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Abstract: With the rapid development of three-dimensional point cloud acquisition from mobile
laser scanning systems, the extraction of urban roads has become a major research focus. Although it
has great potential for digital image processing, the extraction of roads using the region growing
approach is still in its infancy. We propose an automated method of urban road extraction based on
region growing. First, an initial seed is chosen under constraints relating to the Gaussian curvature,
height and number of neighboring points, which ensures that the initial seed is located on a road. Then,
the growing condition is determined by the angle threshold of the tangent plane of the seed point.
Then, new seeds are selected based on the identified road points and their curvature. The method also
includes a strategy for dealing with multiple discontinuous roads in a dataset. The result shows that
the method can not only achieve high accuracy in urban road extraction but is also stable and robust.
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1. Introduction

Urban roads, as a major element of a city’s infrastructure, have always been important in the life of
city dwellers, because people’s business and pleasure can be connected through them [1]. In addition,
roads can provide contextual clues for recognizing other elements, such as road signs, road markings,
and cars. Thus, the accurate extraction of roads can provide important support for road surveying,
autonomous vehicle navigation, and other applications [2].

However, the traditional means of extracting urban road information are not only inefficient,
but also expensive [3]. In recent years, because it employs a non-contact approach and has a high speed
and accuracy, three-dimensional (3D) laser scanning has become one of the most effective measurement
techniques, and using 3D point cloud data to extract urban features has become popular in research [4].
The sources of 3D point cloud data include airborne laser scanning (ALS), terrestrial laser scanning
(TLS) and mobile laser scanning (MLS). Among these, MLS, which is faster than TLS in terms of
acquisition speed and higher than ALS in terms of data resolution, has been widely used in route
planning, road design and road surveying [5].

Currently, there are many ways to extract road pavement from a 3D point cloud. Guan divided
them into five categories: the geometric shape of a road, the use of the geometric features and LiDAR
data characteristics of a road, the data format, the use of classification methods, and external data
sources [6]. In terms of technical independence, there are two principal types of method. One involves
extracting 3D road surface points using road structure representation with only the point cloud data,
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such as cluster analysis [7], Hough transform [8], RANdom SAmple Consensus (RANSAC) [9] and
weighted least squares linear fit [10]. These methods can achieve an accuracy of more than 90%, but they
are quite time consuming and computationally intensive. In order to improve their computational
efficiency, many other new methods have been proposed. A method based on the scan line [11] has been
proven to be effective, which detects the slope and elevation of a local terrain along a series of scan lines.
However, the method has some restrictions, because the point clouds lack the characteristics of a scan
line order [4]. Others extract roads by detecting road edges, for example, Yoon and Crane [12] used the
slope and standard deviation to estimate the road edge; Ibrahim and Lichti [13] applied the derivative
of the Gaussian function to mobile LiDAR points to extract the edge of the road; and Yang [14] modeled
the curb based on elevation difference, point density and slope change. These methods can improve
efficiency, but the steps of most methods are complicated, and some need other information. The
second type of method uses other information to enhance road recognition, such as intensity [15,16],
point color [12], trajectory data [17], road properties [18], and other types of data [19,20] (video cameras,
ASL, TSL, etc.). Both the accuracy and efficiency of these methods are optimized. However, if the
original point cloud datasets have only spatial coordinates, all of them will be invalid. When they
do have only spatial coordinates, an effective automated method for extracting road pavement from
MLS becomes important. In recent years, many scholars have begun to apply deep learning to the
extraction and identification of roads. Balado [21] and Yao et al. [22,23] combined deep learning and
semantic segmentation to identify road environments. However, deep learning requires a lot of time to
train the sample.

Region growing is mainly used for image segmentation [24] and edge detection [25]. The basic
concept of region growing is the merging of similar points by determining the similarity of attributes
between seeds and their neighboring points, with continued iteration until all points are processed.
Since the method of region growing was proposed, it has been used for road extraction from multiple
image data [26–28]. After 3D point cloud technology matured, region growing began to be widely
used in point cloud segmentation [29,30] and the extraction of urban elements [31,32]. Nonetheless,
region growing is currently less used in road extraction using MLS data. Na [33] proposed a method of
extracting roads based on region growing, but it requires vehicle pose information [34,35].

In order to solve the problem of creating automatic road extraction technology when there is only
spatial coordinate information in the MLS data, in this paper, we propose an automated method of
road extraction based on region growing. First, an initial seed is chosen under the constraints of the
curvature, height and number of neighboring points, which ensures that the initial seed is located on
the road. Then, the road points are evaluated in terms of the angle threshold of the tangent plane of
the seed. Then, new seeds are selected based on the identified road points and their curvature. This
method also includes a strategy for dealing with multiple discontinuous roads in a dataset. The results
show that the method can not only achieve a high accuracy in urban road extraction but is also robust.

There are five sections in this paper. The first chapter introduces the research background and
status. Section 2 expounds the principle of this method, including the initial seed selection, road cluster
growth judgment, new seed selection, and the strategy of discontinuous roads. Section 3 describes the
experimental data, ground truth and accuracy assessment. Section 4 provides the experimental results
and analysis, and Section 5 presents the conclusion.

2. Urban Road Extraction Using Region Growing

2.1. Method of Region Growing

Region growing merges points that are sufficiently close in terms of smoothness constraint,
and each type of merged point is considered to be in the same cluster. The steps of the algorithm are as
follows (Figure 1). First, the initial seed point is chosen, and the Ks of its nearest neighbors are found.
Second, it is determined whether each neighbor belongs to the same cluster as the seed. If the neighbor
belongs to the same class, it is added to the cluster of the seed and marked as classified. If not, the point
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is returned to the unclassified data. Third, it is determined whether each classified point can be used
as a new seed point. If so, the point is added to the seed set, and the steps of finding the seed and its
cluster are repeated, until no more new points can be added. Finally, the above steps are repeated for a
new cluster, until all points are classified. Figure 1 illustrates the process of region growing. The red
point is the seed; the blue points are unclassified; the yellow points are in the same cluster as the seed;
and the black points are in a different cluster.
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Figure 1. Principle of region growing. The red point is the initial seed; the yellow points are in the
same cluster; the black are not in the same cluster; and the blue are the undetermined points. (a) Initial
seed and neighborhood; (b) judgment of neighboring points; (c) the process of region growing.

Region growing is mainly used for point cloud segments, especially those of buildings. The 3D
building model can be constructed on this basis. For a single type of building, the types of clusters
are consistent, and the cluster difference is more obvious, because artificial buildings are mutated.
Therefore, the method of region growing for building segments is effective. However, urban point
cloud data from MLS not only have a huge number of points but are also composed of many types
of geographical objects, such as roads, vegetation, and buildings. Among these, the road spatial
distribution is similar to a horizontal plane, the building is similar to a vertical plane, and the vegetation
is similar to 3D space agglomeration. The other types are irregular. Thus, it is difficult to use a unified
standard in the region growing method. Even with a unified standard, in contrast to the mutation of
buildings, there are many terrain gradients in urban areas. In addition, local features, such as a normal
curvature, are often used in region growing. However, by using local features, the segment results of
MLS are not satisfactory, because they are noisy. Thus, many questions have arisen about incomplete
or excessive segmentation, when region growing is used for segmentation with MLS (Figure 2).
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Figure 2. Segmentation results of MLS based on region growing. Left: Incomplete segmentation
(Roads and trees are classified as belonging to the same class); right: Excessive segmentation (The same
types of elements, such as roads, trees, and buildings, are classified as belonging to multiple classes).
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2.2. Urban Road Extraction Based on Region Growing

A road is a single geographical element, and the spatial locations of road points are similar, being
distributed on a relatively flat surface. While it is difficult to classify all types of elements using uniform
criteria in region growing, this can aid in the extraction of road pavement, due to the similarity of road
points. In region growing, there are two factors that are important in the extraction of urban roads: the
selection of seed points and the determination of urban road clusters. These two factors both determine
whether the road surface continues to spread. In this research, we propose an automated method of
road extraction, based on region growing, using MLS data, including the selection of the initial seed,
decision on road point growth, new seed selection and discontinuous road strategy.

2.2.1. Selection of the Initial Seed Point

The initial seed point is the most important; it determines the starting position of the road. Based
on region growing, our concept did not consider all points from start to finish, but as many points on
the road as possible. This reduces the computing time. Therefore, the initial seed must be located on
the road.

Common methods of choosing the initial seed depend on the minimum elevation or curvature.
For the elevation, the point of minimum elevation may be on the road under normal circumstances, but
there are exceptions. For example, gross error points below the road or points in concave areas are most
likely to be the initial seed, according to the rule of elevation. Thus, the initial seed point, determined
through a search for the lowest elevation, is probably not located on the road. The curvature describes
the curvature of a surface. Generally, the surface of the road does not bend significantly, but there are
many flatter surfaces in the MLS dataset, e.g., building façades, billboards, and buses. In addition, the
number of points in the MLS dataset is huge, and the description of the curvature is only a single value,
which may cause many more than one point to have the same minimum curvature. Consequently,
using the point with the smallest curvature as the initial seed cannot ensure that it is located on the road.

In this paper, we propose a method of selecting the initial seed point based on the number of
neighbors, curvature, and elevation. First, the initial seed must be located on the road, and the points
on the road must be distributed densely and uniformly. Thus, the number of neighbors around the
initial seed should be sufficient. A portion of the points are not considered if the number of neighbors
is less than a certain threshold. This is shown in Equation (1), where P0 is the seed, NP0 is the number
of neighbors, and σNn is the threshold. In Equation (1), as in Equation (2), the neighborhood radius
is set to four times the sampling distance, and σNn is five. The point with the smallest curvature is
regarded as the initial point (Equation (2)), and if the number of points with the smallest curvature
is more than one, the initial point should be that with the lowest elevation among the points with
the same smallest curvature (Equation (3)). The intent of Equation (3) is to avoid points not on the
non-road becoming a seed.

NP0 > σNn (1)

KP0 = min(|Ki|), i = 1, 2, · · ·, n (2)

HP0 = min
(
H j

)
, j = 1, 2, · · ·, m (3)

In Equations (2) and (3), KP0 and HP0 are the curvature and elevation of the seed, respectively;
Ki is the curvature of the i-th point, n is the number of points in a dataset, Hj is the elevation of the j-th
point, and m is the number of points with the same minimum curvature. The curvature has positive
and negative values. Here, we need only consider its magnitude, without regard to the positive
and negative values, so the absolute values of the curvature are used to determine the initial seed.
The determination is conducted in a sequence. The number of neighbors is determined first, followed
by the curvature and, finally, the elevation. If a point is not satisfied in the previous condition, it is
directly ignored, without considering the subsequent conditions. This can improve the efficiency of
the method.
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There are several different types of curvature, the principal [36,37], mean [38,39],
and Gaussian [39,40]. The principal curvature includes the maximum and minimum curvature.
There are an infinite number of orthogonal curvatures at a point on the surface where there is a
curve, such that the curvature at this point is the maximum (maximum curvature), and the curvature
perpendicular to the maximum curvature surface is the minimum (minimum curvature). The mean
curvature is the arithmetic mean of two principal curvatures (Equation (4)), and the Gaussian curvature
is the product (Equation (5)).

Km = (Kmax + Kmin)/2 (4)

Kg = Kmax·Kmin (5)

In the above formulae, Kmax is the maximum curvature, Kmin is the minimum curvature, Km is the
mean curvature, and Kg is the Gaussian curvature.

The road pavement is an approximate plane for considering the road point from the curvature
value, following Equation (1). However, in addition to the road, there are other elements in the urban
point cloud dataset that may be closer to the plane, for example, a billboard. In order to avoid an
erroneous selection of points on a billboard, instead of the road points in Equation (2), it is necessary to
reduce the difference in curvature between the points on the road pavement and on the other plane as
much as possible.

Road pavement is not an absolute plane and is more undulating than a billboard. In terms of
curvature, the maximum and minimum curvature of the points on the billboard are theoretically close
to zero. For the road points, the minimum curvatures are also approximately equal to 0. However,
the maximum curvatures are higher than the point on the billboard. If the maximum curvature is
used in Equation (2), the result of the selection is definitely a point on the billboard, and the average
curvature is the same. Moreover, if the minimum curvature is chosen, the number of points that
satisfy Equation (2) will greatly increase. This will increase the computational expense of Equation (3).
More importantly, the results of the initial seed point are often incorrect. Once there is a point where
the minimum curvature is close to 0, and the elevation is below the point on the road, the results will
be incorrect. The Gaussian curvature neutralizes the maximum and minimum curvatures. The road
surface is relatively flat, and the difference between the maximum and the minimum curvature is not
large, so the Gaussian curvature of the points on the road is close to 0. Other points with a minimum
curvature of 0 have a Gaussian curvature higher than the road points, because they are not on a flat
surface, and their maximum curvatures are significantly higher than the minimum.

Figure 3 illustrates the results of the initial seed for an MLS dataset using various curvatures.
From the figure, the initial seed with Gaussian curvature is located on the road, whereas the other
three curvatures are on the vertical surface of an object, such as a billboard or bus. Thus, the Gaussian
curvature has a better stability, and the probability that the initial seed will be on the road is greatly
increased using Equation (3) with Gaussian curvature.
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2.2.2. Decision on the Growing Condition

Once each seed of the road is determined, its K neighbors are considered in terms of whether
they belong to the same class as the road. The principle for determination is a similarity of spatial or
geometric attributes. If that similarity is strong, the neighbor will be classified as a road. While the
curvature describes the spatial properties of the point, it is too rough to distinguish between the classes
of road and non-road from a huge number of points. Therefore, it is necessary to use a new criterion,
with a greater distinguishing capacity, to extract the road.

Currently, common methods are based on a difference in elevation [41] (hereafter referred to as
DE), horizontal angle [42] (referred to as HA), the angle between two normal points [43] (referred to
as AN), the point feature descriptor, etc. The principles are shown in Figure 4, where ps is the seed
point, and pi is a neighboring point. The methods of DE and HA treat the urban road as a horizontal
plane, but, in fact, the law is such that the road center is slightly higher than the edge, and some
roads have a certain slope. AN calculates the angle between the normal points of the seed and its
neighbor. The normal point is affected by the search radius, and when vegetation is connected to
the road, its normal points may be consistent with the road. Descriptors aim at encoding the local
shape around a point in terms of a set of numerical values, the vast majority of which are in the form
of high-dimensional histograms. By calculating the Euclidean distance between histograms of the
seed and its neighbors, the difference between points can be obtained. For descriptors, Fast Point
Feature Histograms [44] (referred to as FPFH) have a good overall performance in terms of efficiency,
robustness and descriptiveness (Figure 4d). However, descriptors consider differences in the spatial or
geometric attributes of all points and do not aim at a particular type of geographic element, such as a
road. Therefore, descriptors do not have an advantage in extracting roads.
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Figure 4. The principle of different methods in the judgment of the cluster belonging to an urban road,
(a) difference in elevation (DE): h is the height of pi at the level of the seed; (b) horizontal angle (HA):
θh is the angle of pi at the level of the seed; (c) angle between two normal points (AN): θn is the angle
of pi, relative to the tangent plane of the seed; (d) Fast Point Feature Histograms (FPFH): The abscissa
represents the subinterval of the angle in three directions, and the ordinate is the percentage of the
number of points.

Our proposed method for determining the road class in order to extract roads from an MLS dataset
is shown in Figure 5. While one needs to calculate the angle, in contrast with HA, the angle between
the tangent plane of the seed and the connection between the neighbor and seed (referred to as TA) are
used for determination.
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Equation (6) is used to calculate TA, where θt is the value of TA, n = (A, B, C) is the normal vector
of the tangent plane, (xs, ys, zs) is the 3D coordinate of the seed, and (xi, yi, zi) is the i-th neighbor of
the seed. The criterion for determining whether a point belongs to the road class is represented in
Equation (7), where pi is the i-th neighbor of the seed, and σA is the threshold of TA. If θt is ≤ σA,
the point belongs to the road (and vice versa).

θt = arcsin


∣∣∣A(xs − xi) + B(ys − yi) + C(zs − zi)

∣∣∣√
(xs − xi)

2 + (ys − yi)
2 + (zs − zi)

2

 (6)

pi =

{
true, θt ≤ σA
f alse, θt > σA

(7)

When the road is similar to a horizontal plane, HA and TA are nearly the same. If not, the difference
is greater. Figure 5 illustrates three different situations: panel (a) for the concave, (b) for the convex,
and (c) for the terrain with a stable slope. It is seen that, for a sunken road, the value of TA is less than
that of HA, whereas, for a raised road, the contrary is the case. While there are greater and lesser TA
values, larger angles are reduced for a sunken road. When the terrain has a stable slope, the values of
TA, which are similar to those of HA on a horizontal plane, become very small. Therefore, based on
TA, the range of angles on the road are smaller, which makes it easier to distinguish between the road
and other elements.
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2.2.3. Determination of New Seeds

The growth of roads is carried out by constantly adding new seeds. These seeds are used to
control the spread from the initial seed to the entire road. Once a new seed is confirmed, it can be used
to determine whether its neighbors belong to the road by searching for neighboring points. Thus,
new seeds have a great impact on the accuracy of road extraction. Equation (8) shows the principle of
the new seed:

pi =

{
true, pi ∈ Cr ∩Kpi < σK

f alse, otherwise
(8)

where Kpi is the Gaussian curvature of a point pi, σK is the threshold of the Gaussian curvature, and
Cr is the collection of road points. The determination of new seeds depends on two criteria: the
same cluster as the seed and the Gaussian curvature. If a neighboring point of the previous seed is
identified as the road cluster, it may be a seed, because it has passed the validation, conducted using
Equation (7). Otherwise, this point is certainly not a seed. However, this is not enough. When a
point is located on the edge of the road, it is no longer suitable to be a seed. This situation can be
filtered using Gaussian curvature. Since the edge of the road is an artificial mutation, the Gaussian
curvatures of these points are significantly larger than the road points. Therefore, the points at the
edge can be detected by setting a threshold for the Gaussian curvature, in order to determine whether
region growing continues. Therefore, the second criterion is that the Gaussian curvature of the point
must be less than a certain threshold.

2.2.4. Strategy of Discontinuous Roads

Following the method presented above, the road can theoretically be extracted accurately, if the
seed selection and road determination are correct. There is one exception: when there is more than one
road in a point cloud dataset, which is not contiguous with another, only one road can be extracted.
This method of region growing is implemented via the constant spread of points. Thus, when the
first road is extracted, there is no longer a new seed and point belonging to the road that meets the
conditions, because of the discontinuous area between the roads.

According to the method presented, the initial seed must be located on the road. When there
is more than one road within a point cloud dataset, our method is still applicable to the remaining
points, even if one road is extracted. That is, for the remaining points, the initial seed, re-determined by
Equations (1) to (3), must be on another road. Thus, to extract all discrete roads, the remaining points
can be recalculated using the method of selecting the initial seed and determining the points belonging
to the road (Sections 2.2.1 and 2.2.2).

The key to the method is when region growing ends. The normal method based on region growing
constantly repeats the search for new initial seeds, and extracts points belonging to the initial seed,
until all points are classified. Afterward, all classes are identified in terms of whether they belong
to the road. However, the efficiency of this method is low, because it needs to traverse all points.
As mentioned earlier, all road points will be extracted first, and then the other points can be extracted.
The number of road and non-road points varies widely, and the number of points on the road is much
greater than that of other types. Therefore, we can set a threshold for distinguishing between roads
and non-roads. Equation (9) shows the basis for this determination:{

Roads = {Ci|i = 1, 2, · · ·, k− 1 }
NCk < σNr

(9)

where Ci is the i-th class, NCk is the number of points of the k-th class, and σNr is the threshold.
When the number of points of the i-th class exceeds the threshold, the current class is considered a
road, and region growing continues. Otherwise, the current class is a non-road, and the algorithm
stops. The final roads are all the classes, before the current one. Figure 6 illustrates the algorithm
flowchart of urban road extraction, with region growing.
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2.2.5. Search Strategy for Neighboring Points

Searching for the points nearest to a given point is often involved in 3D point cloud data processing,
such as in the present calculation of normal points and curvature and region growing. The search
strategy depends on the data structure of the point cloud, and there are two main types: the K-D tree
and octree. The K-D tree is used for searching for neighbors and has two means for determining the
neighbors. One is to search for the number of the neighborhood (N neighborhood), and the other is to
search for the radius. While they are all based on the K-D tree structure, there are some differences
between the two. N neighborhood searches for the nearest k points from the current point, whereas
the method based on the radius searches for all points within a sphere, of which the current point is
the center, and r is the radius.

When calculating the normal points and curvature, the values are influenced by the neighbors.
If the number of neighbors is too small, the values may be NaN. Therefore, N neighborhood is typically
used for normal points and curvature, because it ensures that the number is always k. However,
when extracting the road using region growing, the N neighborhood and radius search methods are
both flawed. If, when the radius is used for searching for the nearest points, it is too small, the region
may be unable to grow to the entire road. If it is too large, many non-road points may be misjudged
near the boundary. Furthermore, it is difficult to find a suitable radius value to achieve a high accuracy
of road extraction, because the resolution, nearest distance, and road width in different data are not the
same. When N neighborhood is used, the neighbors may contain outliers, discrete or sparse points
at the boundary, which may be considered as road points. In addition, the problem of finding the
threshold for the optimum accuracy is the same as in the search radius.
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To improve the applicability and robustness of our method, N neighborhood and search radius
were both used to constrain the proximity points. That is, the radius was set to a larger value for
searching for neighbors, and an upper limit was used to control the maximum number of points. Thus,
there is no case in which the road points cannot be completely traversed because the radius is too small,
and a large number of non-road points are determined, even if the radius is too large. Detailed results
are presented in Section 4.3.2.

3. Experimental Setup

3.1. Test Data

Five data are used to test the proposed method, namely, a simple road, partially sheltered road
(referred to as a sheltered road), partial continuous road with an isolation belt (referred to as a partial
continuous road), discontinuous road with an isolation belt (referred to as a discontinuous road), and
multiple roads of different types (referred to as multiple roads). All data were acquired by MLS in
2015, and the data area is the city of Nanjing. The number of points in each dataset is between 3 and 8
million, and the nearest distance of the points is 0.02 m.

The most homogeneous data were on the simple road. There is no shelter or isolation belt on the
road, and the road is continuous and straight. However, the curb is discontinuous. The simple road
data are shown in Figure 7.
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The sheltered road has numerous occlusions, because there were many vehicles on the road at the
time of data collection. For this type of road, there are many blank areas in the data, but the points on
the road are connected overall. The purpose of using the sheltered road is to test whether a road with
occlusions can be effectively identified. In addition, the sheltered road data are curved, which can be
seen in Figure 8.
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The partial continuous road (Figure 9) is also straight, but, in the middle of the road, there is an
isolation belt that does not completely separate the road. At the end of that belt, the two-way road is
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continuous. The purpose is to test whether our method can effectively avoid the isolation zone and
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The discontinuous road data are similar to those on the partial continuous road. The difference
is that the two-way road is discontinuous (Figure 10). From the profile view, the elevations of the
points on the isolation belt are all greater than those on the road. The purpose is to test the effect of the
algorithm when applied to discontinuous roads.
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The data on multiple roads are different from the previous data. In these data, not only is one
road completely separated from the isolation belt, but there are also other types of roads. As shown
in Figure 11, there is a non-motorized road beside two discontinuous roads. Additionally, a large
number of points are located below the road. The purpose is to test whether the three initial seeds are
accurately located on three types of roads, and whether we can achieve a high accuracy for different
types of roads.
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Figure 11. Multiple roads data. Left: global map; right: road profile view.

There are other differences. All data have outliers, and those on multiple roads are the
most numerous, followed by those on the simple road, sheltered road, partial continuous road,
and discontinuous road. Many of the outliers in the different data are below the roads and can be used
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to verify the effect of selecting the initial seed, using our proposed method. Details of these data are
listed in Table 1.

Table 1. Data used in road extraction.

Type of Data
The

Number of
Points

The Type of
Road

Continuous
Curb Outlier Occlusion Isolation

Belt

Simple Road 3,306,211 Single No Small Small No
Sheltered Road 3,027,780 Single No Small Large No

Partial Continuous Road 4,658,529 Single Yes Small Small Yes
Discontinuous Road 3,663,311 Double Yes Small Small Yes

Multiple Roads 8,262,651 Multiple Yes Large No Yes

3.2. Ground-Truth Road

Ground-truth roads are used for calculating accuracy. Because of the boundary and continuity of
the road, it is easy to distinguish between a road and non-road by artificial judgment. Ground-truth
roads for the five data were manually selected along the curb of the road using CloudCompare software.
However, in practice, not all curbs are continuous, and many are broken. This causes some trouble
when selecting ground-truth roads. The criterion for selecting ground-truth roads is that the broken
curbs are connected with a closed section along their edge lines, while maintaining the overall shape of
the curb line. The points within the closed area default to ground-truth roads, and the other points are
deleted. The results for the ground-truth roads are shown in Figure 12.
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3.3. Accuracy Evaluation

We extracted roads from five data using our TA method. The other four methods (DE, HA, AN,
and FPFH) were also implemented for the same data to compare the results. The comparative analysis
includes accuracy, sensitivity, and the influence of other parameters.

3.3.1. Accuracy Evaluation Criteria

We used the Kappa coefficient to evaluate the accuracy of the results for the extracted roads and
ground-truth roads. Kappa is an important index for evaluating the consistency and reliability of
classification results [45]. It is commonly used in the evaluation of classification. Kappa is also suitable
for assessing the results of geographic element extraction. The formulae of Kappa are as follows:

k = PA−Pe
1−Pe

PA = (a + d)/n

Pe = (a1 · b1 + a0 · b0)/n2

(10)

where k is the value of Kappa, PA is the observed agreement, Pe is the chance agreement, a1 is the
ground-truth roads, b1 is the extracted roads, a0 is the ground-truth non-roads, and b0 is the extracted
non-roads. The larger the Kappa value, the greater the precision.
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3.3.2. Sensitivity to the Road Threshold

While Kappa reflects accuracy, a variable threshold θt produces a variety of accuracy values.
This is because, in urban road extraction based on region growing, some points are considered to
belong to a road with a small threshold but not a larger threshold.

To demonstrate these rules, we experimented with the five methods (TA, DE, HA, AN and FPFH)
and five data. In each method, 20 threshold values, ranging from 0.005 to 60, were used. The total
number of experiments was 500, and the results were shown by broken line graphs. While the units of
the thresholds in each method were inconsistent (degree, distance and others), the main purpose of the
experiment was to investigate the overall sensitivity of those methods.

3.3.3. Influence of Gaussian Curvature and the Search Radius

There are other parameters that affect the results of urban road extraction. The two most important
are Gaussian curvature and the search radius. Gaussian curvature is used to determine whether a point
is a seed. The larger the threshold of the Gaussian curvature, the higher the probability of becoming a
seed, and the greater the number of points considered to be a road. Nevertheless, the effect of different
thresholds on accuracy is unclear, which is also the case for the search radius.

Thus, we performed two sets of experiments, one for the threshold of the Gaussian curvature Kg

and the other for the search radius r. In each set of experiments, we used six thresholds, ranging from
small to large.

4. Experimental Results and Analysis

4.1. Results of Road Extraction

The results of urban road extraction from the five data are shown in Figure 13, in which panels (a)
to (e) are the simple road, sheltered road, partial continuous road, discontinuous road, and multiple
roads, respectively. The black points in the figure are the initial seeds, and the red points are the urban
roads. The numbers in (d) and (e) are the serial numbers of the seeds from different discontinuous roads.
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Figure 13. The results of road extraction, the numbers 1O, 2O and 3O in the figure indicate the numbers
of independent roads: (a) simple road; (b) sheltered road; (c) partial continuous road; (d) discontinuous
road; (e) multiple roads.

As shown in Figure 13, all the initial seeds from the different data were on the roads. When the
number of roads is greater than 1 in a datum, each initial seed is located on a different road. This
indicates that the method of selecting the initial seed for different roads was correct. Figure 14 shows
the visualization of the extracted road overlaying MLS data. It can be seen that points above the road
surface (vehicles, pedestrians, etc.) can be clearly distinguished. At the same time, the extracted road
has very high precision at the curb, but when the curb line is discontinuous, some points at the break
will be misjudged.
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Table 2 shows the accuracy of the five data. Overall, the roads extracted from the five data are
accurate, as all have an accuracy of over 90%. This shows that the method proposed in this paper
is feasible and can achieve good results. Specifically, the accuracies of the discontinuous road and
multiple roads are the highest, exceeding 94%, followed by the continuous road, which exceeded 92%.
The accuracies of the simple road and occluded road were the lowest, exceeding 90%.

Table 2. The accuracy of the five data.

Data Accuracy (%)

Simple Road 90.56
Sheltered Road 90.95

Partial Continuous Road 92.27
Discontinuous Road 96.11

Multiple Roads 94.39

In the five data, the curb and intermediate barrier of the discontinuous road and multiple roads
are continuous, and both have obvious boundaries. The partial continuous road also has a continuous
curb and intermediate barrier, but the boundary of the isolation zone is not as obvious as it was in
the first two roads. The curbs of the simple and sheltered road are discontinuous and have many
breaks. It can be seen, from Figure 13, that the simple and sheltered roads with the lowest accuracy
have some serrations on the curb, while this situation does not appear in the discontinuous road and
multiple roads. The partial continuous road falls somewhere in between. Therefore, the method in this
paper can achieve good results on the whole. Nevertheless, it is sensitive to curbs and depends on the
continuity and clarity of curbs.

4.2. Comparison with the Accuracy of Other Methods

To compare the accuracy of TA with that of the other methods, we conducted five sets of
experiments, in which the thresholds were uniformly set to 20 different values: 0.005, 0.01, 0.05, 0.1,
0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 45 and 60. While the threshold units of the methods were
inconsistent, the purpose of the experiment was to determine the range and stability of the accuracy
of those methods. The values of the other parameters remained the same, i.e., the threshold of the
Gaussian curvature was 0.02, the search radius was 0.24, and the maximum number of neighborhoods
was 30. Figure 15 show the results of the different methods for the five data.

As shown in Figure 15, for simple roads, the greatest accuracies of TA and HA were optimal and
nearly identical, followed by those of DE and FPFH, and those of AN were the lowest. The minimum
accuracy of TA was the highest, followed by that of AN. The other three methods had the lowest
minimum accuracy. This behavior was the same for the other four datasets. However, with an increase
in the threshold, the TA method always achieved a high accuracy (close to 90%), until the angle
threshold was 15. The accuracy of DE was very low (less than 10%), prior to the threshold reaching
0.01; beyond that value, the accuracy was stable but below 80%. This indicates that, when the height
difference between neighboring points was less than 0.01 m, DE could not correctly distinguish between
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road and non-road. Even if the accuracy of DE was stable, it was low. HA could not recognize road
points when the horizontal angle threshold was less than three degrees, and, like TA, its accuracy began
to decline when that threshold was greater than 15 degrees. This reveals that the effective distinction
between horizontal angles was greater than three degrees. AN could identify road points at a very
small threshold of the normal angle difference, and its accuracy was very stable but too poor. This
indicates that the normal angle difference between neighbors was very small and could not be used to
effectively distinguish between road and non-road points. FPFH represents the feature descriptor of a
point, which distinguishes its characteristics by calculating the Euclidean distance of the histogram.
FPFH can recognize road points only if the difference threshold of the Euclidean distance is greater
than eight. In addition, the highest accuracy it can achieve is the same as the minimum accuracy of TA.
Thus, the point feature descriptor is not the best method for identifying road points.
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Because of the obvious shortcomings of the DE, AN and FPFH methods, only the TA and HA
methods were subsequently analyzed in relation to the other four data. For the sheltered road,
HA attained a high accuracy (between 3 and 7), while that of TA was less than three. For a threshold
≤3, TA showed obvious advantages. For a threshold >3 and <8, the accuracy of HA was greater than
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that of TA, but the difference was less than 10%. For the remaining three data, the behavior of HA and
TA was more similar. For a threshold less than three, HA could not recognize the road, whereas TA
achieved a high accuracy. For a threshold ≥3, the accuracies and trends of HA and TA were roughly
the same. Table 3 shows the accuracy range of the five methods and five data.

Table 3. The accuracy range of the five methods.

Simple Road
(%)

Sheltered
Road (%)

Partial
Continuous

Road (%)

Discontinuous
Road (%)

Multiple
Roads (%)

DE
Max 76.71 77.37 82.23 68.12 67.41
Min 6.48 0.68 0.62 0.71 0.58

HA
Max 88.94 90.61 91.10 81.48 88.58
Min 6.48 0.68 0.63 0.69 5.89

TA
Max 90.31 89.61 90.50 88.07 89.59
Min 76.12 74.88 81.76 63.22 67.71

AN
Max 73.43 73.63 74.16 63.45 66.47
Min 64.14 69.47 71.28 60.45 64.55

FPFH
Max 76.71 77.36 82.16 69.79 74.38
Min 0 0 0 0 0

From Table 3, the minimum accuracies of TA for the five data were all optimal, with the greatest
accuracies for the simple road, discontinuous road and multiple road data. For the other two data
(sheltered road and partial continuous road), HA achieved the greatest accuracies, but the accuracy
difference between TA and HA was less than 10%. Table 4 shows the accuracy distribution of the
five methods.

Table 4. Accuracy distribution of the five methods.

[90,100] [80,90] [70,80] [60,70] [0,60]

DE 0 18 37 35 10
HA 3 30 24 8 35
TA 6 57 29 8 0
AN 0 0 52 48 0

FPFH 0 4 16 9 71

From Table 4, it can be seen that, among all the experimental results of this section, the number
of accuracies >90% for the TA method was six; HA produced three; and the other produced zero.
The number of accuracies between 80% and 90% using TA was 57, which is much greater than that
of HA (30) and the others. The number of accuracies >80% using TA was 63, accounting for 63%
of the total, whereas the highest proportion was only 33% using the other methods. These results
include some large and obviously unsuitable thresholds. If some larger thresholds were removed,
the proportion of TA increased. Thus, the proposed method of TA could attain a high accuracy.
More importantly, such a high accuracy could always be maintained within a threshold interval that
is common in practical applications. For all five data, the angle range at which a high accuracy was
maintained, was 0.01 to 3 degrees.

4.3. Influence of Parameters

Different values of parameters will cause the accuracy of the results to be different. This section
discusses the influence of parameters on accuracy and finds the threshold ranges of the parameters
that can be obtained with a high precision.
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4.3.1. Gaussian Curvature

Gaussian curvature was used for the selection of seeds in road extraction. Whether or not the seeds
are correctly selected had an effect on the accuracy of road extraction. To ascertain the relationship
between the curvature threshold and accuracy, another set of experiments with the TA method were
run for the five datasets, in which the curvature thresholds were set to 0.001, 0.005, 0.01, 0.05, 0.1 and
0.5. The angle thresholds were the same as those used in Section 4.2. Figure 16 illustrates the results for
the different curvature thresholds. Some curves with curvature thresholds are not visible in Figure 16,
e.g., curves with thresholds of 0.05 and 0.1 in the simple road dataset. This is because those curves are
obscured by curves with a larger curvature threshold. This indicates that the results are robust when
the value of the Gaussian curvature rises by a specific value.
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As shown in Figure 16, the change laws of all of the data are similar. The accuracies increased
greatly with the value of the Gaussian curvature, and this rule was especially noticeable when the
value of the TA was small. When the curvature value rose to a specific value, the curves tended
to become stable and coincide at a particular location. This indicates that increasing the curvature
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threshold can improve the accuracy. Further, the change in the curves produced a convergence. For
a curvature threshold >0.05, the accuracies remained constant and were no longer affected by that
threshold. Therefore, a larger curvature threshold, which can not only achieve a high accuracy but
maintain it over a large angle range, has versatility in practical applications.

On the whole, the threshold of the Gaussian curvature had an effect on the accuracy of the results,
which increased as the curvature threshold increased. At the same time, when the curvature threshold
was increased to a specific value, the results converged. For the most accurate results, there were
general threshold ranges, i.e., the value of Gaussian curvature was greater than 0.05, and the angle of
the TA was between 0.01 and 3 degrees.

4.3.2. Neighborhood Search

The search radius had an effect on the accuracy of the results. To clarify the specific effects,
the search radii were set to 2, 4, 6, 8, 10, 12, 14 and 16 times the distance of the neighbors (the distance
of the neighbors was 0.02 m). The partial results of the five data were similar, so Figure 17 shows only
the results for two of the datasets: panel (a) is for the simple road; and (b) is for the discontinuous road.
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As shown in Figure 17, the variation in the precision with different radii in the two data was
somewhat similar. For a small angle threshold (less than three degrees), the accuracies first increased
and then decreased with the increase in the search radius. For a large threshold (more than six degrees),
the accuracies always decreased. However, the behavior of the results for the two data was not
identical. To improve the versatility and robustness of the proposed method, the technique advanced
in Section 2.2.5 was used for neighboring point searching, i.e., the radius and maximum number
of neighbors were used together. We conducted several other sets of experiments. Among these,
the search radii were set as before, and the maximum number of neighbors was set to 30. Similarly,
Figure 18 illustrates the results for two of the datasets: panel (a) is for the simple road; and (b) is for the
discontinuous road.

As shown in Figure 18, the results for the two datasets are very similar. With an increasing radius,
the accuracies for a smaller angle threshold (less than two degrees) increased and gradually converged.
When the radius reached a specific value, the accuracies maximized and stabilized. However, there
is a slight difference. The radius with stable accuracies was 0.24 m for the data on the simple road,
sheltered road and partial continuous road; 0.16 m for the data on the discontinuous road; and 0.20 m
for the data on multiple roads. By selecting the intersection of the parameter thresholds for different
results, it can be found that there are also general threshold ranges for the best results, i.e., the search
radius is more than 12 times the sampling distance (0.24 m in this paper), and the maximum number
of neighbors is 30.
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4.3.3. General Parameter Range

Table 5 shows the optimal accuracy range for the uniform parameters in the five data.

Table 5. Maximal accuracy of TA.

The Maximum
Accuracy (%)

The Minimum
Accuracy (%) Uniform Parameters

Simple Road 90.56 89.40
K > 0.05
r > 0.24

Nmax = 30
0.01 < θt < 3

Sheltered Road 90.95 89.35
Partial Continuous Road 92.27 91.19

Discontinuous Road 96.11 95.26
Multiple Roads 94.39 93.96

As shown in Table 5, for a curvature greater than 0.05, a search radius greater than 0.24 m, a
maximum number of neighbors of 30, and an angle threshold greater than 0.01 and less than three
degrees, the maximum accuracies of the five data were all greater than 90%. For the lowest accuracies,
the differences from the maximum were less than 0.016. This shows that the present method not only
can achieve a high accuracy in extracting roads but also has a large range of parameters. Consequently,
the TA method is stable and robust.

5. Conclusions

In this paper, we propose an automatic method for extracting urban roads using MLS data.
The initial seed is selected based on constraints relating to the height, curvature and number of
neighbors. The decision on the road cluster depends on the angle of the tangent plane, and the decision
on the new seeds depends on the curvature and identified road points. The selection of a new seed
is constrained by road cluster points and Gaussian curvature. Additionally, the method involves
the strategy of multiple discontinuous roads. The principle and complete process of the method is
described in detail, and it is validated using five different types of urban road data, which are the main
types of urban road data. Moreover, the effective ranges of the parameters are also given in this paper.
The method proposed in this paper is versatile. When it is used with other MLS datasets, it is only
necessary to set the parameters according to the given range in order to obtain high-precision urban
roads. There are two main research projects for the future. The first involves extracting curbs to fit the
edge of an urban road and identifying road points under an edge constraint. The second involves
extracting roads and other elements using the theory of deep learning.
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