning results obtained in the conference room.
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According to Figure 9a, the tester completed the planned circular path at a generally uniform speed;
this path is shown as the red closed loop in the figure. It took almost 49 s to complete the rectangular
path. In this figure, the blue dots represent the placement of the iBeacons, and the blue line is the
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trajectory calculated using the nearest neighbor method. This method achieved an RMSE of 2.132 m in
the conference room. In addition to the low positioning accuracy, we determined that because the
nearest iBeacon was regarded as the current position of the smartphones, the trajectory obtained by the
nearest neighbor method was completely different from the actual trajectory. In real-time positioning,
the positioning point may not change continuously, and a transition would be observed between
points. Although this algorithm was simple and took little time, it had a low accuracy and resulted in
inaccurate paths. This method can be used in situations where the accuracy requirements are low and
there is a need for the position to be determined quickly. For higher positioning accuracy, a different
algorithm must be considered.

In Figure 9b, the green path shows the use of a simple triangular weighting algorithm. The position
of the triangle on the green path was also the initial position that we optimized. As shown, this position
was not far from the real position, and calculations from this position greatly shortened the convergence
time. The cyan curve represents the results obtained using the advanced weighted centroid algorithm.
We already knew that using the nearest neighbor method could not produce a result close to the actual
trajectory. This method had almost the same trend as the real path, and the trajectory was closer to the
real situation. In addition, this method also achieved good positioning accuracy, with an RMSE of
0.9184 m. The accuracy was greatly improved relative to the nearest neighbor method. In addition, the
coordinates we calculated changed as we moved.

As shown in Figure 10, a smaller office was used as the experimental scene. It took 31 s to complete
the entire path, and 19 iBeacons were used. As shown in Figure 11, the trajectory obtained in the office
by the nearest neighbor algorithm was more unreasonable because of the reduction in the number
of iBeacons. In the lower part of the figure, the nearest neighbor algorithm produced a path re-entry
phenomenon because of the fluctuation of the data. Thus, this method was sensitive to abnormal
values. Although the RMSE was reduced because of the increased iBeacon density, this was not a
reliable algorithm and did not have high precision.

Using the advanced weighted centroid method, we reached the same conclusion as in the
conference room: this method matched the actual path more closely than the nearest neighbor method
did. As shown at the bottom of the image, the path obtained by the advanced weighted centroid did
not return to the right path. This shows that our approach reduced the sensitivity to inaccurate data.
Therefore, this algorithm can provide stable and high-precision positioning services. Thus, in general,
the use of the advanced weighted centroid method had better fitting effects in both a conference room
and an office.
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4.2. Positioning Accuracy Analysis

Next, we conducted a quantitative analysis of the errors of the various methods. The error was
mainly derived from the signal interference during the experiment; the iBeacon itself was not stable.
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It was also impossible to produce an algorithm capable of obtaining the true value, and there were
inevitable systematic errors.

Figure 11 shows how the error between the real position and the points we calculated in the
conference room changed over time. The RMSE calculated in a conference room using the advanced
weighted centroid (AWC) method was 0.9184 m, which was considerably less than the error of 2.1326
obtained by the nearest neighbor algorithm (NN).
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However, it is apparent from the figure that almost all errors obtained at each moment using the
improved method were less than the nearest neighbor method. This method obtained a more uniform
error distribution, and there was no point at which the error far exceeded the RMSE. The figure shows
that the error of the nearest neighbor method varied greatly, and the trajectory obtained by the nearest
neighbor differed greatly from the real trajectory.

The situation was also evident in the office. Figure 12 shows how the error in the office changed over
time. Overall, the RMSE of the nearest neighbor algorithm was still higher than that of the advanced
weighted centroid algorithm. In the first 13 s, the error of the nearest neighbor was significantly
higher than that of the advanced weighted centroid and showed strong volatility. However, in the
last 16 s, the errors of the two algorithms were very close, and even the accuracy of the nearest neighbor
algorithm exceeded that of our algorithm. In summary, the error of nearest neighbor was first less
than 1 m, and then it reached an acceptable error range. Errors were also highly likely to be random.
Moreover, in the latter half of the experiment, some iBeacons were simply placed near the last arriving
point; thus, the positioning of these iBeacons greatly improved the positioning accuracy. Thus, it is
again clarified that the nearest neighbor method is heavily dependent on the arrangement of iBeacons.
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4.3. Effect of the Number of iBeacons on Accuracy

To estimate the effect of the number of iBeacons on the result, we used a different number of
iBeacons in our two experiment rooms using an advanced weighted centroid. Figure 13 shows the
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test result in the conference room. From the curve in the figure, we can see that the positioning
accuracy increased as the number of iBeacons increased. When Bluetooth is used in actual positioning,
a few iBeacons will result in very unreasonable positioning results. This is caused by a lack of other
reference values to reduce the contingency of a few measurements. Therefore, within a certain range,
the increase of the iBeacons quickly reduces the average RMSE error. This can explain that the addition
of repeated observations helps improve accuracy. However, as the number of iBeacons increases, the
improvement in positioning accuracy becomes less obvious, and the error is more stable. This indicates
that continuing to increase the number of iBeacons does not necessarily reduce system and other errors.
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As the office was a smaller room, the impact of the number of iBeacons was more evident.
Figure 14 shows that the downward trend in the curve in the office was similar to the scenario in the
conference room. In addition, the error decreased quickly between 3–8 iBeacons. When the number of
iBeacons was greater than eight, the improvement in accuracy was less evident. The curve appeared to
fluctuate, and the accuracy increased. After the number of iBeacons reached a certain level, we could
not guarantee that the redundant observations were sufficiently accurate. If the measured values were
inaccurate, the error will increase slightly. In addition, we found that in the first experimental scenario,
after approximately 17 iBeacons were placed, the increase in accuracy was less noticeable. In the office,
the improvement in accuracy was limited when more than eight iBeacons were used. This explains
that the number of iBeacons required depends considerably on the area of the site.
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This experiment indicates that, in an actual application of Bluetooth positioning, a priori
experiments can be performed to decide the number of iBeacons used. In this way, we can obtain a
high positioning accuracy without the economic loss caused when redundant iBeacons are placed.

We also considered the effect of different layout densities on the accuracy of the experiment;
therefore, we considered both the size of the experimental site and the number of iBeacons.

The average distance between two adjacent iBeacons reflects the density of beacon placement.
The greater the average distance, the lower the density. The changes in density and accuracy are
shown in Figure 15. In general, the greater the density of beacon placement, the higher the positioning
accuracy. When the average distance between two adjacent iBeacon is 3–4 m, the error values in the
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two positioning environments almost coincide. This explains why different positioning environments
have negligible effects on the accuracy. The layout density of the beacon affects the accuracy of the
positioning within a certain range. When the distance between the beacons is small, that is, after the
indoor beacon density reaches a certain level, it is difficult to improve the accuracy. This was also
observed in our previous experiment. Therefore, when planning the layout density of the beacons, the
size of the scene should be considered.
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4.4. Effect of Different Emission Frequencies on Accuracy

To study the effect of the time interval of signal transmission on the positioning accuracy, we set
the signal transmission interval of the iBeacons to 0.1 s and 1 s. We calculated the statistics on
the distribution of signals. Figure 16 shows the RSSI distributions of different signal transmission
frequencies. For an identical iBeacon, the signal distribution is approximately the same even if the
transmitted signal frequency is different during the positioning process.
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Figure 16. RSSI distributions of different signal transmission frequencies.

In this experiment, we mainly used a transmission frequency of 0.1 s. In theory, averaging more
measured values can reduce accidental errors. For experiments with a transmission time interval of
0.1 s, we averaged 10 values to obtain the signal value over 1 s. From Figure 17, it can be seen that
the overall error after averaging was significantly less than that for the signal transmitted every 1 s.
This also shows that when the time interval is 0.1 s, averaging the values in 1 s can effectively avoid
errors caused by signal instability and signal occlusion.
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5. Conclusions

This study used three positioning algorithms: nearest neighbor, weight centroid, and advanced
weighted centroid. We switched the signal source from Wi-Fi to BLE, which is stable and has a lower
power consumption. The nearest neighbor algorithm is relatively simple, but its role in practical
applications cannot be ignored. This allows quick accuracy positioning without the need for high
precision. We used this as a basic method throughout our experiment. We added the least-squares
method to solve the problem of overdetermination in the weight centroid. Further, we introduced
the advanced weighted centroid method, which treats the inaccurate results obtained by the centroid
algorithm as the optimal initial value. Furthermore, our experiment found that the probability of a
smartphone being distributed around the location of the iBeacon exhibited a Gaussian distribution.
In this manner, we obtained the probability that smartphones would be distributed at different locations
for multiple iBeacons. By summing the values in each grid, we found the maximum value, and the
location of the grid was taken as the location of the smartphone being requested. This approach did not
use signal strength to estimate the distance; instead, it treated all locations around an iBeacon as possible
points of distribution. This reduced the error caused by the environment to a certain extent. Compared
with the fingerprint method we used in reference [23], we avoided the trouble of building a fingerprint
library in the early stages of the experiment and found it easier to start positioning. We could avoid the
problem of re-establishing the fingerprint database once the arrangement of indoor facilities changed.
We also explored the particle filtering algorithms. Based on the work of reference [3], we improved the
average positioning accuracy and obtained accurate trajectory information in a manner that did not
require the use of the inertial measurement unit in a mobile phone, thereby simplifying the positioning
process. There is no need to perform weight updates and iterative operations on thousands of particles.
The time complexity of the algorithm was also lower.

We designed experiments to verify the localization effect of these algorithms in practice and
obtained substantially similar experimental results in two different scenarios. In both scenarios,
the RMSE of the advanced weighted centroid was less than one meter. The average accuracy was
higher than the nearest neighbor algorithm; moreover, the error distribution between the position
obtained by this method and the real value was uniform; thus, a trajectory better than that provided by
the nearest iBeacon can be obtained.

To explore how the number of iBeacons affected the experimental results, we gradually reduced
the number of iBeacons used. The results showed that the number of iBeacons influenced the accuracy
of the experiment considerably for a certain range of the number of iBeacons. However, after reaching a
certain value, the accuracy did not improve any further. In addition, we found that the threshold of the
number of iBeacons was related to the size of the experimental area. Experimenting on the application
site in advance enables higher positioning accuracy using as few iBeacons as possible. Furthermore,
we comprehensively considered the number of iBeacons and the area of the room in two different
experimental environments. It is evident that the positioning accuracy is significantly improved with
the increase of average distance between adjacent iBeacons within a certain range. However, after
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reaching a certain value, the accuracy no longer rises significantly. And when the layout density is
similar in different rooms, the errors obtained are also very close. In addition, we also discussed the
effects of different signal transmission frequencies on different positioning accuracies.

All instruments used in the study were ordinary instruments, and no special equipment was used.
Furthermore, there were no great expenses. The experimental settings were the work and meeting
environments used in daily life, without special modifications. Thus, we believe that our method can
meet indoor positioning needs under normal scenarios, has wide applicability, and is portable.
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