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Abstract: Fault detection for sensors of unmanned aerial vehicles is essential for ensuring flight
security, in which the flight control system conducts real-time control for the vehicles relying on
the sensing information from sensors, and erroneous sensor data will lead to false flight control
commands, causing undesirable consequences. However, because of the scarcity of faulty instances,
it still remains a challenging issue for flight sensor fault detection. The one-class support vector
machine approach is a favorable classifier without negative samples, however, it is sensitive to
outliers that deviate from the center and lacks a mechanism for coping with them. The compactness
of its decision boundary is influenced, leading to the degradation of detection rate. To deal with
this issue, an optimized one-class support vector machine approach regulated by local density is
proposed in this paper, which regulates the tolerance extents of its decision boundary to the outliers
according to their extent of abnormality indicated by their local densities. The application scope of
the local density theory is narrowed to keep the internal instances unchanged and a rule for assigning
the outliers continuous density coefficients is raised. Simulation results on a real flight control system
model have proved its effectiveness and superiority.

Keywords: fault detection; sensors; unmanned aerial vehicles; flight control system; one-class support
vector machine; local density

1. Introduction

Unmanned aerial vehicles (UAVs) are drawing significantly increasing attention in recent years
due to their convenience and flexibility in executing various tasks compared to manned aircrafts,
however, the accident rate of UAVs is much higher than that of manned aircraft because of the
immature equipment technology and the lack of effective on-board system health management and
diagnostic technology [1,2]. Due to the high altitude and long flight time requirements of UAVs, their
airborne equipment must be as light as possible to load more fuel, which restricts the complexity of the
UAV diagnosis systems. In addition, the extension of flight time also increases the possibility of failure.
Therefore, there is a critical requirement for the application of effective fault detection approaches.

The flight control system, which is responsible for the accomplishment of flight tasks, is the core of
the UAV. Through comparing the actual state of the UAV indicated by the sensor data with the desired
state, it sends commands to actuators to make the actual state follow the desired state, completing the
closed-loop control process [3,4]. Sensors provide sensing data for the flight control system to make
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analysis and generate control commands, and faulty sensor data will cause erroneous commands and
undesirable consequences. Also, flight sensors are often exposed to the rapidly changing pressure
and temperature of the air, increasing its possibility of breakdown. Therefore, fault detection for UAV
sensors is quite essential for ensuring flight security.

Many fault detection approaches for sensors have been developed in recent years, which are
mainly divided into two categories: model-based approaches and data-driven approaches [5,6].
Model-based approaches can achieve high detection performance and meanwhile provide detailed
interpretable fault information under the condition that accurate physical model of the monitored
system can be obtained [7–9]. However, accurate physical models for UAVs are quite difficult to set up,
which has limited their application [10,11]. In comparison to model-based approaches, data-driven
methods do not require recognition of the complex physical mechanism, and take full advantage of the
information contained in sensor data [12,13]. Faults can be accurately detected by various data-driven
approaches based on the variation in data characteristics [14–16].

Data-driven fault detection methods are mainly divided into three different classes: supervised
detection approaches, semi-supervised detection approaches and unsupervised detection approaches,
as shown by Wang et al. [17], Zhang et al. [18] and Zhang et al. [19]. In the supervised case, the
training dataset contains both normal and faulty instances, and the detection model is applied on
the test dataset for differentiating the normal from the faulty as illustrated by Yuan et al. [20]. In the
semi-supervised situation, the approach only models normal instances and the instances that do not
comply with the established model are labeled as faults as shown by Kittler et al. [21]. For unsupervised
detection method, a boundary enclosing all possible normal data points is set up, which is utilized
as a decision principle for judging the property of a test point shown by Jiang et al. [22]. As for
the UAV, faulty instances are difficult to acquire and limited in amount, and often without label
information [23,24]. Therefore, unsupervised fault detection techniques appeal more attractive for
conducting fault detection of UAV sensors.

Three categories of unsupervised fault detection algorithms have been developed for dealing
with the challenge of only using intrinsic information about normal data as shown by Liu et al. [25]:
(i) Density-based methods. Density-based methods measure the density of the instances and treat
low-density area points as faults, like one-class Gaussian mixture model (OCGMM) approach as
shown by Ilonen et al. [26] and local outlier factor (LOF) approach proposed by Song et al. [27].
(ii) Reconstruction-based methods. Reconstruction-based methods assume that the points are dense
enough and the instances deviating from the reconstructed model will be regarded as faulty,
like K-means given by Capozzoli et al. [28] and principle component analysis (PCA) given by
Zhou et al. [29]. (iii) Boundary-based methods. Boundary-based methods, such as one-class support
vector machine (OCSVM) presented by Yan et al. [30], are capable of establishing a tight and smooth
boundary enclosing normal data with kernel tricks, and can cope with complex nonlinear dataset.
Compared to the two former categories, OCSVM has better performance in detecting sensor faults
with small amplitude in nonlinear conditions by establishing a close enclosure of the instances. Also,
it can monitor multi parameters simultaneously with well-established features and the correlation
between the flight parameters of the UAV can be well considered.

In UAV sensor data, there often exist outliers that deviate from the majority of the data, which
have significant influence on the decision boundary of OCSVM [31,32]. To maintain high detection
accuracy in UAV sensor fault detection when there exist outliers, it requires a special mechanism for
dealing with them, which is not provided by OCSVM itself. A robust one-class SVM approach was
proposed to solve the problem of the influence caused by outliers in fault detection by Xiao et al. [33].
The probable outliers were identified and removed so that the decision boundary would enclose the
core of the cluster. The method was validated on online public dataset. However, the outliers were
directly removed and a hard classification of the instances was unavoidable in the preprocessing stage.
The performance of OCSVM was subjected to the accuracy of judging outliers. The proposed algorithm
shared the common defect of sequential model fusion that the accuracy of the latter algorithm is
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always limited by the former one. Two approaches were raised to make OCSVM robust to outliers in
the training data by taking the effects of outliers into consideration while establishing the decision
boundary by Amer et al. [34]. The outliers were assigned different coefficients during the training
process to decrease their effects and the approaches were validated on UCI datasets. However, the
original structure of OCSVM was largely changed in both the two methods, and all the instances
were allocated new coefficients. The performance improvement of the former approach was not quite
obvious, and the latter one required a prejudgment of the outliers to accomplish its training process.
Therefore, dealing with the outliers in UAV sensor fault detection is still a challenging issue.

In this paper, an optimized OCSVM approach regulated by local density is proposed for UAV
sensor fault detection. By selecting and constructing appropriate features, the proposed approach can
achieve high detection performance for UAV sensor fault. The training dataset is first divided into
internals and externals according to their distances to the center and the application scope of the density
theory is narrowed to keep the internals unchanged. Then the tolerance coefficients of the externals
are reassigned according to their extent of abnormality and a rule is raised for measuring it based on
their local densities. The influence of the outliers on the monitoring model is thus mitigated and the
principle structure of OCSVM is reserved. The proposed approach can achieve robust performance to
outliers without requiring priori knowledge of the instances and do not need to make a prejudgment
of the outliers before the training process. Comparison experiments with several representative
unsupervised fault detection approaches are conducted on UAV sensor data to prove its effectiveness.

The rest of this paper is organized as follows: the theorem of the proposed approach is illustrated
in details in Section 2. In addition, the motivation for improving OCSVM is illustrated and a rule for
regulating the tolerance coefficients of the outliers is raised. A framework for detecting UAV sensor
faults using the proposed approach is also given. Section 3 presents comparison experiments on
UAV sensor data and two different types of sensor fault are considered. The results have proved the
performance of the proposed approach. Conclusions and future works are discussed in Section 4.

2. UAV Sensor Fault Detection with Optimized Classifier Regulated by Local Density

In this section, the influence of outliers on the performance of the OCSVM approach in detecting
UAV sensor faults is first illustrated. The theorem of the proposed optimized classifier to mitigate the
influence of the outliers on the decision boundary is then presented. In addition, a rule for regulating
the tolerance coefficients of the instances based on local density theory is proposed. The application
scope of the local density theory is further narrowed to avoid useless computation and keep the
internal points unchanged. Finally, a framework for detecting UAV sensor faults using the proposed
approach is proposed.

2.1. Problem Statement

In UAV sensor data, there often exist outliers that deviate from the majority of the data, which have
significant influence on the decision boundary of OCSVM. As shown in Figure 1, the original decision
boundary of OCSVM is represented by the dashed line and the grey circles above surrounded by dash
lines are the corresponding support vectors of the decision model. After the outliers represented by the
black circles near the origin are mixed into the training dataset, they become new support vectors and
the new decision boundary represented by the solid line has been shifted towards the origin, leading
to the degradation in detection accuracy.

The common approach for dealing with this issue is to identify and eliminate the outliers before
training the OCSVM, however, this requires an additional preprocessing stage to label them as normal
or abnormal. The problem is that the preprocessing stage also depends on a particular anomaly
detection approach for labeling abnormal instances, and it seems not reasonable to apply OCSVM
based on the former because its accuracy is limited by the former approach. Therefore, dealing with
the outliers still remains a challenging issue.
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2.2. Optimized Classifier without Negative Samples

Given the training dataset X = {xi}n
i=1, xi ∈ Rm, a nonlinear mapping φ from the original space

Rm to a high dimensional feature space χ is implicitly defined for dealing with nonlinear characteristics
of the dataset by a kernel function:

K
(
xi, xj

)
=
(
φ(xi) · φ

(
xj
))

(1)

such as the Gaussian kernel K
(
xi, xj

)
= e−‖xi−xj‖2/γ, where γ is the coefficient for modulating the

performance of the Gaussian kernel. The purpose of basic OCSVM is to establish a compact hyperplane:

w · φ(x)− ρ = 0 (2)

which encloses the training instances tightly in χ to linearly separate the mapped samples
φ(xi), i = 1, . . . , n from the origin with maximum Euclidean distance ρ/‖w‖. w is the coefficient
vector of the decision hyperplane, and ρ is the intercept of the hyperplane. To solve the problem of
hard classification, a slack factor ξi ≥ 0 is introduced to each sample point so that the training samples
are allowed to fall on the other side of the classification boundary. The optimization problem for basic
OCSVM described above can be formulated as follows:

min
w,ξ,ρ

(
1
2‖w‖

2 + 1
vn

n
∑

i=1
ξi − ρ

)
s.t. (w · φ(xi)) ≥ ρ− ξi and ξi ≥ 0 ∀i

(3)

where v ∈ (0, 1] is a predefined percentage parameter for controlling the performance of basic OCSVM
that represents the upper bound on the fraction of outliers and the lower bound on the fraction of
support vectors simultaneously [35].

In order to mitigate the influence of the outliers on the decision boundary, tolerance coefficients
ci are integrated into the convex quadratic programming problem of basic OCSVM represented by
Equation (3) according to their local densities, and the formulation for the optimized classifier becomes:

min
w,b,ξi

(
1
2‖w‖

2 + 1
vn

n
∑

i=1
ξi − ρ

)
s.t. (w · φ(xi)) ≥ ρ− ciξi ,ξi ≥ 0, ∀i

(4)
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The theorem of regulating ci for different sample points is briefly illustrated here and details are
given in the next section to make the logic clear. ci will be set to 1 for the internal instances to reserve
the original optimization problem, and for the externals, they are assigned different values according
to their extents of abnormality, i.e., their extents of differences to their neighbors. The instance with
significant difference to its neighbors will be assigned a large value and a large ci will allow xi to
fall between the origin and the decision boundary with a large distance to the boundary. This will
reduce of the influence of the instance on solving the decision boundary. The Lagrange function for
the problem represented by Equation (4) is introduced as follows by utilizing multipliers αi, βi ≥ 0:

L(w,ξ, ρ,α,β) =
1
2
‖w‖2 +

1
vn

n

∑
i=1

ξi − ρ−
n

∑
i=1

αi((w · φ(xi))− ρ + ciξi)−
n

∑
i=1

βiξi (5)

By setting the partial derivatives of variables w, ξi and ρ to zero, i.e., ∂L
∂w = ∂L

∂ξi
= ∂L

∂ρ = 0, the
following formulas can be obtained as:

w =
n

∑
i=1

αiφ(xi) (6)

ciαi =
1

vn
− βi (7)

n

∑
i=1

αi = 1 (8)

In Equation (6), all the instances xi ∈ Rm, i = 1, . . . , n satisfying αi > 0 are called support vectors,
which lie on the decision boundary. From Equation (7), it can be seen that ci proposed in this paper
has direct influence on coefficient αi, which determines the final decision model. Together with
Equations (1) and (2), the parameter ρ in Equation (5) can be figured out by each support vector
mentioned above as:

ρ = (w · φ(xi)) =
n

∑
j=1

αjK
(
xj, xi

)
(9)

By combining Equations (6)–(8) with Equation (5), the dual form of Equation (5) can be expressed as:

min
α

1
2

n
∑

i=1

n
∑

j=1
αiαjK

(
xi, xj

)
s.t. 0 ≤ αi ≤ 1

civn ,
n
∑

i=1
αi = 1

(10)

By solving the problem of Equation (10), the coefficients αi, i = 1, . . . , n can be obtained, and the
decision boundary can be expressed as:

f (x) = sgn

(
n

∑
i=1

αiK(xi, x)− ρ

)
(11)

The merits of the proposed approach lie in the following three aspects: (i) By regulating the
tolerance coefficients of the instances, the influence of the outliers is mitigated in a soft way. While most
existing algorithms require a preprocessing stage to eliminate the outliers or a filtering process,
the proposed algorithm is well integrated in the basic level and the judgment of the properties of the
outliers is not required. (ii) The proposed method does not demand a priori knowledge of the instances
and is applicable with a small amount of training instances available. (iii) The basic structure of OCSVM
approach is reserved and therefore its advantages are inherited, and therefore it is computationally
efficient because its detection model is just determined by the support vectors.
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2.3. Rule for Computing the Tolerance Coefficients

For UAV sensor data, the densities of the externals are generally lower than the internals, and
the outliers belonging to the externals have much smaller local densities. Therefore, the extent of
abnormality of an instance can be well indicated by its local density, and based on this characteristic,
a rule for reassigning the instances continuous tolerance coefficients is proposed to mitigate the
influence of the outliers.

Because OCSVM mainly focuses on figuring out a tight enclosure for the instances, its boundary
will only be determined by the external instances in the dataset and the internals have little effect on
the decision boundary. Therefore, the application scope of the local density theory is narrowed to keep
the internals unchanged and avoid worthless computation. The local density theory can be utilized
specifically to deal with the externals in their neighborhoods, without involving the internals, which
deeply fits the idea of OCSVM, modeling all the instances with only the externals.

As shown in Figure 2, the grey circles inside the internal circle with a radius of R1 are named
the internals and the black squares between the internal circle and the external circle with a radius of
R3 are named the externals. For the instances shown in Figure 2, the classical OCSVM approach will
construct a classification boundary with some externals selected as support vectors, without taking
advantage of the internals. Therefore, it is not necessary to apply the local density theory on the
internals, which do not contribute to the decision model, and only the externals are focused on in the
proposed approach to avoid worthless computation. An important issue that requires attention is how
to define the value of R1 to control the proportion of the externals. The proportion of externals cannot
be accurately defined according to the theory of OCSVM, and thus it is set to a minimum value large
enough to contain all the possible instances that may contribute to the decision boundary, so that the
maximum amount of samples can be kept unchanged.
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In order to compute the tolerance coefficients of the externals, their local densities are
first calculated. Assume x1, x2 and x3 are three arbitrary externals in the training dataset
X = {xi}n

i=1, xi ∈ Rm, and k represents the number of neighbors for them. d(x1, x2) denotes the distance
between instances x1 and x2. Then the local density of x1 can be figured out by the following four steps:

Step 1. Calculating the k-distance of x1.
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The k-distance of x1, denoted as k-distance(x1), is equal to d(x1, x2) when the following two
conditions are satisfied:

• for at least k instances xi ∈ X\{x1}, it holds that d(x1, xi) ≤ d(x1, x2), and
• for at most k− 1 instances xi ∈ X\{x1}, it holds that d(x1, xi) < d(x1, x2).

Step 2. Finding the k-distance neighborhood of x1.
The k-distance neighborhood of x1, denoted as Nk-distance(x1)

(x1), contains each instance with a
distance from x1 not greater than its k-distance, i.e.,

Nk-distance(x1)
(x1) =

{
xj ∈ X\{x1}

∣∣d(xj, x1
)
≤ k-distance(x1)

}
(12)

Later in this paper, Nk-distance(x1)
(x1) is simplified as Nk(x1) for conciseness.

Step 3. Calculating the reachability distance of instance x1 w.r.t. instance x3.
The reachability distance of instance x1 w.r.t. instance x3 is defined as

reach-distk(x1, x3) = max{k-distance(x3), d(x1, x3)} (13)

which indicates that if instance x1 is far from instance x3, the reachability distance between them is
equal to their actual distance. However, if instance x1 is close to instance x3, the actual distance will be
replaced by the k-distance of x3 to reduce the fluctuation of reach-distk(x1, x3).

Step 4. Measuring the local reachability density of instance x1.
In order to measure the local reachability density of instance x1, the reachability distances of the

instances within the k-distance neighborhood of x1 are utilized. Its formulation is defined as

lrdk(x1) = 1/

 ∑
xi∈Nk(x1)

reach-distk(x1, xi)

|Nk(x1)|

 (14)

By executing the four steps given above sequentially, we can acquire the local reachability density
of each external in the dataset, which equals the inversion of the average reachability distance of x1

in its k-distance neighborhood. Before supplementing the local density information of the instances
into OCSVM, there still requires a mapping rule for transforming the densities of the instances into
tolerance coefficients with reasonable values. The exponential function is adopted here to compute the
corresponding coefficients for the externals, which is gently in the initial part and steep in the latter
part so that the externals with large extent of abnormality can be severely punished with the normal
externals nearly unchanged. The rule for computing the tolerance coefficient of each external based on
lrdk(x1) is:

ci = exp(µ/(lrdk(x1)− η)) (15)

in which µ and η are coefficients regulating the mapping scale of each external x1, and the value of
them can be confirmed through optimization. ci is the tolerance coefficient that we need to regulate
the tolerance coefficients of the externals. For the internals, their tolerance coefficients are set to 1 to
keep the optimization problem unchanged.

2.4. Framework for the Proposed UAV Sensor Fault Detection Approach

Fault detection for UAV sensors adopting the proposed approach can be accomplished in the
following three major stages as shown in Figure 3:
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Stage 1. Preprocessing.
The sensor data of the UAV are first standardized to eliminate the influence of parameters with

large value ranges on the others. Then, the features appropriate for training OCSVM are selected and
further constructed by computing the derivatives of the parameters to provide more information of
the UAV.

Stage 2. Improving the robustness of OCSVM to outliers.
To mitigate the influence of outliers on the decision boundary of OCSVM, the application scope of

the local density theory is narrowed and the local densities of the externals are calculated to regulate
their tolerance coefficients, so that the robustness of OCSVM to outliers can be improved. An optimized
classifier without negative samples is established.

Stage 3. Fault detection for UAV sensors.
UAV sensor data with injected faults are tested adopting the optimized classifier to validate its

detection performance. The proposed approach can learn the multidimensional space distribution of
the features for the UAV through sensor data without negative sample points, and meanwhile does
not require large amount of training data, making it superior in UAV sensor fault detection.

3. Experiments and Results

In this section, the performance of the proposed approach is compared with several other
approaches on UAV sensor data generated from the simulation model of a real UAV under different
fault modes. The characteristics of the generated sensor data are illustrated in details. Experimental
results are analyzed and discussed.

3.1. UAV Data Description

Because real UAV faulty instances are hard to acquire and limited in amount, current research work
on UAV fault detection still heavily rely on simulation for validating and comparing the performance
of fault detection approaches [36–38]. In this paper, for the purpose of verifying the effectiveness of the
proposed approach, the UAV simulation model from the UAV lab of University of Minnesota as shown
in Figure 4 is adopted for conducting validation experiments, which is established according to a real
UAV named Ultra Stick 120 as shown in Figure 5 [39]. The flight control law in the simulation model is
used in real flights of the UAV and its effectiveness has been validated [40]. Because real UAV flight
data do not contain faulty instances, its simulation model is adopted for evaluating the performance of
fault detection approaches by artificially injecting sensor faults into the model. Two common types of
sensor faults, constant deviation fault and drift fault, are considered. The outputs of the model under
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different fault modes are analyzed adopting the proposed approach and other typical unsupervised
methods, and the detection results are compared.
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There are in total 13 parameters in the simulation model of the UAV flight control system, and
their definitions are given in Table 1 for better understanding. The sample time for the simulation
model is set to 0.02 s. Generally, the UAV system is decoupled into the longitudinal and the lateral
subsystems to execute flight control commands. The two subsystems are equal for validating the
performance of the flight control system, therefore, the lateral subsystem is adopted for conducting
validation experiments in this paper. The parameters selected for monitoring the status of the lateral
subsystem are given in Table 2. Furthermore, the derivatives for them are also constructed and adopted
as extra variables because they contain extra fault information, which can be utilized to improve the
detection rate of sensor faults.

The UAV is commanded to fly straight and level approximately with all the attitude parameters
mentioned in Table 2 around 0. This is a typical flying status of the UAV, which occupies its most
flight time. Therefore, it is taken as the fault-free flight condition in this paper. Two typical types of
sensor faults are considered in this paper, i.e., constant deviation fault and drift fault. The roll rate p is
selected to inject faults to simulate actual faults in the gyroscope, which is an important flight sensor
adopted to measure the attitude angles and the attitude angular velocities of the UAV. The advantage
of injecting fault on the simulation model of the UAV is that it is not a simple addition on a single
parameter, but its influence on the other parameters is also well reflected through the closed-loop
control process. The aerodynamic characteristics of the flight control system are considered while
establishing the simulation model, which makes the fault injection process more significant.
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Table 1. Parameters for the UAV simulation model.

Parameter Definition Unit

φ Roll Angle rad
θ Pitch Angle rad
ψ Yaw Angle rad
p Roll Rate rad/s
q Pitch Rate rad/s
r Yaw Rate rad/s

ax X-axis Acceleration m/s2

ay Y-axis Acceleration m/s2

az Z-axis Acceleration m/s2

vs Air Speed m/s
α Angle of Attack rad
β Angle of Sideslip rad
h Altitude m

Table 2. Parameters for monitoring the lateral subsystem.

Parameter Definition Unit

φ Roll Angle rad
ψ Yaw Angle rad
p Roll Rate rad/s
r Yaw Rate rad/s
.
φ Derivative of Roll Angle rad/s
.
ψ Derivative of Yaw Angle rad/s
.
p Derivative of Roll Rate rad/s2
.
r Derivative of Yaw Rate rad/s2

The faults of the sensor are modeled as follows:

ym(k) = s(k)yc(k) + d(k) (16)

where yc(k) and ym(k) represent the expected output and the real output of the sensor, respectively.
d(k) is the deviation of the output and s(k) is the gain coefficient. Then the constant deviation fault
and drift fault mentioned above can be expressed as follows:

• Constant deviation fault. s(k) = 1 and d(k) is a constant value.
• Drift fault. s(k) = 1 and the value of d(k) increases or decreases gradually along with time.

For full validation, two constant deviation faults are injected on p, respectively, from the 87th to
the 110th and the 347th to the 370th sample point. The amplitude of the injected fault is 2◦. The results
of the lateral outputs are given in Figure 6 and their values are transformed to degrees for illustrating.
The faulty characteristics of the curves are intuitively shown in Figure 6. It can be seen that after
constant deviation fault is injected to p, the other three parameters are also influenced. φ and ψ have
presented obvious fault information with large variation in their values, while the change in r is
relatively small, indicating that r is not quite sensitive to the change of p. It also can be seen that the
sample points outside the fault injection intervals have also shown faulty characteristics, i.e., the values
of the parameters require a transition stage to return back to the normal area. The samples before
the faulty curve catches up with the normal curve are all regarded as faulty samples and adopted for
testing the performance of fault detection approaches. Furthermore, the outliers are recognized by
utilizing the 3σ criterion and expert knowledge, which is commonly adopted in practical engineering
of UAV. Some approximation is made to simulate enough outliers. The derivatives of φ, ψ, p and
r, are shown below in Figure 7, which are expected to improve the performance of the proposed
approach because they can provide more spatial correlation information for the sensors according to
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the mechanism of the UAV. It can be seen that
.
φ and

.
ψ are quite sensitive to constant deviation sensor

fault, and have presented obvious fault information, while the change in
.
p and

.
r are not quite large.

They are all adopted for supplementing the information to achieve higher fault detection performance.
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Figure 6. Illustration of the influence of constant deviation fault on p to the lateral system. The curves
of lateral outputs before and after injecting constant deviation fault are presented, respectively. (a) Roll
Angle φ; (b) Roll Rate p; (c) Yaw Angle ψ; (d) Yaw Rate r.
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Figure 7. The illustration for the derivatives of the monitored lateral parameters. The curves of the
derivatives of the lateral outputs before and after injecting constant deviation fault are presented,
respectively. (a) Derivative of φ; (b) Derivative of p; (c) Derivative of ψ; (d) Derivative of r.
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A drift fault is injected on p from the 175th to the 275th sample point, with a step increase of
0.0115◦. The results of the lateral outputs are given in Figure 8 and their values are transformed to
degrees for illustrating. The faulty characteristics of the curves are intuitively shown by the figures
in Figure 8. It can be seen that the drift fault injected does not have an obvious influence on the
parameters until the 190th sample point, because the amplitude of the fault is quite small in the initial
stage. The changes of the curves seem gentler comparing with those obtained under constant deviation
fault. The value of the fault reaches its peak at the 275th sample point, and the following sample points
have also exhibited faulty characteristics until the end of the process. φ and ψ have presented obvious
faulty information while the change in r is relatively small, indicating that r is not quite sensitive to the
change in p, which agrees with the experiment results under constant deviation fault. The samples
are all regarded as faulty samples until the later outputs catch up with the normal outputs, which
are then adopted for testing the performance of fault detection approaches. No additional outliers
are identified. The derivatives of φ, ψ, p and r, are shown below in Figure 9, which are expected to
improve the performance of the proposed approach because they can provide more spatial correlation
information for the sensors according to the mechanism of the UAV.
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Figure 8. Illustration of the influence of drift fault on p to the lateral system. The curves of lateral
outputs before and after injecting drift fault are presented, respectively. (a) Roll Angle φ; (b) Roll Rate
p; (c) Yaw Angle ψ; (d) Yaw Rate r.
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Figure 9. Illustration for the derivatives of the monitored lateral parameters. The curves of the
derivatives of the lateral outputs before and after injecting drift fault are presented, respectively.
(a) Derivative of φ; (b) Derivative of p; (c) Derivative of ψ; (d) Derivative of r.

It can be seen that
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ψ is quite sensitive to drift sensor fault, and has presented obvious fault
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while the change in
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r is quite small. Comparing to constant deviation fault, the change in

.
φ and

.
p are
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both weakened, because of different faulty characteristics. They are all adopted for supplementing the
information to achieve higher fault detection performance.

3.2. Performance Validation Indices

Fault detection results can generally be divided into four different types, True Positive, False
Positive, False Negative and True Negative, as shown in Table 3. To evaluate the fault detection
performance of the fault detection approaches, True Positive rate (TPR) and False Positive Rate
(FPR) are adopted in the experiments. Large TPR and small FPR values represent satisfactory
detection performance of the detection approach. The definitions for TPR and FPR are given in
Equations (17) and (18).

TPR =
TP

TP + FN
(17)

FPR =
FP

TN + FP
(18)

Table 3. The types of detection results.

Detection Results Normal Data Faulty Data

Normal True Positive (TP) False Positive (FP)
Faulty False Negative (FN) True Negative (TN)

In addition, the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve
(AUC) value are also utilized for evaluating the performance of the proposed approach, which
are evaluation indices generally adopted for fault detection. The ROC curve takes the FPR as the
x-coordinate and the TPR as the y-coordinate, and can offer more performance information for the
detection approaches with different pairs of TPRs and FPRs. The detection performance of the
approaches with various detection thresholds can be compared using the ROC curves. The AUC
values offer an overall performance evaluation of the detection approaches by computing their integral
areas under the ROC curves.

3.3. Fault Detection Results of the Proposed Approach

The fault detection results adopting the proposed approach under two different fault modes are
given in Figure 10. As can be seen from Figure 10, the constant deviation fault of the sensors can be
detected immediately without time delay, which starts from the 87th sample point. In addition, the
overall detection rate is quite satisfactory with the anomaly scores of the fault sample points far above
the decision threshold and those of the normal points below. There exist some false alarms and missed
detections, but the amount is small and acceptable. It can be concluded that through constructing the
derivatives of the parameters and establishing the decision boundary adopting multiple dimensional
variables, the detection performance of the proposed approach is quite satisfactory. Comparing to
the constant deviation fault, the drift fault starts from the 175th sample point and is detected by the
proposed approach from the 180th sample point, with a time delay of 5 sample points. This is because
the influence of the drift fault is quite small at the initial stage and very difficult to be detected. With the
increase in its fault amplitude, its fault feature becomes obvious and is then captured by the proposed
approach. In addition, the detection rate of the proposed approach is also high in this fault mode with
few false alarms and missed detections. We have also observed a decrease in anomaly score from
the 210th sample point to the 280th sample point in the constant deviation fault mode and from the
400th sample point in the drift fault mode. This is because the fault extent is simulated to decrease and
the flight control system will control the states to return back to the normal state. In conclusion, the
proposed approach has presented favorable performance in both the two fault modes, with quick fault
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detection and high detection rate. Detailed detection performance indices of the proposed approach
are compared with other typical approaches in the next section for further analysis and comparison.

Furthermore, the computational efficiency of the proposed approach is high because the detection
model is just composed of some support vectors and only some simple multiplication operations are
required to calculate the property of a testing sample. Therefore, the proposed approach is expected to
be conducted online for real-time monitoring tasks.
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Figure 10. Fault detection results of the proposed approach under two different fault modes.
(a) Constant deviation fault; (b) Drift fault.

3.4. Comparison Results with Other Approaches

For illustrating the effectiveness of the proposed approach, comparison experiments with four
other typical unsupervised fault detection approaches on two different types of sensor faults are
conducted, using the flight sensor data acquired above. In addition to OCSVM, principle component
analysis (PCA), kernel principle component analysis (KPCA) and local outlier factor (LOF) are also
adopted for conducting comparison experiments, which are the representative of boundary-based,
reconstruction-based and density-based approaches, respectively. The principle categories of
unsupervised fault detection approaches are all contained to provide thorough comparison results for
the proposed approach.
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The parameter v in OCSVM and the proposed approach is set to 0.01. The Gaussian kernel
function is adopted in the proposed approach, which is the same for OCSVM and KPCA. The width
parameter for the kernel function and the parameters µ and η in the proposed approach are all
optimized through the gird search method. The confidence level for PCA and KPCA is set to 0.99, and
the number of neighbors for LOF is 8. The variables are selected to achieve better performance.

The TPR, FPR and AUC values for the approaches under two different fault modes are given
in Table 4 and the ROC curves for them are plotted in Figure 11. By comparing the results given in
Table 4 and Figure 11, it can be seen that the proposed approach outperforms all the other approaches,
with higher TPR, lower FPR and larger AUC values. It has obvious improvement in the three adopted
performance indices in both the two fault modes comparing to OCSVM. The reason is that the influence
of the outliers is mitigated by the proposed approach, and therefore, its decision boundary is more
compact comparing with that of OCSVM, leading to an increase in detection accuracy. Also, the ROC
curve of the proposed approach is always above that of OCSVM, indicating that it can obtain a higher
positive detection rate with the same false alarm rate. The small decrease in detection performance of
the proposed approach in the drift fault mode is because the faulty instances in this mode are small
in amplitude in the initial stage and hard to detect. The problem is worse for the other approaches.
Overall, the two algorithms have both achieved satisfactory performance on the two datasets, with
low false alarm rates in the initial stage of the ROC curves.

The AUC values for PCA and KPCA on constant deviation fault are 0.8655 and 0.8849, respectively.
However, they decrease to 0.7671 and 0.7903 in the case of drift fault, which indicates that PCA and
KPCA have worse performance on detecting faults with small amplitude. This is because the influence
of drift fault on the parameters is quite small in the initial stage and it requires the algorithms to
be capable of detecting small faults. The decreases are much larger than those of the proposed
approach and OCSVM, indicating that boundary based approaches can achieve better performance in
detecting small faults. Besides, KPCA has achieved better performance comparing to PCA with its
kernel parameter optimized through the grid search method, because the nonlinear characteristics
of the sensor data are more properly dealt with. The outliers may have also influenced the detection
performance in the constant deviation fault condition. For the LOF approach, its performance is not
quite satisfactory in both the two cases, with its AUC values being 0.5677 and 0.5644, respectively,
which is because LOF is intended primarily for detecting scattered fault samples and consecutive fault
instances with high local densities will be judged as normal, leading to a high FPR. For continuous
faulty instances, LOF is not quite appropriate.

In conclusion, the proposed approach has achieved the best detection performance among all the
approaches by comparing the FPR, TPR and AUC indices with other approaches, which has illustrated
its superior capability of detecting small faults and dealing with the outliers. Also, boundary based
algorithms, represented by the proposed approach and OCSVM, have outperformed the reconstruction
based algorithms, represented by PCA and KPCA, and the density based approach represented by
LOF in both the two fault cases. The experimental results have emphasized the effectiveness of the
proposed approach.

Table 4. Performance indices for the proposed approach against other typical fault detection approaches
on two different types of sensor faults.

Fault Type Performance Index Proposed Approach OCSVM PCA KPCA LOF

Constant
deviation

fault

AUC 0.9943 0.9899 0.8655 0.8849 0.5677
TPR 0.9629 0.9526 0.8725 0.8840 0.9406
FPR 0.0508 0.0539 0.4734 0.5266 0.8533

Drift fault
AUC 0.9893 0.9715 0.7671 0.7903 0.5644
TPR 0.9796 0.9512 0.7278 0.8353 0.8678
FPR 0.0404 0.0525 0.4006 0.5321 0.8073
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Figure 11. ROC curves for the proposed approach against other typical unsupervised fault detection
approaches on two different types of sensor faults. (a) Constant deviation fault; (b) Drift fault.

4. Conclusions

In this paper, an unmanned aerial vehicle sensor fault detection approach using classifier without
negative samples is proposed, which can be seen as a local density regulated optimization in one-class
support vector machine approach. The proposed approach can handle the effect of outliers effectively
and obtain a compact boundary for detecting flight sensor faults with small amplitude. By regulating
the coefficients of the outliers according to their local densities through a well-established rule, the
influence of them is mitigated in the proposed approach. Also, by narrowing the application scope
of the local density theory, the basic structure of one-class support vector machine is reserved and
unnecessary computation is avoided. Comparison experiments with other four approaches belonging
to three different categories on two different types of common sensor faults for the unmanned aerial
vehicle are conducted. Three performance indices are adopted to thoroughly evaluate the performance
of the proposed approach and the detection results have proved its effectiveness. In the future, we



Sensors 2019, 19, 771 21 of 22

plan to investigate the online update strategy for the proposed approach to extend its application area.
In addition, we will validate the performance of our approach on real unmanned aerial vehicle fault
data to improve its creditability.

Author Contributions: K.G. and S.S. carried out the experiments and analyzed the results; X.P. conceived of
the present idea and developed the framework of this study; L.L. designed the experiments; D.L. acquired the
funding; K.G. and D.L. wrote the article. All authors discussed the results and contributed to the final manuscript.

Funding: This work is partly supported by National Natural Science Foundation of China under Grant Nos.
61571160, 61803121 and 61701131.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, B.; Liu, D.; Wang, W.; Peng, X. A hybrid approach for UAV flight data estimation and prediction
based on flight mode recognition. Microelectron. Reliab. 2018, 84, 253–262. [CrossRef]

2. Avram, R.C.; Zhang, X.; Campbell, J.; Muse, J. IMU sensor fault diagnosis and estimation for quadrotor
UAVs. IFAC-PapersOnLine 2015, 48, 380–385. [CrossRef]

3. Khalastchi, E.; Kalech, M.; Kaminka, G.A.; Lin, R. Online data-driven anomaly detection in autonomous
robots. Knowl. Inf. Syst. 2015, 43, 657–688. [CrossRef]

4. Suarez, A.; Heredia, G.; Ollero, A. Cooperative Virtual Sensor for Fault Detection and Identification in
Multi-UAV Applications. J. Sens. 2018, 2018, 4515828. [CrossRef]

5. Wang, L.; Li, M.; Liu, L.; Liu, D. Exhaust gas temperature sensing data anomaly detection for aircraft
auxiliary power unit condition monitoring. In Proceedings of the 2018 International Conference on Sensing,
Diagnostics, Prognostics, and Control (SDPC), Xi’an, China, 15–17 August 2018.

6. Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques Part I: Fault diagnosis.
IEEE Trans. Ind. Electron. 2015, 62, 3768–3774. [CrossRef]

7. Ortiz-Torres, G.; López-Estrada, F.R.; Reyes-Reyes, J.; García-Beltrán, C.D.; Theilliol, D. An Actuator Fault
Detection and Isolation method design for Planar Vertical Take-off and Landing Unmanned Aerial Vehicle
modelled as a qLPV system. IFAC-PapersOnLine 2016, 49, 272–277. [CrossRef]

8. Abbaspour, A.; Aboutalebi, P.; Yen, K.K.; Sargolzaei, A. Neural adaptive observer-based sensor and actuator
fault detection in nonlinear systems: Application in UAV. ISA Trans. 2017, 67, 317–329. [CrossRef]

9. López-Estrada, F.R.; Ponsart, J.C.; Theilliol, D.; Zhang, Y.; Astorga-Zaragoza, C.M. LPV Model-Based Tracking
Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV. J. Intell. Robot. Syst. Theory Appl. 2016, 84,
163–177. [CrossRef]

10. Liu, D.; Yin, X.; Song, Y.; Liu, W.; Peng, Y. An on-line state of health estimation of lithium-ion battery using
unscented particle filter. IEEE Access 2018, 6, 40990–41001. [CrossRef]

11. Zhang, Y.; Liu, L.; Peng, Y.; Liu, D. An Electro-Mechanical Actuator motor voltage estimation method with a
feature-aided Kalman Filter. Sensors 2018, 18, 4190. [CrossRef]

12. Liu, D.; Song, Y.; Li, L.; Liao, H.; Peng, Y. On-line life cycle health assessment for lithium-ion battery in
electric vehicles. J. Clean. Prod. 2018, 199, 1050–1065. [CrossRef]

13. Liu, L.; Wang, S.; Liu, D.; Peng, Y. Quantitative selection of sensor data based on improved permutation
entropy for system remaining useful life prediction. Microelectron. Reliab. 2017, 75, 264–270. [CrossRef]

14. Zhao, G.; Liu, X.; Zhang, B.; Liu, Y.; Niu, G.; Hu, C. A novel approach for analog circuit fault diagnosis based
on deep belief network. Measurement 2018, 121, 170–178. [CrossRef]

15. Zhang, S.; He, Q.; Ouyang, K.; Xiong, W. Multi-bearing weak defect detection for wayside acoustic diagnosis
based on a time-varying spatial filtering rearrangement. Mech. Syst. Signal Process. 2018, 100, 224–241. [CrossRef]

16. Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine Health Monitoring Using Local Feature-Based
Gated Recurrent Unit Networks. IEEE Trans. Ind. Electron. 2018, 65, 1539–1548. [CrossRef]

17. Wang, D.; Miao, Q. Smoothness index-guided Bayesian inference for determining joint posterior probability
distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults.
J. Sound Vib. 2015, 345, 250–266. [CrossRef]

18. Zhang, W.; Du, L.; Li, L.; Zhang, X.; Liu, H. Infinite Bayesian one-class support vector machine based on
Dirichlet process mixture clustering. Pattern Recognit. 2018, 78, 56–78. [CrossRef]

http://dx.doi.org/10.1016/j.microrel.2018.03.032
http://dx.doi.org/10.1016/j.ifacol.2015.09.556
http://dx.doi.org/10.1007/s10115-014-0754-y
http://dx.doi.org/10.1155/2018/4515828
http://dx.doi.org/10.1109/TIE.2015.2417501
http://dx.doi.org/10.1016/j.ifacol.2016.07.125
http://dx.doi.org/10.1016/j.isatra.2016.11.005
http://dx.doi.org/10.1007/s10846-015-0295-y
http://dx.doi.org/10.1109/ACCESS.2018.2854224
http://dx.doi.org/10.3390/s18124190
http://dx.doi.org/10.1016/j.jclepro.2018.06.182
http://dx.doi.org/10.1016/j.microrel.2017.03.008
http://dx.doi.org/10.1016/j.measurement.2018.02.044
http://dx.doi.org/10.1016/j.ymssp.2017.06.035
http://dx.doi.org/10.1109/TIE.2017.2733438
http://dx.doi.org/10.1016/j.jsv.2015.01.052
http://dx.doi.org/10.1016/j.patcog.2018.01.006


Sensors 2019, 19, 771 22 of 22

19. Zhang, Y.; Du, B.; Zhang, L.; Wang, S. A low-rank and sparse matrix decomposition-based mahalanobis
distance method for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1376–1389.
[CrossRef]

20. Yuan, J.; Yuan, R.; Chen, X. Network Anomaly Detection Based on Multi-scale Dynamic Characteristics of
Traffic. Int. J. Comput. Commun. Control 2014, 9, 101–112. [CrossRef]

21. Kittler, J.; Christmas, W.; De Campos, T.; Windridge, D.; Yan, F.; Illingworth, J.; Osman, M. Domain anomaly
detection in machine perception: A system architecture and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell.
2014, 36, 845–859. [CrossRef]

22. Jiang, Q.; Yan, X. Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian
inference-based multiblock KPCA. J. Process Control 2015, 32, 38–50. [CrossRef]

23. Dorobantu, A.; Ozdemir, A.A.; Turkoglu, K.; Freeman, P.; Murch, A.; Mettler, B.; Balas, G. Frequency Domain
System Identification for a Small, Low-Cost, Fixed-Wing UAV. In Proceedings of the AIAA Guidance,
Navigation, and Control Conference, Portland, OR, USA, 8–11 August 2011.

24. Goodrich, M.A.; Morse, B.S.; Gerhardt, D.; Cooper, J.L.; Quigley, M.; Adams, J.A.; Humphrey, C. Supporting
wilderness search and rescue using a camera-equipped mini UAV. J. F. Robot. 2008, 25, 89–110. [CrossRef]

25. Liu, Y.; Bazzi, A.M. A review and comparison of fault detection and diagnosis methods for squirrel-cage
induction motors: State of the art. ISA Trans. 2017, 70, 400–409. [CrossRef] [PubMed]

26. Ilonen, J.; Paalanen, P.; Kamarainen, J.-K.; Kälviäinen, H. Gaussian mixture pdf in one-class classification:
Computing and utilizing confidence values. In Proceedings of the 18th International Conference on Pattern
Recognition, Hong Kong, China, 20–24 August 2006; pp. 18–21.

27. Song, B.; Shi, H.; Ma, Y.; Wang, J. Multisubspace principal component analysis with local outlier factor for
multimode process monitoring. Ind. Eng. Chem. Res. 2014, 53, 16453–16464. [CrossRef]

28. Capozzoli, A.; Lauro, F.; Khan, I. Fault detection analysis using data mining techniques for a cluster of smart
office buildings. Expert Syst. Appl. 2015, 42, 4324–4338. [CrossRef]

29. Zhou, F.; Park, J.H.; Liu, Y. Differential feature based hierarchical PCA fault detection method for dynamic
fault. Neurocomputing 2016, 202, 27–35. [CrossRef]

30. Yan, K.; Ji, Z.; Shen, W. Online fault detection methods for chillers combining extended kalman filter and
recursive one-class SVM. Neurocomputing 2017, 228, 205–212. [CrossRef]

31. Fu, C.; Duan, R.; Kircali, D.; Kayacan, E. Onboard robust visual tracking for UAVs using a reliable global-local
object model. Sensors 2016, 16, 1406. [CrossRef]

32. Jwa, S.; Özgüner, Ü.; Tang, Z. Information-theoretic data registration for UAV-based sensing. IEEE Trans.
Intell. Transp. Syst. 2008, 9, 5–15. [CrossRef]

33. Xiao, Y.; Wang, H.; Xu, W.; Zhou, J. Robust one-class SVM for fault detection. Chemom. Intell. Lab. Syst. 2016,
151, 15–25. [CrossRef]

34. Amer, M.; Goldstein, M.; Abdennadher, S. Enhancing one-class support vector machines for unsupervised
anomaly detection. In Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description,
Chicago, IL, USA, 11 August 2013; pp. 8–15.

35. Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection
using a linear one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [CrossRef]

36. Aboutalebi, P.; Abbaspour, A.; Forouzannezhad, P.; Sargolzaei, A. A Novel Sensor Fault Detection in an
Unmanned Quadrotor Based on Adaptive Neural Observer. J. Intell. Robot. Syst. 2018, 90, 473–484. [CrossRef]

37. Sun, R.; Cheng, Q.; Wang, G.; Ochieng, W.Y. A Novel Online Data-Driven Algorithm for Detecting UAV
Navigation Sensor Faults. Sensors 2017, 17, 2243. [CrossRef] [PubMed]

38. Caliskan, F.; Hajiyev, C. Active Fault-Tolerant Control of UAV Dynamics against Sensor-Actuator Failures.
J. Aerosp. Eng. 2016, 29, 1–17. [CrossRef]

39. Paw, Y.C. Synthesis and validation of flight control for UAV. Ph.D. Thesis, University of Minnesota,
Minneapolis, MN, USA, December 2009.

40. Freeman, P.; Pandita, R.; Srivastava, N.; Balas, G.J. Model-Based and Data-Driven Fault Detection
Performance for a Small UAV. IEEE Trans. Mechatron. 2013, 18, 1300–1309. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2015.2479299
http://dx.doi.org/10.15837/ijccc.2014.1.870
http://dx.doi.org/10.1109/TPAMI.2013.209
http://dx.doi.org/10.1016/j.jprocont.2015.04.014
http://dx.doi.org/10.1002/rob.20226
http://dx.doi.org/10.1016/j.isatra.2017.06.001
http://www.ncbi.nlm.nih.gov/pubmed/28606709
http://dx.doi.org/10.1021/ie502344q
http://dx.doi.org/10.1016/j.eswa.2015.01.010
http://dx.doi.org/10.1016/j.neucom.2016.03.007
http://dx.doi.org/10.1016/j.neucom.2016.09.076
http://dx.doi.org/10.3390/s16091406
http://dx.doi.org/10.1109/TITS.2007.908567
http://dx.doi.org/10.1016/j.chemolab.2015.11.010
http://dx.doi.org/10.1016/j.patcog.2016.03.028
http://dx.doi.org/10.1007/s10846-017-0690-7
http://dx.doi.org/10.3390/s17102243
http://www.ncbi.nlm.nih.gov/pubmed/28961219
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000579
http://dx.doi.org/10.1109/TMECH.2013.2258678
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	UAV Sensor Fault Detection with Optimized Classifier Regulated by Local Density 
	Problem Statement 
	Optimized Classifier without Negative Samples 
	Rule for Computing the Tolerance Coefficients 
	Framework for the Proposed UAV Sensor Fault Detection Approach 

	Experiments and Results 
	UAV Data Description 
	Performance Validation Indices 
	Fault Detection Results of the Proposed Approach 
	Comparison Results with Other Approaches 

	Conclusions 
	References

