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Abstract: The external acceleration of a fast-moving body induces uncertainty in attitude determination
based on inertial measurement unit (IMU) signals and thus, frequently degrades the determination
accuracy. Although previous works adopt acceleration-compensating mechanisms to deal with this
problem, they cannot completely eliminate the uncertainty as they are, inherently, approaches to an
underdetermined problem. This paper presents a novel constraint-augmented Kalman filter (KF)
that eliminates the acceleration-induced uncertainty for a robust IMU-based attitude determination
when IMU is attached to a constrained link. Particularly, this research deals with an acceleration-level
kinematic constraint derived on the basis of a ball joint. Experimental results demonstrate the
superiority of the proposed constrained KF over the conventional unconstrained KF: The average
accuracy improved by 1.88◦ with a maximum of 4.18◦. More importantly, whereas the accuracy of
conventional KF is dependent to some extent on test acceleration conditions, that of the proposed
KF is independent of these conditions. Due to the robustness of the proposed KF, it may be applied
when accurate attitude estimation is needed regardless of dynamic conditions.

Keywords: attitude; constraint; external acceleration; Kalman filter; kinematic inertial measurement
unit

1. Introduction

Attitude determination based on the inertial measurement unit (IMU) is widely used in various
fields, such as human motion tracking, sports science, and robotics [1–8]. For example, the attitude
or the orientation, instead of position information, can be effectively used to track limb movements
using IMU alone [9,10] or by the fusing of IMU and aiding sensors [11,12]. A typical IMU consists of a
triaxial accelerometer and a triaxial gyroscope, and Kalman filtering is the most popular framework
for the attitude determination [13,14]. Despite the variety of detailed approaches to Kalman filters
(KF), the basic concepts of IMU-based attitude KFs are all the same: The attitude is predicted by
time-integrating the gyroscope signals, but the unbounded drift is caused by the error accumulation in
the course of integration. For the correction, the accelerometer provides a drift-free vertical reference
by sensing gravity [14,15].

However, the case where the accelerometer signal is dominated by the gravitational acceleration
is limited to the static condition, as the accelerometer signal in dynamic conditions is the sum of
the gravitational acceleration and the external acceleration [15]. In order to distinguish between the
two, attitude information is needed. It should be remembered that the attitude is, nonetheless, what
we want to determine. Therefore, IMU-based attitude determination under dynamic conditions is
a type of underdetermined problem because the accelerometer signal used for the correction has
two unknowns: The attitude and the external acceleration. Accordingly, the external acceleration of
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the moving body induces uncertainty in the attitude determination, and thus, frequently degrades
the determination accuracy. For example, the attitude determination can be required in the motion
analysis of athletes and fast-moving systems that are frequently exposed to considerable amounts of
acceleration. Consequently, the acceleration-related uncertainty becomes a critical problem.

In order to deal with this problem, a number of attitude estimation algorithms adopt
acceleration-compensating mechanisms. Such mechanisms include simple switching techniques
(e.g., measurement vector switching [14] and measurement covariance matrix switching [5]) and
acceleration model-based mechanisms using the Markov chain [16,17]. Despite these efforts however,
previous approaches cannot completely eliminate the acceleration-related uncertainty as they are,
inherently, approaches to an underdetermined problem. For this reason, the improvement of
determination accuracy under dynamic conditions remains limited.

This study may provide a solution to the aforementioned problem. The key underlying concept
of this research is that the attitude determination for an unconstrained body is an underdetermined
problem, whereas the attitude determination for a constrained body does not have to be such. Hence,
this paper presents a novel constraint-augmented KF that eliminates acceleration-related uncertainty
for robust IMU-based attitude determination, when IMU is attached to a constrained link. Specifically,
this research deals with a kinematic constraint generated by a ball-and-socket joint.

Over the last few years, several approaches have been developed to augment constraints within
the KF framework. They include estimate projection [18], gain projection [19], and measurement
augmentation [20]. In the field of IMU applications, kinematic constraints have been utilized to
achieve considerably consistent attitude estimations, typically for human motion tracking [9,21–27].
In Reference [19], constraints are used to ensure that segments remain connected at the joints in their
biomechanical model. Luinge et al. [9] and Zhang et al. [23] embedded the geometric constraint in
the elbow joint (i.e., the adduction angle is restricted to a considerably small angle.), to a KF and
a particle filter, respectively. In Reference [22], anatomical constraints, such as joint angle limits
and limitations of limb motions, are used to transform the attitude-determination problem to an
optimization problem (i.e., the estimated attitudes should optimize the consistency with accelerometer
measurements and satisfy constraints at the same time). Note that in previous studies, the use of
kinematic constraints for the attitude determination basically lies at the ‘position level’ by exploiting,
for example, the connectivity of segments and the restriction of the range of motion, for human motion
analysis. In Reference [28], a constraint equation based on the velocity of the elbow joint, relative to
both the upper arm and the forearm, is applied for a better estimation of the forearm and the upper
arm rotation.

This study focuses on the ‘acceleration-level’ constraint for dynamic operating conditions,
considering fast-moving athletes and various systems with abrupt motion changes. It should
be noted that the acceleration-level kinematic constraint contains terms of the acceleration and
angular velocity, which are related to signals of the accelerometer and the gyroscope. Therefore, the
acceleration-level kinematic constraint can be augmented in a measurement model of a KF structure.
By doing so, the aforementioned acceleration-related uncertainty can be eliminated, and thus, the
attitude-determination problem evades being an underdetermined problem. In Reference [29], the
acceleration-level constraint equation was used to determine segment-fixed vectors from IMUs to
the center of the rotation of the joint, in the course of the joint angle estimation. However, so far the
acceleration-level constraint has not been used for the attitude determination, by replacing the Markov
chain-based acceleration model with the acceleration-level constraint.

In this study, the acceleration-level kinematic constraint, associated with a ball-and-socket joint,
is augmented in the measurement model of a state-of-the-art attitude-determination KF, in order to
determine the attitude without the acceleration-induced uncertainty. Although this paper provides
a proof-of-concept with a ball-and-socket joint constraint as an example, the proposed approach
may open up many directions for future research. Experimental results are provided to evaluate the
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performance of the proposed constrained KF in comparison with conventional unconstrained KFs
under various accelerated conditions.

2. Methods

2.1. Problem Definition and Sensor Modeling

Let us assume that an IMU, to which the sensor-fixed frame S is attached, rotates with respect to a
fixed inertial reference frame, I (see Figure 1). The rotation matrix S

I R of {I}, with respect to {S}, can be
interpreted as a set of three-unit axis column vectors of {I}, written in {S}. That is,

S
I R =

[
SX I

SY I
SZ I

]
(1)

Note that the last column, SZ I , represents the attitude, as it can be used to calculate
roll and pitch, i.e., γ = atan2(SZ2, SZ3) and β = atan2(−SZ1, SZ2/sin γ), respectively, when
SZ I =

[
SZ1

SZ2
SZ3

]T
. Hence, the purpose of the proposed KF is to determine SZ I . (henceforth,

written simply as SZ, for convenience). In this paper, the axis vectors are represented by capital letters
to distinguish them from other variables.
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Figure 1. An inertial measurement unit (IMU) attached to a kinematically-constrained link by a
ball-and-socket joint.

Sensor signals from the accelerometer (A) and gyroscope (G) are modeled, respectively, as follows:

yA = Sg + Sa + nA (2)

yG = Sω + nG (3)

where Sg is the gravity vector; ω is the angular velocity; a is the external acceleration; and the n’s are
the measurement noises that are assumed to be zero-mean white Gaussian and also uncorrelated each
other [17]. It is natural that vectors in sensor signals are observed in the sensor-frame coordinates,
as indicated by the left superscript, S.

When the Z-axis of the inertial frame points vertically upward (which is the most common setup),
Sg in Equation (2) can be expressed in terms of SZ, i.e., Sg = gSZ, where g = 9.8 m/s2. It should be
noted that Equation (2) has two unknowns that are interdependent: SZ and Sa.
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2.2. Acceleration-Level Ball Joint Constraint

This study deals with a ball-and-socket joint (or simply, a ball joint) constraint, which is defined
by the condition that the center of the ball coincides with the center of the socket. This condition only
restricts three translational degrees of freedom of a point in the ball-side link, relative to the socket-side
link, but allows three rotational degrees of freedom. Then, we assumed that an IMU is mounted
on a link, which was connected to another link via a ball joint. When observed in the sensor frame,
the vector from the joint center to the origin of the sensor frame, Sd, was constant during motion and
could be predetermined during the initial calibration procedure. Moreover, the acceleration of the
sensor could be considered as the sum of the acceleration of the joint center and the acceleration caused
by the rotation of that sensor around the joint center.

As a simplified system, the socket-side link was firmly fixed to the ground in this study (see
Figure 1). Accordingly, the joint center’s acceleration was zero, and the acceleration of the sensor was
as follows:

Sa = ([S
.
ω×] + [Sω×][Sω×])Sd, (4)

which is a function of the angular velocity and acceleration, and the predetermined constant position
vector. Here,

.
ω (having the overhead dot) represents the first-time derivative of ω, and [ω×] is a

3 × 3 skew symmetric matrix to represent the standard vector cross product. Because the ideal angular
velocity Sω, in Equation (4) was unavailable in practice because of the measurement noise, it was
necessary to express Equation (4) using the actual gyroscope output, yG. Therefore, if we replace Sω

with yG−nG, according to Equation (3), and use [(yG−nG)×] = [yG×]− [nG×], the acceleration-level
kinematic constraint Equation (4) becomes

Sa = ([
.
yG×] + [yG×][yG×])Sd + Saε (5)

where the error of the acceleration equation, Saε, is derived as

Saε = [Sd×] .
nG − ([Sd×][yG×]− 2[yG×][Sd×])nG (6)

In Equation (5),
.
yG is obtained by numerical differentiation, i.e.,

.
yG,t ≈ (yG,t − yG,t−1)/∆t,

where ∆t is the time step size. Furthermore, for the derivation of Equation (5), [yG×][nG×] −
[nG×][yG×] = [([yG×]nG)×] is applied and [nG×][nG×] is ignored. Finally, by using the relationship
[a×]b = −[b×]a, the gyroscope noise nG and its first-time derivative

.
nG are set at the right side of the

corresponding terms to enable the formulation of the noise covariance matrix.

2.3. Constraint-Augmented Kalman Filter

The proposed algorithm was based on our previous work [17], which was an
attitude-determination algorithm, using a linear KF. The basic structure of the proposed KF can
be defined by the following process and measurement models:

xt = Φt−1xt−1 + wt−1 (7)

and
zt = Htxt + vt (8)

where is the state vector, z is measurement vector, Φ is the state transition matrix, H is the observation
matrix, and w and v are the white Gaussian process and measurement noises, respectively. Because
the purpose of our KF is to determine SZ, the state vector is simply defined as x = SZ.

First, the process model based on the strapdown integration of the gyroscope measurement is

SZt = (I− ∆t[yG,t−1×])SZt−1 + ∆t(−[SZt−1×])nG (9)
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From Equation (7) and Equation (9), the transition matrix Φt−1, and process noises wt−1,
are I−∆t[yG,t−1×] and ∆t(−[SZt−1×])nG, respectively. Moreover, the process noise covariance matrix
Qt−1, defined by E

[
wt−1wT

t−1
]
, is −∆t2[SZt−1×]ΣG[

SZt−1×], where E is the expectation operator.
The covariance matrix of the gyroscope’s measurement noise, ΣG, is set equal to ΣG = σ2

GI, where σ2
G

is the gyroscope noise variance. One may refer to Reference [17] for details of the process model.
Second, the measurement model was based on the accelerometer signal, Equation (2), combined

with the acceleration-level kinematic constraint, Equation (5), derived in Section 2.2. By substituting
Equation (5) into Equation (2), the constraint-augmented measurement equation becomes

yA,t − ([
.
yG,t×] + [yG,t×][yG,t×])Sd = gSZt +

Saε,t + nA. (10)

From Equation (8) and Equation (10), the measurement vector Zt, observation matrix Ht, and
measurement noises vt are

zt = yA,t − ([
.
yG,t×] + [yG,t×][yG,t×])Sd, (11)

Ht = gI, (12)

and
vt = nA + Saε,t (13)

As nA and Saε are uncorrelated, the measurement noise covariance matrix, Mt−1(= E
[
vt−1vT

t−1
]
),

can be divided into two terms, as follows:

Mt = ΣA + Σε,t, (14)

where ΣA is the covariance matrix of the accelerometer’s measurement noise and is set to σ2
AI, using

the noise variance of the accelerometer σ2
A. Additionally, Σε,t is the covariance matrix of the constraint

equation error and is defined as E[Saε,t
SaT

ε,t]. Furthermore, under the assumption that terms [Sd×] .
nG

and are uncorrelated, Σε can be written as

Σε,t = [Sd×]Σ .
nG
[Sd×]T

+([Sd×][yG,t×]− 2[yG,t×][Sd×])ΣG([
Sd×][yG,t×]− 2[yG,t×][Sd×])T (15)

where Σ .
nG

is the covariance matrix of the time derivative of the gyroscope noise and is defined as

E
[ .
nG

.
nT

G

]
. The covariance matrix is set to σ2.

nG
I, where σ2.

nG
is the variance of the derivative of the

gyroscope noise. The overall structure of the proposed KF is illustrated in Figure 2.
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3. Experimental Results

3.1. Experimental Setup and Test Conditions

For the verification of the proposed KF, which was implemented using MATLAB® programming,
an MPU6050 IMU sensor (from InvenSense, San Jose, CA, USA), that included a triaxial gyroscope and
a triaxial accelerometer was used. The MPU6050 signals were communicated to the PC via the Arduino
UNO board and entered into the proposed algorithm at a 100-Hz sampling rate (i.e., ∆t = 0.01 s).

Moreover, in order to obtain the true reference attitude, an OptiTrack Flex13 3D optical tracking
system (from NaturalPoint, Inc., Corvallis, OR, USA) was used. The MPU6050 was mounted on top
of a plastic right triangle ruler, and three light-emitting diode markers from the Flex 13 system were
also attached to each vertex of the ruler. These markers provided a three-dimensional orientation
from which the reference attitude vector SZre f could be extracted for accuracy evaluation of methods.
Thereafter, the ruler was firmly fixed on a link whose end was located at the ground via a ball joint.
Therefore, although the link could be rotated in any direction, its translational motion was constrained
by the ball joint. The link-fixed vector from the origin of the sensor frame to the joint center was
Sd =

[
− 0.45 1.85 82.45

]T
cm. The link was shaken by hand in a random manner under the

following conditions (see Figure 3):

• Test 1 (fast motion): Averaged ‖ Sa ‖ of 5.96 m/s2 with a maximum of 23.99 m/s2 for a total test
duration of 120 s.

• Test 2 (very fast motion): Averaged ‖ Sa ‖ of 9.38 m/s2 with a maximum of 47.96 m/s2 for total
test duration of 125 s.

• Test 3 (very fast motion for a long duration): Averaged ‖ Sa ‖ of 9.07 m/s2 with a maximum of
44.44 m/s2 for a total test duration of 520 s.
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Figure 3. Experimental setup: An IMU and optical markers attached to a link constrained by a
ball-and-socket joint.

Note that all of the three tests above were performed under highly dynamic conditions to observe
the effect of constraint augmentation on the determination performance under accelerated conditions.
Tests 2 and 3 had higher acceleration magnitudes than test 1. The difference between tests 2 and 3 is
the test duration, i.e., test 3 had a considerably longer test duration than test 2, and accordingly, IMU
was exposed to the severe condition longer.

For each of the aforementioned tests, results of the proposed KF (method A) were compared with
those of the other four methods. Method B was the unconstrained KF introduced in Reference [17] and
was also the platform of method A. In method B, ca, the external acceleration model parameter that
was dimensionless, was set to 0.01, which was experimentally chosen to produce satisfactory results
for the three tests. Method C was another constrained KF, which adopted the estimate projection
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introduced by Simon et al. [30], but used the same acceleration-level constraint equation in Equation (6)
formulated for the proposed method, method A. Therefore, the only difference between methods A
and C was the type of constraint augmentation used. Method D was a quaternion-based unconstrained
KF, presented in Reference [10] by Madgwick et al. The dimensionless-filter gain associated with
gyroscope-measurement errors used in Reference [10] was set to 0.026, which was also experimentally
chosen to produce satisfactory results. Method E was a direct method from measurements without
using a KF, i.e., the attitude was simply determined from the equation SZ=(yA−Sa)/g, where the
external acceleration in Equation (6) was used after the low-pass filtering with a cutoff frequency of
10 Hz. The determination accuracy was evaluated in terms of the root-mean square-error (RMSE) of
Euler angles (i.e., roll and pitch). Table 1 lists the roll and pitch RMSEs estimated from five different
algorithms for the three tests.

Table 1. Root mean square errors of attitude (unit: ◦).

Method A Method B Method C Method D Method E

Test 1
Roll 1.68 2.25 1.89 6.86 4.18
Pitch 2.18 2.63 2.41 6.14 3.54
Average 1.93 2.44 2.15 6.50 3.86

Test 2
Roll 2.04 6.22 2.30 8.39 5.86
Pitch 1.65 4.70 1.96 7.25 4.08
Average 1.85 5.46 2.13 7.82 4.97

Test 3
Roll 1.89 3.27 1.92 9.59 7.31
Pitch 2.34 4.00 2.44 8.63 4.37
Average 2.12 3.64 2.18 9.11 5.84

3.2. Results

Regarding test 1, in the cases of methods B and D, which were unconstrained KFs, method B
performed well in spite of the accelerated condition, but method D was affected by the condition,
i.e., the average RMSE of the roll and pitch from method B was 2.44◦, whereas that from method D
was 6.50◦. Both methods A and C, embedding the kinematic constraint on method B, exhibited slight
improvements in comparison with method B, i.e., 1.93◦ from method A and 2.15◦ from method C.
Method E, which was the direct method that used the IMU signal and constraint, yielded a higher
error (3.86◦) than methods A, C, and B, because of the severe noisiness of the data.

Because of the considerably fast-motion condition of test 2, methods B and D produced high
values of averaged RMSEs, i.e., 5.46◦ from method B and 7.82◦ from method D. In contrast, methods A
and C produced a similar level of RMSEs with test 1, in spite of the more severe condition of test 2, i.e.,
1.85◦ from method A and 2.13◦ from method C. Figure 4 shows determination errors from methods
A and B for 40 s (10–50 s) out of the total duration of 125 s in test 2. Because method A used the
kinematic constraint, it had a relatively uniform error of less than 7◦ in the entire section, regardless of
experimental conditions in terms of external acceleration. On the contrary, the determination error
from method B highly fluctuated. Particularly, the roll determination error reached a maximum of
18.5◦ in 18 s. This difference can be explained by answering the question of how to deal with the
external acceleration. The proposed method (method A) used the kinematic constraint equation, which
was independent from the acceleration condition, whereas the unconstrained method (method B)
used the stochastic Markov chain-based acceleration model, which could not cope with the rapidly
changing acceleration [13].

In test 3, methods A and C were superior to the other methods, as they also were in the other
tests. Because of the prolonged exposure to accelerated conditions, method D produced the largest
determination error (9.11◦) among the five methods. Method E performed better than method D
despite of its simplicity without a KF. It should be noted that method E was free from drift because of
the use of the kinematic constraint.
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4. Discussion and Conclusions

This paper presented a novel KF, which eliminated the acceleration-related uncertainty for
robust IMU-based attitude determination when IMU was attached to a constrained link. Particularly,
this research dealt with an acceleration-level kinematic constraint, derived by a ball-and-socket joint.
The constraint replaced the stochastic Markov chain-based acceleration model in the measurement
model of the attitude determination KF.

Our experimental results showed the superiority of the proposed KF (method A) over unconstrained
KFs (methods B and D); in method A, accuracy improved by an average of 1.88◦ and a maximum of
4.18◦ in comparison with method B, and by an average of 5.85◦ and a maximum of 7.70◦, in comparison
with method D. More importantly, whereas the accuracies of conventional KFs were dependent on test
acceleration conditions to some extent (that is, acceleration-related uncertainty), that of the proposed
KF was completely independent of test conditions. The maximum RMSE from the proposed KF was
just 2.34◦ of the pitch in test 3. This robustness of the attitude determination comes from the accurate
estimation of the external acceleration by using the kinematic constraint (see the summary of RMSEs
of the external acceleration in Table 2).

Table 2. Root mean square errors of external acceleration (unit: m/s2).

Method A Method B Method C Method D Method E

Test 1 0.31 0.38 0.34 1.07 0.65
Test 2 0.27 0.83 0.33 1.25 0.85
Test 3 0.33 0.59 0.35 1.47 1.01

There was no significant difference between methods A and C in terms of the determination
accuracy, as both used the same constraint and KF platform. However, whereas method A used the
constraint instead of the Markov-chain acceleration model, method C used the constraint after the
acceleration model. In other words, method A only had one correction step using the constraint,
but method C had two correction steps using the acceleration model followed by the constraint.
This resulted in the difference in calculation cost, i.e., the ratio of the cost of method A to that of method
C is 1.25.
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Even in the proposed constrained KF, an error of approximately 2◦ uniformly occurred in all tests.
This error level (i.e., <2.5◦) was sufficient in general for the dynamic tracking of human motions and
robotic systems. For example, marginal RMSE for the manual routine task was 3.65◦ in Reference [16].
The violation of the sensor-to-joint center position vector was expected because of the link’s bending,
the fixation instability of the socket attached to the ground, and the low-cost IMU performance
degradation, which were causes of error. If these causes of error are removed, the determination
performance of the proposed method may be further improved. It is noticeable that the accuracies
of conventional KF were dependent to some extent on acceleration conditions, whereas those of the
proposed KF were independent of these conditions. Therefore, if the IMU-based attitude determination
is applied for a case where the motion is restricted by a joint constraint, the accuracy and robustness
of the determination may be improved by using the constraint instead of approaching the case as a
general-purpose underdetermined problem.

In this study, the socket-side link was fixed to the ground in order to simplify the problem.
The proposed method can be effectively applied to the attitude determination of shanks during stance
phases for pedestrian navigation systems. In addition, the method can be useful for manipulator
kinematics for a link rotating around a static point. Note that the attitude provided from the proposed
method is an absolute attitude with respect to the gravity and is different from the angles through
joint-attached encoders. Furthermore, as a byproduct, the proposed method can determine the vertical
position of the point in the segment (or the link), of which the attitude was considered in this study,
for example, by calculating (SZ)

TSd.
Although the direct application of the proposed method is currently limited, this paper provides

a proof-of-concept for the first time, in that the uncertainty induced by the external acceleration can be
removed by the augmentation of acceleration-level kinematic constraints and thus the robust attitude
estimation may be possible even under highly severe operation conditions. Due to the robustness
of the proposed KF, it may be applied when an accurate attitude estimation is needed regardless of
dynamic conditions.
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