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Abstract: Unmanned aerial vehicle (UAV)‐based multispectral sensors have great potential in crop 

monitoring due to their high flexibility, high spatial resolution, and ease of operation. Image 

preprocessing, however, is a prerequisite to make full use of the acquired high‐quality data in 

practical applications. Most crop monitoring studies have focused on specific procedures or 

applications, and there has been little attempt to examine the accuracy of the data preprocessing 

steps. This study focuses on the preprocessing process of a six‐band multispectral camera (Mini‐

MCA6) mounted on UAVs. First, we have quantified and analyzed the components of sensor error, 

including noise, vignetting, and lens distortion. Next, different methods of spectral band 

registration and radiometric correction were evaluated. Then, an appropriate image preprocessing 

process was proposed. Finally, the applicability and potential for crop monitoring were assessed in 

terms of accuracy by measurement of the leaf area index (LAI) and the leaf biomass inversion under 

variable growth conditions during five critical growth stages of winter wheat. The results show that 

noise and vignetting could be effectively removed via use of correction coefficients in image 

processing. The widely used Brown model was suitable for lens distortion correction of a Mini‐

MCA6. Band registration based on ground control points (GCPs) (Root‐Mean‐Square Error, RMSE 

= 1.02 pixels) was superior to that using PixelWrench2 (PW2) software (RMSE = 1.82 pixels). For 

radiometric correction, the accuracy of the empirical linear correction (ELC) method was 

significantly higher than that of light intensity sensor correction (ILSC) method. The multispectral 

images that were processed using optimal correction methods were demonstrated to be reliable for 

estimating LAI and leaf biomass. This study provides a feasible and semi‐automatic image 

preprocessing process for a UAV‐based Mini‐MCA6, which also serves as a reference for other 

array‐type multispectral sensors. Moreover, the high‐quality data generated in this study may 

stimulate increased interest in remote high‐efficiency monitoring of crop growth status. 
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1. Introduction 

Efficient monitoring of crops is the basis of precision agriculture and helps to identify, analyze, 

and manage crop variability within farmland [1,2]. The advantages of using unmanned aerial 

vehicles (UAVs) are high flexibility, high spatial resolution, and ease of operation, and their use in 

crop monitoring has grown rapidly in recent years, especially in precision agriculture [3–5]. 

In the past, different types of sensors, mounted on UAVs, have been used for monitoring crop 

growth status [6]. For example, hyperspectral and thermal infrared sensors have been used to 

estimate leaf area index (LAI), nitrogen content, and biomass [7–9]. However, the aforementioned 

sensors are too heavy and bulky to be carried by UAVs, and their application is also limited by their 

high cost and low computing efficiency [6,10]. Although consumer‐level digital cameras are 

lightweight and affordable, they are inadequate for more in‐depth and extensive research without 

red edge and near‐infrared (NIR) band coverage regions, which are more sensitive for crop 

monitoring than visible bands [11]. In contrast, multispectral sensors can provide multiple spectral 

bands (from visible to NIR) with centimeter‐level spatial resolution [6,11]. In addition, due to the 

advantages of being low cost, having compact dimensions, and the ability to do fast frame imaging, 

multispectral sensors provide an acceptable balance between affordability and usability [11–13]. 

Image preprocessing of UAV‐based multispectral sensors is a basic and vital factor that 

influences spectral accuracy and quantitative analysis [14]. Sensor corrections are the key initial steps 

required for extraction of geometrically consistent at‐sensor data from the raw data. This aspect of 

the measurement process encompasses noise correction, vignetting correction, and lens distortion 

correction [15]. Image noise refers to any undesirable signal produced by the sensor [16], while the 

purpose of noise correction is to eliminate the systematic errors of the multispectral sensors. 

Vignetting is a spatially dependent light intensity falloff, which leads to a reduction in radiance 

toward the periphery compared to the image center [17–19]. Lens distortion is mainly caused by the 

differences in magnification across a lens surface and the misalignment between the lens and the 

detector plane, represented by radial distortion and tangential distortion [20]. Generally, correction 

coefficients are calculated to correct for noise and vignetting in multispectral images [15], and the 

Brown model is commonly adopted for lens distortion correction [15,21,22]. In addition to the 

preliminary corrections, band registration is required to improve spatial consistency between bands. 

Although commercially available software (e.g., PhotoScan, Airsoft LLC, Russia and Tetracam 

PixelWrench2) are available for alignment correction, low accuracies have been found in many 

studies [14,23]. To improve the band misalignment, several studies have proposed the use of 

algorithms for the correction of misalignment errors. Laliberte et al. [14] employed a Local Weighted 

Mean Transform (LWMT) method [24] to detect edges; however, only a local translation effect was 

considered. Radhadevi et al. [25] used a photogrammetric technique to remove unaccounted‐for 

misregistration residuals; however, it was only suitable for small, flat areas. Turner et al. [23] 

developed new algorithms based on the Scale Invariant Feature Transform (SIFT); however, an error 

assessment was not undertaken. After band registration, the multispectral images still contain the 

digital number (DN) values. To convert the DN values into spectral reflectance, radiometric 

correction is required. Two radiometric correction methods, vicarious correction and preflight 

correction, are often employed for UAV‐based multispectral sensors [23]. As one of the most 

commonly used vicarious correction methods, the empirical linear calibration (ELC) method depends 

on a regression analysis of spectral data from images and the real measured values [23], and it has 

been applied in a variety of crop‐monitoring studies [10,26,27]. The preflight calibration used 

laboratory‐calibrated parameters (e.g., calibration coefficients) to characterize the sensor [28]. The 

two types of radiometric calibration methods have been used in different UAV‐based sensors; 

however, there has been a lack of comparative studies to access accuracy and applicability. 
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Image preprocessing of UAV‐based multispectral sensors basically involves five steps, namely 

noise correction, vignetting correction, lens distortion correction, band registration, and radiometric 

correction. Some studies have described procedures for sensor correction [15], and some have 

attempted to adopt different methods for band registration [14,23,29] or radiometric calibration [30]. 

However, a quantitative study on the accuracy of the complete preprocessing process has not been 

performed. Moreover, the performance of calibration methods varies for different UAV onboard 

sensors. There is, therefore, a timely need in crop monitoring research to analyze each correction 

procedure for a specific sensor and evaluate the applicability of different calibration methods in crop 

monitoring. 

In this study, a typical six‐band multispectral sensor (Mini‐MCA6), which has been widely used 

in crop monitoring [31–35], was adopted to permit an evaluation of the image preprocessing steps. 

The objectives of the study were as follows: (1) to analyze the components of sensor error or data 

modification within the UAV‐based multispectral sensor; (2) to compare the accuracy of intrinsic 

(software‐based) and extrinsic (ground control point‐based) methods for band registration; (3) to 

assess the performance of preflight calibration and vicarious calibration, i.e., ELC methods, for 

radiometric correction of a narrowband multispectral sensor; and (4) to evaluate the applicability and 

potential of image preprocessing for crop monitoring purposes. The anticipated results would 

provide guidance on how to select a robust fit‐for‐purpose method for multispectral imagery 

preprocessing, and the suggested methods, integrated on ENVI/IDL platforms, provide a semi‐

automated image preprocessing process of a six‐band multispectral camera. 

2. Materials and Methods 

2.1. Imaging Sensor and UAV System 

A six‐band multispectral camera (Mini‐MCA6 Tetracam, Inc., Chatsworth, CA, USA) was used. 

The Mini‐MCA6 is a miniature array camera with five band channels and an incident light sensor 

(ILS), which contains a band pass filter and an optical fiber (Figure 1). The basic performance 

parameters of the Mini‐MCA6 are summarized in Table 1. 

 

Figure 1. A photo of the Tetracam Mini‐MCA6. ILS, incident light sensor. 

Table 1. The performance parameters of the Tetracam Mini‐MCA6. 

Channel 
Central 

Wavelength (nm) 

Bandwidth 

(nm) 

Exposure 

Proportion (%) 

Master (MCA‐0) 550 10 70 

Slave 1 (MCA‐1) 490 10 120 

Slave 2 (MCA‐2) 671 10 100 

Slave 3 (MCA‐3) 700 10 100 

Slave 4 (MCA‐4) 800 10 80 

Incident light sensor (ILS)   130 
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The multispectral camera was mounted on an ARF‐MikroKopter UAV (Mikrokopter Inc., 

Moormerland, Germany), which had eight rotors. The specifications of the UAV are listed in Table 2. 

The UAV system was equipped with a MC‐32 remote control module and a ThinkPad laptop, as 

shown in Figure 2. 

Table 2. The specifications of the parameters for the ARF‐MikroKopter unmanned aerial vehicle 

(UAV). 

Parameter Value 

Weight 2050 g 

Size 73 (width) × 73 (length) × 36 (height) cm 

Battery 4s/5000 520 g 

Maximum payload 2500 g 

Flight duration 8–41 min 

Temperature range −5–35 °C 

 

Figure 2. A photo of the UAV system equipped with (a) a ThinkPad laptop; (b) a Graupner MC‐32 

control module; and (c) an ARF‐MikroKopter UAV. 

2.2. Image-Preprocessing Methods 

2.2.1. Noise Correction 

Noise correction was performed to correct the systematic error of the multispectral sensors in 

the first step of multispectral image preprocessing. Given that the raw digital number (DNraw) of each 

pixel is the sum of a noise component (DNnoise) and a radiance component (DNrad), identifying the 

characteristic components of the noise component is the key to extracting the radiance component 

[15]. 

rad raw noiseDN DN DN   (1)

To appropriately access the contribution of the image noise, the multispectral camera was kept 

in a fully enclosed black box, which removed the radiance component as a result of the physical 

isolation of the sensor. The setup would then generate dark offset imagery to characterize the 

distribution of image noise on a per‐pixel basis. For each band channel of the Mini‐MCA6, a sensor‐

specific database of dark offset imagery was conducted at the same three exposure levels (1.0, 1.5, 

and 2.0 ms) as the field test. According to a trial‐and‐error method, the number of dark offset images 

for each exposure time was set as 100 to balance correction accuracy and calculation efficiency. The 

noise component of each pixel was calculated from the average of the 100 images and stored as 

separate images [15]. Then, the image noise could be corrected based on Equation (1). 

2.2.2. Vignetting Correction 

Due to the non‐uniformity of the optical lens, the brightness or saturation of an image would 

decrease toward the periphery compared to the image center, namely vignetting. We used the 

uniform source system (CSTM‐USS‐1200C; Labsphere, Inc., North Sutton, NH, USA), as shown in 
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Figure 3, to create vignetting images at three exposure levels (1.0, 1.5, and 2.0 ms). To maximize the 

noise reduction potential, 100 vignetting images per exposure level were averaged as vignetting 

samples (Va) for each band channel [15]. Due to the increasing signal‐to‐noise ratio (SNR) from the 

center to the edge of images, the periphery of the vignetting samples had high uncertainty [15]. To 

ensure the data’s quality, the top 5% of DN values in Va were averaged as Vb. The correction coefficient 

of vignetting (Vc) for each channel was obtained from: 

/c a bV V V . (2)

 

Figure 3. A photo of the uniform source system (CSTM‐USS‐1200C; Labsphere, Inc., North Sutton, 

NH, USA). 

2.2.3. Lens Distortion Correction 

Lens distortion was corrected using the Brown model [21]. The lens distortion correction 

parameters for each channel were measured using a program supplied by the Beijing Spatial 

Information Technology Co., Ltd., and the coefficients are given in Table 3. Due to the different 

distortions, the five channels should be corrected separately based on the appropriate correction 

coefficients: 

2 4 2 2
0 1 2 1 0

2 0 0 0 0

( )( ) [ 2( ) ]

2 ( )( ) ( ) ( )

x x x k r k r p r x x

p x x y y x x y y 

     

      

 , (3)

2 4 2 2
0 1 2 2 0 1 0 0( )( ) [ 2( ) ] 2 ( )( )y y y k r k r p r y y p x x y y         , (4)

2 2
0 0( ) ( )r x x y y    , (5)

where ∆x and ∆y are the image correction values along the horizontal and vertical coordinates, 

respectively, x and y are the coordinates of the image point, x0 and y0 represent the main image point, 

ki and pi (I = 1, 2) are the coefficients of radial distortion and decentering distortion, respectively, α is 

the non‐square scaling factor, and β is the non‐orthogonal distortion factor.  
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Table 3. The lens distortion correction coefficients for the Mini‐MCA6. 

Correction coefficients Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 

Main image point 
x0 459.2210 457.1416 459.5102 458.7621 447.4720 

y0 553.2878 553.6993 553.4641 558.4854 554.4125 

Radial distortion 
k1 5.943 × 10−8 5.396 × 10−8 5.836 × 10−8 4.322 × 10−8 5.635 × 10−8 

k2 −7.420 × 10−15 3.817 × 10−15 1.007 × 10−14 7.428 × 10−15 5.563 × 10−16 

Decentering distortion 
p1 9.080 × 10−6 9.836 × 10−6 9.064 × 10−6 1.015 × 10−5 9.353 × 10−6 

p2 3.876 × 10−7 2.110 × 10−7 5.372 × 10−7 1.763 × 10−8 1.307 × 10−7 

Non‐square scaling α 9.220 × 10−3 8.82 × 10−3 1.012 × 10−2 9.240 × 10−3 1.028 × 10−2 

Non‐orthogonal 

distortion 
β 9.554 × 10−3 8.941 × 10−3 9.234 × 10−3 8.603 × 10−3 9.920 × 10−3 

2.2.4. Band Registration 

The lenses of the multispectral camera were arranged in two rows as depicted in Figure 1. The 

misalignment of these lenses leads to displacement between the images from each channel. To 

eliminate image displacement, band registration was performed. Two methods for band registration 

were used. One was via the Tetracam PixelWrench2 (PW2) software, which was embedded in the 

multispectral camera [35]. The other was based on the ground control point‐based (GCP‐based) 

method. To distinguish GCPs easily, the GCPs were painted on the road as black annuluses with 

inner and outer diameters of 10 cm and 50 cm, respectively (Figure 4). The geographic coordinates of 

GCPs were measured by RTK‐GPS (X900 GNSS, Huace., Beijing, China). The image of MCA‐0 was 

used as the reference image and the images of the other channels were registered with the reference 

image via the image registration tool (i.e., “select GCPs: image to image”) in ENVI 5.2. 

 

Figure 4. The distribution and the size of the ground control points (GCPs). 

2.2.5. Radiometric Correction 

Radiation correction was necessary to eliminate distortion information in the radiance data. Two 

methods for radiation correction were employed: the ELC method [36] and the light intensity sensor 

calibration (ILSC) method. 

The ELC is a typical vicarious correction method based on a regression analysis of spectral data 

from images and the real measured values. The standard data were measured by an analytical 

spectral device (ASD) FieldSpec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA) 

from four pieces of the calibration canvas with different reflectance values of 3%, 22%, 48%, and 82% 

(Figure 5). As shown in Figure 5b, the spectral signatures of the calibration canvas were stable and in 

the range of 490–800 nm, including all the wavelengths of the band channels (see Table 1). 

The principle of ILSC is to multiply the ratio of the downward intensity to the reflected light 

intensity by the correction factors. The information of downward intensity was captured through the 

optical fiber (see Figure 1) and stored in the ILS. The corresponding correction file derived from the 

light intensity sensor can be uploaded into the PW2 software as depicted in Figure 6. 
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Figure 5. The calibration canvas with different reflectance values (a) and the corresponding spectral 

signatures (b). 

 

Figure 6. The correction file from the light intensity sensor. 

2.3. Winter Wheat Case Study 

The study area was located in the town of Baipu, which is in the city of Rugao, Jiangsu Province, 

China (120°45’E, 32°16’N). Two winter wheat (Triticum aestivum L.) field experiments were designed 

involving different nitrogen (N) application rates, planting densities (D), and varieties (V) in two 

growing seasons. Details of the field experiments are given in Table 4. To avoid the uncertainty from 

image mosaicking, the multispectral images were captured at an altitude of 150 m, resulting in 

covering all 36 field plots within a single image and a spatial resolution of 8.125 cm. All flights were 

carried out between 11:00 and 13:00 in stable ambient light conditions together with field 

measurement of the LAI and leaf biomass on the same day. 

Table 4. Experimental design and sampling dates for the two growing seasons. 

Experiment Experiment 1 Experiment 2 

Year 2013–2014 2014–2015 

Wheat cultivar Ningmai 13, Xumai 30 
Shengxuan 6, Yangmai 

18 

Row spacing (cm) 25 25, 40 

N application rates (kg/ha) 0, 75, 150, 225, 300 0, 150, 300 

Sampling dates 
April 9/15/23, 2014 

May 6, 2014 

March 13, 2015 

April 9/17/24, 2015 

May 9, 2015 

The LAI was measured as follows. For each plot, 30 wheat stems were considered as one sample, 

and the number of stems in one meter (B) was counted manually. The green leaf area was scanned 

using the LI‐3000 (LI‐COR Inc., Lincoln, NE, USA). The LAI of the population was calculated by: 

41 / / 10LAI D B A C     , (6)
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where D was the distance between two rows of wheat, and A and C were the leaf area and number 

of stems, respectively. 

The leaf biomass was measured as follows: For each plot, 30 hills of plants were cut above the 

ground surface. All green leaves and panicles were separated from the stems. All components were 

oven‐dried at 105 °C for 30 min and then at 80 °C for about 24 h until a constant weight was obtained. 

To analyze the performance of the different image‐preprocessing methods, the data of 

Experiment 1 were analyzed. Based on the results, an appropriate image preprocessing process was 

proposed for the UAV‐based multispectral sensor. To evaluate the feasibility and stability of the 

optimal image‐preprocessing methods for crop monitoring, the estimation models of LAI and leaf 

biomass for winter wheat were validated with the data from Experiment 2. Eight commonly used 

vegetation indexes (VIs) were selected for the estimation of LAI and leaf biomass as indicated in Table 

5. 

Table 5. The formulas for the vegetation indexes (VIs). 

VIs1 Algorithm Reference 

DVI R800 – R700 [37] 

NDVI (R800 – R700) / (R800 + R700) [38] 

GNDVI (R800 – R550) / (R800 + R550) [39] 

RVI R800 / R700 [40] 

SAVI 1.5 × (R800 – R700) / (R800 + R700 + 0.5) [41] 

MTVI2 1.5 × (1.2 × (R800 – R550) – 2.5 × (R700 – R550)) / (2 × (R800 + 1)2 – (6 × R800 – 5 × R700)0.5 – 0.5)0.5 [42] 

EVI 2.5 × (R800 – R700) / (1 + R800 + 6 × R700 – 7.5 × R490) [43] 

GBNDVI (R800 – (R550 + R490)) / (R800 + R550 + R490) [44] 
1 DVI = Difference Vegetation Index, NDVI = Normalized Difference Vegetation Index, GNDVI = 

Green Normalized Difference Vegetation Index, RVI = Ratio Vegetation Index, SAVI = Soil Adjusted 

Vegetation Index, MTVI = Modified Triangular Vegetation Index, EVI = Enhanced Vegetation Index, 

GBNDVI = Green‐Blue Normalized Difference Vegetation Index. 

3. Results 

3.1. Sensor Error Analysis 

3.1.1. Noise Correction Factor for Each Band 

The average noise images for the five channels of the Mini‐MCA6 and the variation of these 

noise values (DNnoise) with the exposure time are presented in Table 6. For each band, the noise images 

were not exactly the same under different exposure times, and the values did not change regularly 

as the exposure time increased. For the same exposure time, the DNnoise varied from band to band 

within the range 0–15. Compared to the other four bands, MCA‐2 had the lowest noise value. 

According to the DNnoise for each band at specific exposure times in Table 6, the systematic error of 

the Mini‐MCA6 caused by noise would be eliminated by Equation (1).  
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Table 6. The average noise images for the five channels of the Mini‐MCA6 at different exposure times. 

Band 
Exposure time 

1.0 ms 1.5 ms 2.0 ms  

MCA‐0 

(550 nm) 

   

 

MCA‐1 

(490 nm) 

   

MCA‐2 

(671 nm) 

   

MCA‐3 

(700 nm) 

   

MCA‐4 

(800 nm) 

   

3.1.2. Vignetting Correction for Each Band 

As shown in Table 7, the images for the vignetting correction factor for each band were not 

symmetric circular distributions. For the same exposure time, the factor images and the offsets of the 

circle center for the five bands were different. For the same band, the vignetting correction factors 

were different with different exposure times. The distributions of Vc in the middle row of the images 

for each channel were accordingly listed in Table 7. The range of Vc was from 1 to 1.5 for MCA‐0, 

MCA‐1, MCA‐3, and MCA‐4, while the value of Vc for MCA‐2 was between 1 and 2.4. It is obvious 

that the peak of Vc was not in the middle for all channels.  
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Table 7. The images for the vignetting correction factor (Vc) for the five channels of the Mini‐MCA6 

at different exposure times. 

Band 

Exposure Time VC with the Column 

Number for the Middle 

Row1 
1.0 ms 1.5 ms 2.0 ms 

MCA‐0 

(550 nm) 

    

MCA‐1 

(490 nm) 

    

MCA‐2 

(671 nm) 

    

MCA‐3 

(700 nm) 

    

MCA‐4 

(800 nm) 

    

1 The horizontal and vertical coordinates of the plots are column number and Vc, respectively. 

Based on the images of correction factors, the vignetting could be eliminated. Taking the 

correction result of MCA‐0 as an example, the DN values of the corrected image were distributed 

evenly after correction (Figure 7). The correction results for other band channels of the Mini‐MCA6 

were similar to that of MCA‐0. 
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Figure 7. A comparison of the MCA‐0 images (a) before and (c) after vignetting correction based on 

the correction factor image (b). 

3.1.3. Brown Model for Lens Distortion Correction 

Taking the MAC‐4 images at the booting stage as an example, Figure 8 shows the results before 

and after correction of lens distortion via the Brown model. The correction results for other images 

of the Mini‐MCA6 were found to be similar. In a visual assessment, the lens distortion was effectively 

eliminated based on processing based on the Brown model. 

 

Figure 8. A comparison of the MCA‐4 images (a) before and (b) after lens distortion correction at the 

booting stage. 

3.2. Comparison of PW2-Based and GCP-Based Methods for Band Registration 

Figure 9 shows one example of (a) the original, (b) the PW2‐based, and (c) the GCP‐based results. 

A visual inspection of the data revealed that pixel displacement of different bands was eliminated by 

both the PW2‐based and GCP‐based methods after band registration between the reference channel 

(MCA‐0) and the other four bands. Compared to the multispectral image from the PW2‐based 

method (see Figure 9b), the boundaries of features in the corrected image from the GCP‐based 

method (see Figure 9c) gave a better match between each band. The statistical results also indicated 

that the GCP‐based method was superior to the PW2‐based method (Figure 10). Although the root‐

mean‐square errors (RMSEs) of mismatched pixels for MCA‐1, MCA‐2, and MCA‐3 decreased after 

PW2‐based registration, the match between MAC‐4 and the master channel was not improved. On 

the contrary, the RMSEs for all slaves could be reduced to about one pixel by the GCP‐based method. 
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Figure 9. Mini‐MCA6 multispectral images from different band registration methods. (a) Original 

image stacking; (b) PW2‐based method; and (c) GCP‐based method. 

 

Figure 10. The root‐mean‐square error (RMSE) of mismatched pixels between each slave and the main 

channel for different band registration methods. 

3.3. Comparison of the ILSC and ELC Methods for Radiometric Correction 

The reflectances of the four correction canvases from the ASD spectrometer were used to 

evaluate the performances of the ILSC and ELC methods. As shown in Figure 11, the ELC method 

performed significantly better than the ILSC method. For the ILSC method, the results of the heading 

stage were generally underestimated. Compared to the ILSC method, the RMSEs of the ELC method 

were reduced by an average of 65.4% for all bands, and the largest improvement was in MCA‐1, with 

RMSE values ranging from 0.18 to 0.04. 
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Figure 11. Comparison of the analytical spectral device (ASD) reflectance with the calibrated values 

for five bands at four growth stages with the light intensity sensor correction (ILSC) and empirical 

linear correction (ELC) radiometric correction methods. Panels (a–b), (c–d), (e–f), (g–h), and (i–j) are 

the plots for the MAC‐1, MCA‐0, MAC‐2, MAC‐3, and MAC‐4, respectively. The two columns from 

left to right correspond to the radiometric correction methods ILSC and ELC, respectively. 

3.4. Estimation of LAI and Leaf Biomass 

To evaluate the feasibility and stability of the optimal image‐preprocessing methods (noise 

correction, vignetting correction, lens distortion correction with the Brown model, GCP‐based band 

registration, and radiometric correction with the ELC method), the LAI and the leaf biomass of winter 

wheat were estimated for 2014–2015. As shown in Table 8, the VIs extracted from the corrected 

multispectral images were of satisfactory performance for the estimations of both LAI (R2 > 0.76 and 

RMSE < 1.13) and leaf biomass (R2 > 0.73 and RMSE ≤ 0.051). The highest accuracies for the LAI and 

the leaf biomass estimations were produced by MTVI2 (modified triangular vegetation index). Based 

on the MTVI2 images at different growth stages, the mappings of LAI and leaf biomass were 
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generated as shown in Figures 12 and 13, respectively. At the same growth stage, the LAI and leaf 

biomass of winter wheat increased with a rise in plant density and nitrogen level. Under the same 

treatment regime, the LAI and the leaf biomass increased at an early stage and then decreased. The 

results were reasonable and consistent with a visual inspection. 

Table 8. Statistical assessments for the estimation of leaf area index (LAI) and leaf biomass with 

vegetation indices (VIs) for the Mini‐MCA6 images. R2 is the determination coefficient, and RMSE is 

the root‐mean‐square error. Values in bold indicate the best accuracy (column basis). 

VIs 
LAI  Leaf Biomass 

Equation R2 RMSE  Equation R2 RMSE 

DVI y = 0.4862e5.6717x 0.808 1.131  y = 0.029e4.8811x 0.757 0.050 

NDVI y = 0.0818e4.9699x 0.790 1.086  y = 0.0062e4.2863x 0.744 0.045 

GNDVI y = 0.0248e6.3034x 0.778 1.195  y = 0.0021e5.4789x 0.744 0.048 

RVI y = 0.707e0.1917x 0.833 1.130  y = 0.0393e0.1671x 0.801 0.044 

SAVI y = 0.1188e5.3964x 0.839 0.955  y = 0.0086e4.6535x 0.790 0.044 

MTVI2 y = 0.5147e3.837x 0.855 0.870  y = 0.0303e3.3102x 0.806 0.041 

EVI y = 0.2409e3.8655x 0.783 1.127  y = 0.0159e3.3185x 0.731 0.050 

GBNDVI y = 0.1047e4.7458x 0.765 1.294  y = 0.0074e4.1367x 0.736 0.051 

 

Figure 12. Leaf area index (LAI) mappings using the relationship between MTVI2 and LAI at different 

growth stages: (a) jointing stage; (b) booting stage; (c) heading stage; (d) anthesis stage; and (e) filling 

stage. N is nitrogen rate (N0 = 0, N1 = 150, N2 = 300 kg/ha). D is row spacing (D1 = 25, D2 = 40 cm). V 

represents the wheat varieties Shengxuan 6 (V1) and Yangmai 18 (V2). 
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Figure 13. Leaf biomass mappings using the relationship between MTVI2 and leaf biomass at different 

growth stages: (a) jointing stage; (b) booting stage; (c) heading stage; (d) anthesis stage; and (e) filling 

stage. N is nitrogen rate (N0 = 0, N1 = 150, N2 = 300 kg/ha). D is row spacing (D1 = 25, D2 = 40 cm). V 

represents the wheat varieties Shengxuan 6 (V1) and Yangmai 18 (V2). 

4. Discussion 

4.1. Correction of Noise, Vignetting, and Lens Distortion 

Noise, vignetting, and lens distortion generated by sensors are important factors that dictate the 

quality of multispectral images from the Mini‐MCA6. In this study, we identified and quantified 

those components of sensor error for each spectral band at the different growth stages of wheat. 

To acquire uncontaminated information, noise images were generated for the noise correction 

in this study. The results indicated that the noise components of the different spectral bands at the 

different exposure times should be corrected separately and specifically, which is consistent with the 

results of an earlier study [15]. Additionally, due to the different observation conditions, real‐time 

corrections were required for multispectral images acquired at the different growth stages of winter 

wheat. 

For the vignetting correction, Laliberte et al. [14] used the correction files of the multispectral 

camera in PW2. However, the vignetting correction factors were not fixed, but gradually changed in 

a circular ring (Table 7). Therefore, it would be more appropriate to determine the vignetting 

correction factors of each spectral band on the exposure time setting of the UAV‐based sensors. 

The Brown model has been frequently used for lens distortion correction in digital photography 

and multispectral cameras [15]. In this study, the robustness of the Brown model was verified, and 

the results showed that the model effectively reduced the lens distortion of the Mini‐MCA6. Since the 

performance of the Brown model was evaluated by a visual assessment, a quantitative comparison 

will be performed in future work for the purpose of in‐depth discussion. 

4.2. Selection of Appropriate Methods for Spectral Band Registration and Radiometric Correction 

Given that the UAV‐based multispectral images have a significant misregistration error between 

different spectral bands, various methods have been applied to spectral band registration. However, 

assessment of accuracy has rarely been discussed. In this study, both intrinsic (PW2‐based) and 

extrinsic (GCP‐based) methods were evaluated. Although the PW2‐based method was automated, 

our results showed that misregistration errors could not be effectively eliminated (an average RMSE 

of 1.82 pixels was obtained), which was consistent with earlier work [14]. Another highly automated 

method was proposed by Turner et al. [23], who used the SIFT algorithm to find feature points in the 

image for band registration, and obtained an average accuracy of 1.78 pixels. However, the feature 
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points of crops might not be precisely detected by such feature‐based methods, especially for 

cropland with indistinct boundaries. In contrast, the GCP‐based method was performed artificially 

for band registration and produced better results, with an average RMSE of 1.02 pixels. It is noted 

that it was difficult to distinguish GCPs when the flight height was higher than 400 m [29]. Given the 

above, the GCP‐based band registration method is recommended for the acquisition of high‐

resolution Mini‐MCA6 images in crop monitoring. 

The purpose of radiometric correction is to convert the DN values of each pixel to a reflectance 

value in the image. Two methods (ILSC and ELC) were used for preprocessing the Mini‐MCA6 

images in this study. Compared with the reflectance spectra acquired by the ASD spectrometer, the 

performance of the ELC method was better than that of the ILSC method. This might be because the 

correction files of the ILSC method were produced directly at a height of 150 meters and the light and 

solar radiation intensities would have been different when the height of the UAV was changed. In 

the case of the ELC method, the correction coefficients were determined by the use of real measured 

values. Therefore, the ELC method is considered to be appropriate and fit‐for‐purpose for 

radiometric correction of the Mini‐MCA6. 

4.3. Application of Image Preprocessing in Crop Monitoring 

Based on the validation and evaluation of the above methods, image preprocessing of UAV‐

based Mini‐MCA6 data should consist of the following: (1) noise correction; (2) vignetting correction; 

(3) lens distortion correction via the Brown model; (4) GCP‐based band registration; and (5) 

radiometric correction with the ELC method. To evaluate the feasibility and stability of the image 

preprocessing process, the LAI and leaf biomass of winter wheat were estimated based on the post 

processed Mini‐MCA6 images. The results clearly demonstrated the applicability and potential for 

image preprocessing in winter wheat monitoring. Moreover, the utility and practicality of those 

methods have been increased by developing all of the procedures on ENVI/IDL platforms. 

The present study was based on field plot experiments of winter wheat. Although the field 

experiments were conducted over two years with specific wheat varieties, planting densities, and N 

application rates, the spatial heterogeneity and spectral differences of plots had some regularity. 

Therefore, other crops grown under different conditions should be used to test the applicability of 

the proposed image preprocessing process. The proposed image preprocessing process can also serve 

as a reference for other array‐type multispectral sensors. 

5. Conclusions 

In this study, an analysis and evaluation of the image preprocessing of a UAV‐based 

multispectral sensor, which included noise correction, vignetting correction, lens distortion 

correction, spectral band registration, and radiometric correction, has been performed. The results 

showed that the difference (or ratio) between the noise (or vignetting) images of the Mini‐MCA6 and 

the raw images could effectively reduce the error caused by noise (or vignetting). The Brown model 

proved to be highly versatile and robust for lens distortion correction. For spectral band registration, 

the GCP‐based method is recommended if the GCPs can be clearly observed in high‐resolution 

images. Regarding radiometric correction, the ELC method performed better than ILSC; thus, the 

ELC method is appropriate for narrowband multispectral images. 

In practical use, the proposed procedures can be processed on the ENVI/IDL platforms. Based 

on the field plot experiments of winter wheat, the LAI and leaf biomass at four critical growth stages 

were estimated to evaluate the feasibility of the image‐preprocessing process. The results 

demonstrated that the image‐preprocessing process for a UAV‐based Mini‐MCA6 was reliable for 

winter wheat monitoring, and also serves as a reference for other array‐type multispectral sensors. 

The proposed image‐preprocessing process should be extended to diverse farmlands for other crop 

monitoring investigations. 
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