
sensors

Article

Laboratory Calibration and Field Validation of Soil
Water Content and Salinity Measurements Using the
5TE Sensor

Nessrine Zemni 1,2,*, Fethi Bouksila 1 , Magnus Persson 3 , Fairouz Slama 2 ,
Ronny Berndtsson 3,4 and Rachida Bouhlila 2

1 National Institute for Research in Rural Engineering, Water, and Forestry, Box 10, Ariana 2080, Tunisia;
bouksila.fethi@iresa.agrinet.tn

2 Laboratory of Modelling in Hydraulics and Environment, National Engineering School of Tunis, University
of Tunis El Manar (ENIT), Box 37, Le Belvédère Tunis 1002, Tunisia; fairouz.slama@enit.utm.tn (F.S.);
rachida.bouhlila@enit.utm.tn (R.B.)

3 Department of Water Resources Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden;
magnus.persson@tvrl.lth.se (M.P.); ronny.berndtsson@tvrl.lth.se (R.B.)

4 Centre for Middle Eastern Studies, Lund University, Box 201, SE-221 00 Lund, Sweden
* Correspondence: nessrine.zemni@enit.utm.tn; Tel.: +216-28-083-156

Received: 8 October 2019; Accepted: 27 November 2019; Published: 29 November 2019
����������
�������

Abstract: Capacitance sensors are widely used in agriculture for irrigation and soil management
purposes. However, their use under saline conditions is a major challenge, especially for sensors
operating with low frequency. Their dielectric readings are often biased by high soil electrical
conductivity. New calculation approaches for soil water content (θ) and pore water electrical
conductivity (ECp), in which apparent soil electrical conductivity (ECa) is included, have been
suggested in recent research. However, these methods have neither been tested with low-cost
capacitance probes such as the 5TE (70 MHz, Decagon Devices, Pullman, WA, USA) nor for field
conditions. Thus, it is important to determine the performance of these approaches and to test the
application range using the 5TE sensor for irrigated soils. For this purpose, sandy soil was collected
from the Jemna oasis in southern Tunisia and four 5TE sensors were installed in the field at four
soil depths. Measurements of apparent dielectric permittivity (Ka), ECa, and soil temperature were
taken under different electrical conductivity of soil moisture solutions. Results show that, under field
conditions, 5TE accuracy for θ estimation increased when considering the ECa effect. Field calibrated
models gave better θ estimation (root mean square error (RMSE) = 0.03 m3 m−3) as compared to
laboratory experiments (RMSE = 0.06 m3 m−3). For ECp prediction, two corrections of the Hilhorst
model were investigated. The first approach, which considers the ECa effect on K’ reading, failed to
improve the Hilhorst model for ECp > 3 dS m−1 for both laboratory and field conditions. However,
the second approach, which considers the effect of ECa on the soil parameter K0, increased the
performance of the Hilhorst model and gave accurate measurements of ECp using the 5TE sensor for
irrigated soil.

Keywords: soil salinity; soil water content; FDR sensor; soil pore water electrical conductivity; sensor
calibration and validation; real time monitoring

1. Introduction

In arid and semiarid countries, such as Tunisia, irrigation is necessary for improved agricultural
production. Water resources with good quality are limited, resulting in the use of low-quality irrigation
water. This can induce soil salinization, leading to crop yield reduction, decreasing the agricultural
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productivity, and causing general income loss [1,2]. Thus, accurate monitoring of soil salinity in time
and space is of great importance for precision irrigation scheduling to save water and avoid soil
degradation. Over the last decades, soil dielectric sensors have been developed to measure apparent
electrical conductivity (ECa) from which real soil salinity, the soil pore electrical conductivity (ECp),
can be estimated [3]. Time domain reflectometry (TDR) has been established as the most accurate
dielectric technique to estimate both volumetric water content (θ) and ECp in soils providing automatic,
simultaneous, and continuous readings [4]. The efficiency of the TDR method has led to development
of other techniques based on similar principles, such as capacitance methods. Some examples are
the WET (Delta-T Devices Ltd., Cambridge, UK) and the 5TE (Decagon Devices Inc., Pullman, WA,
USA) sensors, both based on frequency domain reflectometry (FDR). Compared to TDR, FDR sensors
use a fixed frequency wave instead of a broad-band signal that makes them cheaper and smaller [5].
Dielectric methods are based on determination of apparent soil electrical conductivity (ECa) and
soil apparent dielectric permittivity (Ka) [6]. Many models for the relationships between Ka and
θ [4,7], ECa-θ, and ECa-ECp-Ka have been proposed in recent research [3,8–10]. However, dielectric
properties are affected by physical and chemical soil properties. For example, high ECa affects the
wave propagation, leading to errors in the estimation of Ka [11,12]. Thus, it is important to improve θ

and ECp prediction models.
Hilhorst [8] presented a theoretical model describing a linear relationship between ECa and Ka

to predict ECp. This linear model can be used in a wide range of soil types without soil-specific
calibration. Persson [13] evaluated the Hilhorst model using TDR in three sandy soils and confirmed
the accuracy of the linear model with significant dependency on soil type. Many researchers [14–17]
have tested the Hilhorst model using the WET sensor and showed that it can be improved with soil
specific calibration. Using the WET sensor, improved correction of the Hilhorst model was proposed
by Bouksila et al. [18], using loamy sand soil with about 65% gypsum. They found that the accuracy
of ECp prediction is very poor when using standard soil parameters (K0). Thus, they proposed
a correction by introducing a third-order polynomial fitted to the K0–ECa relationship instead of
using the default K0. Kargas et al. [6] introduced a linear permittivity corrected model, proposed
by Robinson et al. [5], in the Hilhorst relationship. They found that the correction depends on soil
characteristics and that it is valid for ECa close to 2 dS m−1. These approaches consider the ECa effect
on the prediction of ECp. However, research has not been performed using simultaneous controlled
laboratory and field-scale experiments where effects of heterogeneity, root density, insect burrowing,
etc., affect the observations [19]. Ideally, sensor calibration should be performed in structured soils due
to its importance for pore size distribution and associated matrix potential [20]. Research has shown
that calibration in repacked soil columns differs from calibration in disturbed soil used in laboratory
experiments [21]. In addition, intrinsic soil factors such as soil temperature, presence of gravel, and
microorganisms affect the soil structure and porosity contributing to the variability in ECa and Ka
measurements under field conditions as compared to measurements in the laboratory [19].

Nowadays, farmers are embracing precision agriculture using sensors with high accuracy and low
cost to increase yields and maintain the sustainability of irrigated land. The 5TE dielectric soil sensor,
which also uses the Hilhorst model for ECp estimation, was introduced in 2007 and it is much cheaper
than the WET sensor [22]. Several recent studies have investigated the 5TE probe in agricultural
applications [2,23,24]. The 5TE sensor has electrodes at the end of the probe that are influenced by
soil density making them sensitive to any variation in soil structure and θ content [25]. Despite this
fact, most studies on the 5TE sensor performance [16,26,27] have been carried out under laboratory
conditions. Thus, almost no research has been done in the field for testing its performance for ECp
estimation, neither with the most used linear Hilhorst model nor with the more recent ECp approach
proposed in literature. Another important practical aspect is to determine the application range of these
sensors for irrigated soils under saline conditions. For example, it is important to determine at what
ECa threshold the dielectric losses are no longer negligible and need to be corrected for. Furthermore,
there is a lack of understanding of how laboratory calibration can be translated into field conditions.
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Thus, the sensors must be calibrated and validated under both conditions in order to assess the errors
associated with translating one to the other [28].

In view of the above, the objective of the present study was to assess the performance of the
5TE sensor to estimate soil water content and soil pore electrical conductivity for a representative
sandy soil used for cultivation of date palms. Both standard models and a novel approach using
corrected models to compensate for high electrical conductivity were used. Results from both field
and laboratory experiments were compared. The location of the field experiments was the Jemna oasis,
southern Tunisia.

2. Materials and Methods

Soil parameter acronyms, data source, sensor specification and models used in the present work
were presented in Appendix A.

2.1. Theoretical Considerations

Any porous medium, such as soils, can be characterized by its permittivity, which is a complex
quantity (K) composed of a real part (K’) describing energy storage, and an imaginary part (K”)
describing energy loss:

K = K′ − j K′′ with j = √− 1 (1)

For soils with low salinity, it is often assumed that the polarization and conductivity effects can
be neglected [4]. Under such conditions, the effect of K” is eliminated and K’ becomes equal to K,
represented by Ka as the apparent dielectric constant [4]. Under saline conditions, the imaginary part
of the dielectric permittivity increases with ECa, leading to error in the permittivity measurement. This
problem becomes important for frequencies lower than 200 MHz [6]. According to Campbell [29], for a
frequency range of 1–50 MHz, conductivity is the most important mechanism related to energy loss.
However, using the hydra impedance probe, Kelleners and Verma [30] found that, in general, the total
energy loss is related to relaxation loss except for fine sandy soil, where it is equal to zero at 50 MHz.

2.1.1. Permittivity-Corrected Linear Model

Many researchers [5,17,31,32] have studied how well low-frequency capacitance sensors measure
Ka and to what degree it is affected by K”. In general, it has been shown that the most important
factor to consider is the conductivity effect on Ka, whereas the effect of relaxation losses appears to be
small [4,6]. Thus, it is possible to correct the Ka reading by introducing a term for the ECa effect. Based
on the work of Whalley [32], Robinson et al. [5] proposed a permittivity-corrected linear model where
the theoretical permittivity can be considered equivalent to the refractive index of measurements by
the TDR. Robinson et al. [5] conducted experiments using TDR and capacitance dielectric sensor in
sandy soils with high ECa levels (up to 2.5 dS m−1) and they proposed a linear model that includes the
ECa effect on the Ka prediction according to:

√

K′ =
√

Ka− 0.628 ECa (2)

From this equation, we notice that the increase of ECa (dS m−1) leads to an increase in Ka. Using
Equation (2), a corrected permittivity K’ can be determined eliminating the ECa effect [6].

2.1.2. Water Content Model

The dielectric constant is about 80 for water (at 20 ◦C), 2 to 5 for dry soil, and 1 for air. Therefore,
Ka is highly dependent on θ. Various equations for the Ka vs. θ relationship have been published. The
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most used θ-model is a third-order polynomial [4]. However, Ledieu et al. [7] showed that there is a
simpler linear relationship for the θ prediction with only two empirical parameters, of the form:

θ = a
√

Ka + b (3)

where a and b are fitting parameters.
Figure 1 shows a schematic of calibration and validation possibilities for θ estimations that

were used in the present study. The calibration consisted of fitting of parameters in different models
(Figure 1). Optimal values for a and b, vs. a’ and b’ were determined by linear regression in the
relationship

√
Ka-θm denoted as the CAL-Ka model (Figure 1, Step-A.1) and

√
K’-θm denoted as

CAL-Kar model (Figure 1, Step-A.2), respectively. The θm was measured in experiments for different
salinity levels. The standard Ledieu et al. [7] model (Figure 1) was used for comparison purposes as it
is the simplest known model for mineral soil. The different steps (A.1 and A.2) were first completed
using laboratory experiments (laboratory calibration) and then using field data (field calibration).
The laboratory and field calibrated models were then compared with each other (Figure 1, Step-A.3).
Finally, we used field data (step B.1, B.2, and B.3) to validate the laboratory experiments (laboratory
model validation).

Figure 1. Schematic of θ calibration and validation possibilities investigated in the present study.
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2.1.3. Pore Water Electrical Conductivity Model

Different studies [33,34] have shown that ECa depends on both θ and ECp. Malicki et al. [35] and
Malicki and Walczak [9] found that for Ka > 6 and when ECp is constant, the relationship between Ka
and ECa is linear. An empirical ECp–ECa–Ka model has, thus, been proposed. Based on their results,
Hilhorst [8] presented the following equation applicable when θ ≥ 0.10 m3 m−3:

ECp =

(
Kw

(Ka−K0)

)
× ECa (4)

where Kw is the dielectric constant of the pore water (equal to 80.3) and K0 is a soil parameter equal
to Ka when ECa = 0 (see [8], for details). According to Hilhorst [8], the K0 parameter depends on
soil texture but is independent of ECa. He found the range of K0 to be between 1.9 and 7.6. For best
results, this should be determined experimentally for each soil type. For most soils, a value of 4.1 has
been recommended. One should notice, that in the Hilhorst model (Equation (4)), the Ka, Kw, and K0

represent the real part of the dielectric constant only. From the linear relationship ECp = f (ECa), the
slope that is inversely proportional to ECp and intercept K0 can be determined.

In the present study, the Hilhorst model (Figure 2, Step-C.1) was tested using varying K0 soil
parameters (4.1, 6 and 3.3). The K0 = 4.1 is the default value recommended by Hilhorst, K0 = 6 is the
recommended value in the 5TE manual [36] while K0 = 3.3 is the value measured with distilled water
according to the WET sensor manual [37].

Figure 2. Schematic of electrical conductivity (ECp) calibration and validation used in the present paper.
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Inspired by Bouksila et al. [18] and Kargas et al. [6], a modification of the Hilhorst model was
investigated. Accordingly, a permittivity-corrected linear equation (Equation (2)) can be introduced in
the Hilhorst model (Figure 2, Step-C.2) and ECp is predicted with two different K0 values (K0 = 4.1
and K0 = 3.3). Beside this, the soil fit parameter K0 is calculated for each salinity level by minimizing
the mean square error (MSE) of the estimated ECp in the Hilhorst model (Step-C.3.1). The best fit K0

parameters are then plotted against ECa for the seven different ECp and a third-order polynomial
function is determined (Step-C.3.2), and introduced in the Hilhorst model (Step-C.3). Finally, we used
field data (step D.1, D.2, and D.3) to validate the laboratory experiments (laboratory model validation).

The temperature is an important factor influencing the electrical conductivity measurements;
indeed, all ECa reading were adjusted in the present work using Equation (5). Besides, during
experiments the temperature effect on Kw parameter was considered using the recommended
temperature correction equation in the 5TE manual [36].

ECa25 = ECa [1− ((T− 25) × 0.02)] (5)

Measured Ka, ECa, and T in laboratory and field experiments are converted to ECp using the
Hilhorst [8] model (Step-C.1), Kargas et al. [6] approach (Step-C.2), and Bouksila et al. [18] approach
(Step-C.3), denoted as H, MHK, and MHB, respectively.

The different approaches in Figures 1 and 2 have not been tested before using the 5TE sensor.
The approaches CAL-Kar, MHK and MHB have previously only been tested once under controlled
laboratory condition using the WET sensor. The novelty of the present work is to validate these
approaches under field condition using the low cost capacitance sensor 5TE. In addition, the MHB
approach developed by Bouksila et al. [18], used an experimentally determined K0 = f (ECa) relationship.
Our new approach instead uses a K0 derived from best-fit parameter for each ECp level, which make
the application of MHB approach much easier since there is no need for the K0 laboratory experiment.

Model performance for θ and ECp, was evaluated using both the root mean square error (RMSE)
and coefficient of determination (R2). In addition, mean relative error (MRE) and coefficient of variation
(CV) were used for ECp and θ, respectively.

2.2. Study Area

The field study was conducted in the Jemna oasis (33◦36’15.”N, 9◦00’39.”E), belonging to the
Agricultural Extension and Training Agency (AVFA) located in the Kebeli Governorate, southern
Tunisia. The oasis is equipped with a micro-irrigation system. The main crop is adult date-palm
trees. The climate is arid with an annual rainfall of less than 100 mm, which is insufficient to sustain
agriculture. The annual potential evapotranspiration is about 2000 mm [38]. Groundwater, situated at
17 m soil depth, with an electrical conductivity (ECiw) of about 3.5 dS m−1, is used for irrigation. The
pH of groundwater is 7.8 and the geochemical facies is sodium chloride. Soil samples were collected
from the top soil at 0–0.5 m depth. The soil was leached with distilled water in order to remove soluble
salts and oven dried (105 ◦C) for 24 h. Then, the soil was passed through a 2 mm sieve. Soil particle
size distribution was determined using the sedimentation method (pipette and hydrometer) and the
electrical conductivity of saturated soil paste extract (ECe) was measured according to the United
States Department of Agriculture (USDA) [39]. A summary of soil properties is presented in Table 1.

Table 1. Particle size percentage, pH and electrical conductivity of saturated soil paste extract (ECe) of
investigated soil samples.

Depth (m) Clay (%) Fine Silt
(%)

Coarse
Silt (%)

Fine Sand
(%)

Coarse
Sand (%) pH ECe

(dS m−1)

0–0.5 5 3 4 22 65 8.5 1.8
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2.3. Laboratory Experiments

Seven NaCl solutions with different electrical conductivity (0.02, 0.2, 0.5, 3.6, 5.3, 7.2, and
8.2 dS m−1) were prepared for the infiltration experiments. The soil was initially mixed with a small
amount (about 0.05 m3 m−3) of the same water as used in the infiltration experiments to prevent water
repellency. The soil was repacked into a plexiglas soil columns, 0.12 m in diameter and 0.15 m long
(Soil Measurement System, Tucson, Arizona), to the average dry bulk density encountered in the field
(about 1450 kg m−3).

The 5TE sensor was used for observations [23]. It is a multifunctional sensor measuring Ka, ECa,
and T (for more details, see Appendix A). The measuring frequency is 70 MHz and it is a three-rod type
sensor with 0.052 m long prongs and 0.01 m spacing between adjacent prongs [23,40]. The 5TE probe
was inserted vertically in the center of the column. Upward infiltration experiments were carried out
by stepwise pumping a known volume of a NaCl solution (45 mL) with a precise syringe pump from
the bottom of the column. Twenty minutes after each injection, three measurements of Ka, ECa, and
temperature were taken and averaged. This procedure was repeated until saturation (0.40 m3 m−3)
was reached. Four hours after reaching saturation, measurements were again taken and pore water
was extracted from the bottom of the column with a manual vacuum pump. Electrical conductivity of
extracted pore water ECpm was measured with a conductivity meter. In total, seven upward infiltration
experiments were conducted, one for every NaCl solution.

2.4. Field Measurements

Four 5TE sensors were installed between date-palm trees at four soil depths (0.10, 0.15, 0.30, and
0.45 m). The 5TE probes were connected to a Decagon Em50 data logger. The DataTrac3 software
version 3.15 [23] was used to download collected data from the Em50. Volumetric soil water content
and pore electrical conductivity were estimated using standard parameters of the Ledieu et al. [7] and
Hilhorst [8] models, respectively. In addition, soil samples were taken by hand auger at the same depth
of sensor installation on 24 April and 3 October 2018. Gravimetric water content θm and electrical
conductivity of saturated soil paste extract (ECe) were measured in laboratory according to USDA
standards. The soil dry bulk density (Bd) was measured in the field using the cylinder method at
five soil depths (0.1 m depth intervals to 0.5 m). During April 2018, the average soil Bd was equal to
1.43 g cm−3 and varied from 1.3 to 1.6 g cm−3.

3. Results

3.1. Soil Water Content

Figure 3 presents the relationship between Ka and observed θm with different salinity levels (ECp,
dS m−1) measured during the upward infiltration experiments. For largest ECp, ECa did not exceed
2.5 dS m−1. It is seen that ECa considerably affects the Ka readings, especially for high ECp. This can
lead to significant errors for both Ka and ECa, indicating that 5TE probe readings need to be corrected
when used in saline soils. The overestimation of Ka as ECa increases has been described by several
authors (e.g., [19,27]).

In Figure 4, Ka and K’ (corrected with Equation (2)) for two ECp levels (3 and 9.8 dS m−1) are
plotted against measured θm. K’ values are very close to Ka when ECp ≤ 3 dS m−1, especially at low θ
(θ ≤ 0.15 m3 m−3 and ECa ≤ 0.43 dS m−1). However, for ECp = 9.8 dS m−1, the difference between Ka
and K’ is more pronounced, especially for θ ≥ 0.15 m3 m−3 and ECa ≥ 0.75 dS m−1.
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Figure 3. Apparent dielectric permittivity (Ka) vs. measured volumetric water content (θm) for various
pore electrical conductivity (ECp) levels (dS m−1).

Figure 4. Relationship Ka-θm (open circles) and K’-θm (filled circles) using the 5TE sensor for
ECp = 3 dS m−1 (a) and ECp = 9.8 dS m−1 (b).

The calibrated parameters using laboratory data for CAL-Ka and CAL-Kar approaches are
presented in Table 2. For all models tested under laboratory conditions, RMSE increased with
ECp. Soil water content from CAL-Kar approach matched well measured θm for ECp ≤ 3 dS m−1

(ECa < 0.7 dS m−1) and gave the best θ estimation compared to the Ledieu et al. [13] model and the
soil-specific calibration CAL-Ka. However, for ECp ≥ 6.8 dS m−1, the CAL-Ka approach gave lower
RMSE compared to the CAL-Kar model. For high ECp (≥ 6.8 dS m−1), the performance of the CAL-Kar
model deteriorated.
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Table 2. Root mean square error (RMSE, m3 m3), determination coefficient (R2) and coefficient of
variation (CV,%) of estimated soil water content using Ledieu et al. [7], standard calibration (CAL-Ka)
and permittivity corrected model (CAL-Kar) for different water pore electrical conductivity (ECp).

Laboratory Calibration

ECp (dS m−1) Ledieu et al. (1986) CAL-Ka CAL-Kar

Fit Equation (4) θ = 0.16
√

Ka1
−0.30 θ = 0.18

√
K’2−0.33

ECp ≤ 3 RMSE 0.06 0.05 0.04
R2 0.93 0.95 0.95

ECp = 6.8 RMSE 0.08 0.06 0.10
R2 0.73 0.87 0.50

6.8 < ECp ≤ 10.5 RMSE 0.09 0.07 0.13
R2 0.77 0.85 0.39

Mean RMSE 0.08 0.06 0.09

Mean R2 0.8 0.9 0.6

CV (%) 26.5 20 19.8

Field calibration

Fit θ = 0.15
√

Ka−0.26 θ = 0.20
√

K’−0.37

ECa3 ≤ 0.7
and

1.7 ≤ ECe4 ≤ 4.1

RMSE
(m3 m−3) - 0.04 0.03

R2 - 0.94 0.97

CV (%) - 23 24

Field validation

ECa ≤ 0.7
and

1.7 ≤ ECe ≤ 4.1

RMSE
(m3 m−3) 0.1 0.060 0.060

R2 0.80 0.88 0.97

CV (%) 27 21 24
1 Apparent soil permittivity, 2 Corrected apparent soil permittivity, 3 Soil apparent electrical conductivity, 4 Electrical
conductivity of saturated soil paste extract.

3.2. Field Validation of Soil Water Content Models

During field experiments, Ka measured by the four 5TE probes varied from 6.5 to 11, ECa from
0.17 to 0.75 dS m−1, and measured soil moisture (θm) from 0.10 to 0.24 m3 m−3. According to R2

of field validation results (Table 2), the best model to predict θ under field conditions is CAL-Kar
followed by CAL-Ka. However, RMSE analysis indicates that there is no significant difference between
observed and estimated θ using both approaches, implying that both predicted θ accurately for
ECa ≤ 0.7 dS m−1.

From Figure 5, a slight underestimation of the different models is observed and this is more
pronounced for the Ledieu et al. [7] model. The underestimation can be related to adsorbed water,
resulting in a lower amount of mobile water in the soil, thus reducing the Ka readings (detection) by
the 5TE sensor and eventually resulting in underestimation of Ka [41,42]. The difference between
observed and predicted θ may also be attributed to variability in soil structure, bulk density, presence
of stones, roots, and other inert material in the core samples. The difference may also be linked to the
spatial variability of θ between sampled and monitored soils. Similar findings have been reported
for mineral soils using the 5TE sensor [41], for Luvisol using the 5TM capacitance sensor [42], and
using the ECH2O sensor in sandy soil [43]. The success of CAL-Ka and CAL-Kar models to calculate θ

at field conditions is closely linked to the low range of ECa data measured by the 5TE sensor, below
0.7 dS m−1, during the period of investigation.
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Figure 5. Estimated soil water content (θ) vs. measured (θm) using CAL-Kar approach (a), CAL-Ka
approach (b) and Ledieu et al. [13] model (c) under field conditions, solid line gives the 1:1 relationship.

For the same range of soil salinity, RMSE was higher for the field as compared to laboratory data.
For laboratory experiments, soil was crushed, washed, and passed through a 2 mm sieve. This means
that its structure was changed as well as the pore size distribution, and some of the organic matter
may have been removed. This allows more mobile water compared to field conditions [44]. As well,
for field conditions, observed Bd profiles are not uniform and may vary with time. In contrast to the
controlled laboratory experiments (e.g., constant Bd), the field Bd spatial and temporal variation will
induce an additional error when laboratory models are used to estimate θ.

We used the field data to calibrate the CAL-Ka and CAL-Kar models, the calibrated parameters for
the models are presented in Table 2 (Field calibration). The RMSE decreased from 0.06 to 0.04 m3m−3

and from 0.06 to 0.03 m3 m−3 for CAL-Ka and CAL-Kar, respectively. Thus, the CAL-Kar approach
gave better field predictions of θ. Similarly, Kinzli et al. [45] reported that field calibration was most
successful for sandy soils. According to this finding, we may support the earlier conclusion that
the permittivity corrected (CAL-Kar) model is recommended under field conditions if ECa is below
0.75 dS m−1. However, the Ledieu et al. [7] model cannot be used safely under field conditions in the
case when soil specific calibration is not available.

3.3. Soil Pore Electrical Conductivity (ECp)

3.3.1. ECp Laboratory Calibration

Table 3 presents the RMSE for the different models. All models showed good performance in the
0–3 dS m−1 range, except Hilhorst with (K0 = 6) and MHK with K0 = 4.1. Moreover, RMSE results
(Table 3), showed an increase of the range of default H model validity until ECp = 6.8 dS m−1. This
finding can be linked to the higher operating frequency of 5TE (70 MHz) compared to the capacitance
sensor used by Hilhorst (30 Mhz). Hilhorst reported that the model assumption ceases to be accurate
at higher salinity as ECp significantly deviates from that of free water.

Table 3. Root mean square error (RMSE, dS m−1) of estimated pore electrical conductivity (ECp) using
Hilhorst (K0 = 4.1, 3.3, and 6), modified Hilhorst according to Kargas et al. [6] (MHK) (K0= 4.1 and 3.3),
and modified Hilhorst according to Bouksila et al. [18] (MHB) models.

ECp (dS m−1) Hilhorst (2000) MHK MHB

Soil
Parameter-K0

K0 = 4.1 K0 = 3.3 1 K0 = 6 K0 = 4.1 K0 = 3.3 1 Best Fit K0 = f (ECa2)

ECp ≤ 3 0.29 0.14 0.83 0.88 0.34 0.044
ECp = 6.8 0.57 0.21 1.7 6.3 3.8 0.050

6.8 < ECp ≤ 10.5 1.48 0.99 3.06 - - 0.054
1 K0 soil parameter determined experimentally according to the method in the Wet sensor manual using distilled
water. 2 Soil apparent electrical conductivity.
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From the results presented in Table 3, the ECp limit for accurate measurements seems to be
6.8 dS m−1. Similar results were reported by Scudiero et al. [40], using the 5TE sensor and ECp limit
<10 dS m−1 with RMSE equal to 0.68 dS m−1. Using the H model with K0 value recommended in the
Decagons manual (K0 = 6) showed a larger RMSE for all salinity levels compared the default parameter
(K0 = 4.1). The H model with K0 = 3.3 (determined experimentally according to the WET manual)
gave better results for the three salinity ranges. Persson [13] stated that the H model using a fitted soil
parameter gives ECp values statistically similar to other model results (e.g., [3,10,46]).

Focusing on the modified Hilhorst model using the MHK approach with K0 = 4.1, one can observe
that the RMSE is at maximum, especially for ECp ≥ 6.8 dS m−1. Kargas el al. [6] validated this approach
using a lower salinity level (ECp ≤ 6 dS m−1). According to our results (Figure 7), an overestimation
of the H model, especially at ECp ≥ 3 dS m−1, is observed. Similarly, Visconti et al. [19] showed an
overestimation of ECp in the range of 0–10 dS m−1 and Scudiero et al. [40] showed an overestimation
of ECp in the range 3–10 dS m−1, both working with the 5TE sensor and the H model. In the present
study, the H model overestimated ECp, thus using the MHK approach will not improve results.

The observed overestimation by the H model might be due to K0, which was assumed to be
equal to 4.1. In addition, one should note that the H model does not consider solid particle surface
conductivity, which could contribute to the ECp error [17]. From Table 3, decreasing K0 from 4.1 to
3.3 for both the H and MHK model leads to a significant decrease of RMSE, two times lower than the
default. The H model seems to be more dependent on the soil parameter K0 than on Ka and ECa.

K0 estimated from the best fit approach for the different salinity levels is plotted against ECa in
Figure 6. The K0 range varied between 1.29 and 3.2 with a mean of 3.0, which is similar to the K0

determined experimentally using distilled water (K0 = 3.3).

Figure 6. Best fit soil parameter (K0) vs. bulk soil electrical conductivity (ECa).

At saturation, ECa was equal to 0.32 dS m−1 and 2.4 dS m−1 and Ka was equal to 15 and 19 for the
lowest (2 dS m−1) and the highest (10.5 dS m−1) observed ECp, respectively. According to Figure 6,
K0 decreases with increasing salinity. Similar to [18], our results showed that K0 is not constant,
but depends on ECa and that a third-order polynomial fitted the K0–ECa relationship rather well
(R2
≥ 0.95). K0 = f (ECa) in Figure 6, was used in the H model to predict ECp. Compared to the H

model, for the individual ECp levels, using the MHB model, RMSE decreased significantly.
Figure 7 shows observed and predicted ECp using the H model with three different K0 and the

MHK and MHB approaches, respectively. All model performances, are approximately the same for
ECp ≤ 3 dS m−1, except when using K0 = 6 and K0 = 4.1 for H and MHK models, respectively.
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Figure 7. Estimated pore electrical conductivity (ECp) vs. measured for different model tested for
laboratory conditions.

Based on the laboratory results, the MHB approach improved the H model and gave accurate
estimation of ECp with R2 = 0.99 for all salinity levels. Thus, for high soil salinity (6.8 dS m−1

≤

ECp ≤ 10.5 dS m−1), the MHB approach is recommended for achieving optimal accuracy of ECp
measurements. For lower ECp (≤3 dS m−1), the standard H model is sufficient. For high ECp, the MHK
approach failed to reproduce the observed ECp correctly and the approach is not recommended based
on the results of our study. Further studies for different soil types are needed so that this combined
approach in predicting ECp can be validated.

3.3.2. Field Validation of ECp Models

Unfortunately, we do not have field observed ECp to validate and statistically compare the
different models. Instead, we determined a linear relationship (ECp = f (ECe)) for different calculated
ECp, using the H, MHK, and MHB models and 5TE measurements, with observed field ECe. Several
researchers have studied relationships between ECe and ECp, e.g., [3], showing that the relationship is
strongly linear. The relationship (ECp = f (ECe)) with the highest R2 = 0.9 was chosen to predict the
field ECp values (ECpobs). During the investigation period, ECe was determined from soil samples,
according to the USDA standard (collected at the same depth as the location of the 5TE sensors),
ranging between 1.7 and 4.1 dS m−1. The relatively low soil salinity is due to a rainfall observed in the
field one day before soil sampling.

The observed ECpobs obtained from the best fit relationship is plotted against the estimated ECp
for the different models in Figure 8. The H model with K0 = 6.6 was not included in the figure since it
gave out of range values. The ECp estimation with MHB approach appears uniformly scattered about
the 1:1 line. On the other hand, the H model with K0 = 3.3 shows a cloud of points near the 1:1 line.
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Figure 8. Estimated ECp vs. observed under field conditions.

Compared to laboratory results, for the same ECa range (ECa ≤ 0.7 dS m−1) (Table 4), observed
errors are higher for the field validation. The RMSE increased for all models. Errors are mainly related
to a number of factors absent in the laboratory but present under field conditions. Due to this reason, a
methodological approach composed by laboratory calibration and field validation is optimal.

Table 4. Root mean square error (RMSE, dS m-1) and determination coefficient (R2) of Hilhorst (K0 = 4.1,
3.3, and 6), modified Hilhorst according to Kargas et al. [6] (MHK) (K0 = 4.1 and 3.3) and modified
Hilhorst according to Bouksila et al. [18] (MHB) models field validation.

Hilhorst (2000) MHK MHB

ECa2 ≤ 0.7 and
1.7 ≤ ECe3 ≤ 4.1 K0 = 4.1 K0 = 3.31 K0 = 6 K0 = 4.1 K0 = 3.31 Best Fit K0 = f (ECa)

RMSE (dS m−1) 0.82 0.70 10 1.8 1.34 0.30
R2 0.53 0.73 0.26 0.56 0.77 0.90

1. K0 soil parameter determined experimentally according to the method in the Wet sensor manual using distilled
water. 3 Soil apparent electrical conductivity, 4 Electrical conductivity of saturated soil paste extract.

The MHB approach presents a significant improvement of the H model, especially at high
ECp (Table 4). The H and MHK model fit is acceptable for field and laboratory conditions only for
ECp ≤ 3dS m−1 while the MHB approach is acceptable for field conditions and it can be safely used for
sandy soil and ECp ≤ 7 dS m−1.

Since variation and uncertainties in the field are higher, it is recommended to validate the calibrated
models with field data. According to our results, the H model with K0 = 6 is not recommended either
with laboratory nor field data. However, the reduction of K0 to 3.3 increased the performance of the
model and it can be safely used for ECp < 3 dS m−1. For ECp > 3 dS m−1, the MHK approach did not
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improve the H model with RMSE more than 1 dS m−1 and it is not recommended. Thus, for achieving
optimal accuracy of ECp measurements, the MHB approach is recommended for ECp ≤ 7dS m−1.

4. Conclusions

In this study, the 5TE sensor performance for volumetric soil water content (θ) and soil pore
electrical conductivity (ECp) estimation was investigated under laboratory and field conditions. First,
two procedures for θ estimation based on a linear relationship of

√
Ka-θm (CAL-Ka approach) and

√
K’-θm (CAL-Kar approach) were investigated. Using the CAL-Kar approach, the effect of soil

apparent electrical conductivity (ECa) on the real part of the complex dielectric permittivity (K’)
was considered. In addition, the Ledieu et al. [7] relationship was used for comparison purposes.
A site-specific validation of CAL-Ka and CAL-Kar models using 5TE field subset data and θ from soil
samples at different depth was performed. Secondly, 5TE performance for soil salinity assessment
was investigated using the H linear model according to correction proposed by Kargas et al. [6] (MHK
model), and Bouksila et al. [17] (MHB model). The default value of soil parameter K0 = 4.1 and K0 = 6
recommended in the 5TE manual was used for comparison.

For soil water content, calibration considering the ECa effect on K’ increased the performance
of the 5TE sensor under field conditions for ECa ≤ 0.75 dS m−1 (R2 = 0.97, RMSE = 0.06 m3 m−3).
However, the error in predicting θ was highest (0.10 m3 m−3) when the Ledieu et al. [7] model was
used. Indeed, this model cannot be safely used under field conditions. Thus, we conclude that field
calibration of the 5TE sensor is recommended for accurate soil water content estimation. Soil pore
electrical conductivity calibration results, show that the 5TE sensor limit using the default H model is
equal to 6.8 dS m−1 with RMSE = 0.57 dS m−1 and MRE = 9%. The 5TE sensor manual value (K0 = 6)
is not recommended. However, K0 = 3.3 increases model performance over the investigated salinity
range. The MHK approach, introducing the permittivity correction in the H model, failed to reproduce
the observed ECp correctly and it is not recommended. In the next step, considering the effect of
ECa on the K0 soil parameter in the H model (MHB approach), it was found that the standard model
improves and gives accurate estimation of ECp with R2 equal to 0.99 for all salinity levels. Under field
conditions, the MHB approach gives the best results for sandy soils.

It is a challenge to perform real-time monitoring of irrigated land under high-saline conditions to
provide sustainable agriculture and farmer income increase. Using θ and ECp observations, it was
shown that a methodological approach composed of a laboratory calibration and field validation is
necessary. Further studies, for different soil types, are needed to validate this combined approach in
predicting ECp.
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Appendix A

Table A1. Soil parameter acronyms, data source, sensor specification and models used in the
present work.

Soil Parameter Acronym Data Source Sensor/Method

Soil dry bulk density Bd Measured
Cylinder method- United

States Department of
Agriculture (USDA)

Soil pH pH Measured pH-meter
Apparent soil permittivity Ka Measured 5TE-probe

Soil parameter K0 Estimated 5TE-probe
Dielectric constant of pore water Kw Estimated 5TE-probe

Corrected apparent soil permittivity K’ Estimated 5TE-probe
Soil temperature T Measured 5TE-probe

Electrical conductivity of saturated
soil paste extract ECe Measured EC-meter/USDA method

Soil apparent electrical conductivity ECa Measured 5TE-probe
Irrigation water electrical conductivity ECiw Measured EC-meter

Measured soil water content θm Measured Gravimetric
method-USDA

Estimated volumetric water content θ Estimated θ –Models (see Figure 1)
Laboratory measured pore water

electrical conductivity ECpm Measured EC-meter

Field observed pore water electrical
conductivity ECpobs Measured ECpobs = a ECe + b (see

Figure 2)

Pore water electrical conductivity ECp Estimated ECp-Models (see
Figure 2)

5TE sensor specification
Type Specifics

Sensor type FDR (Frequency Domain Reflectometry)
Power supply +3.6 to +15 V

Frequency 70 MHz

Size
Length 10.9 cm (4.3 in)
Width 3.4 cm (1.3 in)
Height 1.0 cm (0.4 in)

Measurement volume 300 cm3

Direct output data Ka, ECa, and T
Indirect output data θ and ECp

Range (Ka, ECa) 1–80, 0–7 dS m−1

Resolution (Ka, ECa) 0.1, 0.01 dS m−1

Accuracy (Ka, ECa) ±3%, ±10%
Models

CAL-Ka (see Figure 1) Calibration of soil water content model without permittivity
correction

CAL-Kar (see Figure 1) Calibration of soil water content model with permittivity correction
according to Kargas et al. (2017)

H (see Figure 2) Standard Hilhorst (2000) model for ECp prediction

MHK (see Figure 2) Modified Hilhorst model according to Kargas et al. (2017) for ECp
prediction

MHB (see Figure 2) Modified Hilhorst model according to Bouksila et al. (2008) for ECp
prediction

Model performance statistic tool
RMSE Root Mean Square Error

R2 Coefficient of determination
MRE Mean Relative Error
CV Coefficient of Variation
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