
sensors

Article

Offloading and Transmission Strategies for IoT Edge
Devices and Networks

Jiheon Kang and Doo-Seop Eom *

School of Electrical Engineering, Korea University, Seoul 02841, Korea; kanghead@korea.ac.kr
* Correspondence: eomds@korea.ac.kr; Tel.: +82-02-3290-3802

Received: 9 January 2019; Accepted: 14 February 2019; Published: 18 February 2019
����������
�������

Abstract: We present a machine and deep learning method to offload trained deep learning model
and transmit packets efficiently on resource-constrained internet of things (IoT) edge devices and
networks. Recently, the types of IoT devices have become diverse and the volume of data has been
increasing, such as images, voice, and time-series sensory signals generated by various devices.
However, transmitting large amounts of data to a server or cloud becomes expensive owing to
limited bandwidth, and leads to latency for time-sensitive operations. Therefore, we propose a novel
offloading and transmission policy considering energy-efficiency, execution time, and the number of
generated packets for resource-constrained IoT edge devices that run a deep learning model and
a reinforcement learning method to find an optimal contention window size for effective channel
access using a contention-based medium access control (MAC) protocol. A Reinforcement learning is
used to improve the performance of the applied MAC protocol. Our proposed method determines
the offload and transmission strategies that are better to directly send fragmented packets of raw
data or to send the extracted feature vector or the final output of deep learning networks, considering
the operation performance and power consumption of the resource-constrained microprocessor,
as well as the power consumption of the radio transceiver and latency for transmitting the all the
generated packets. In the performance evaluation, we measured the performance parameters of
ARM Cortex-M4 and Cortex-M7 processors for the network simulation. The evaluation results show
that our proposed adaptive channel access and learning-based offload and transmission methods
outperform conventional role-based channel access schemes. They transmit packets of raw data and
are effective for IoT edge devices and network protocols.

Keywords: deep learning; edge computing; internet of things; offloading

1. Introduction

In recent years, the number of internet of things (IoT) applications and products has been
increasing in the home, medical, industrial, and military fields to sense and to control environmental
events [1]. In general, the data generated by IoT edge devices such as sensors and actuators are
transmitted to cloud servers via wireless communications (e.g., Wi-Fi, bluetooth low energy (BLE),
or long range wide area network (LoRaWAN)), and the collected data are processed or analyzed in
the cloud. However, transmitting large amounts of raw data such as video, images, and voice to the
cloud is expensive for the following reasons [2,3]. First, the time delay or latency caused by limited
bandwidth and unstable channel conditions (e.g., congestion, interference, and collisions), leads to
slowed decision making for time-sensitive operations. Second, centralized cloud centers are inefficient
and expensive for performing data processing on the large amounts of collected data from various
types of IoT devices, because of supporting various processing methods, and the necessity of servers
and storage expansion. To overcome these disadvantages of the traditional cloud computing structure,
cloud centers have been placed closer to the network edge, thereby reducing the communications

Sensors 2019, 19, 835; doi:10.3390/s19040835 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5423-3895
https://orcid.org/0000-0001-8999-9858
http://www.mdpi.com/1424-8220/19/4/835?type=check_update&version=1
http://dx.doi.org/10.3390/s19040835
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 835 2 of 17

bandwidth and amount of traffic required between the edge devices and the cloud center by handling
the data nearby the source of generated data [4].

Edge computing located at the network “edge” is a key technology for IoT services such as
time-sensitive and resource-constrained applications [5]. Because edge computing provides faster
responses, and computer nodes are distributed at each edge network, the total traffic flows,
bandwidth requirements, and transmission latency are reduced, as well as allowing the offloading of
computational overhead compared to the centralized cloud computing structure [6]. Edge computing
is able to offload network and computing resources to improve the transmission efficiency and resource
utilization; however, transmission failures and delays due to congestion and interference on the edge
layer (i.e., the connection between the edge server and edge devices) are still challenging problems [7].

Deep and machine learning approaches have been introduced into IoT applications for high
efficiency in big and complex data [8–10]. Deep learning architectures usually have many layers
and neurons that require much memory and computation to extract nonlinear feature vectors and
predict outputs with high accuracy. Indeed, most of the IoT services that applied deep learning models
for analyzing and processing the collected data from IoT devices are performed in the cloud with
high-performance resources. Edge computing and in-device computing lead to reduction of required
communication overhead to reach the cloud [11].

Recently, some studies have been conducted to apply trained deep learning models to
resource-constrained IoT edge devices by optimization techniques such as fixed-point quantization [12,13],
network pruning [14], and hardware/software acceleration [15,16], for cases when the IoT devices are
not always connected to the network. The actions are performed more accurately by deep learning
processing than by traditional signal processing or applied machine learning methods. In addition, a
transmission scheduling method for offloading is proposed to select an optimal scaled-down size of
the original data, considering network capacity and using shared deep neural network (DNN) models,
designed with fewer neurons in the upper hidden layer than the lower layer, on the IoT edge devices
and server [17].

Undoubtedly, deep learning has been a state-of-the-art solution in many areas such as classification
and regression domains (e.g., image, video, and natural language processing), even though it is not
always possible to obtain optimal results [11]. In particular, when migrating a trained deep learning
model to a resource-constrained micro controller unit (MCU), such as those commonly used in IoT
edge devices, it is important to consider latency and energy efficiency in determining whether to
send the fragmented packets of raw data or transmit the output vectors of a deep learning network.
For example, if the amount of data to be transmitted from the edge device to the edge server is small or
the communication channel is idle, directly sending the packets results in less energy consumption and
low latency. On the contrary, if the edge device needs to send a large number of fragmented packets of
data under heavy congestion or interference, sending compressed data or the output result of a deep
learning network may be effective in terms of channel utilization and improving the transmission
success ratio.

Thus, we introduce our novel offloading and transmission strategy using deep and machine
learning for IoT edge devices and networks to improve the classification accuracy of sensory data,
as well as the network performance and energy efficiency. Our system consists of three steps.
In the first step, each edge device estimates the average latency and the average transmission success
ratio required to transmit a packet to the edge server though communication channel monitoring
based on Q-learning, which is a reinforcement learning method. Reinforcement learning is applied to
improve the general performance of MAC protocol. In the second step, each IoT edge device calculates
the cost for transmitting the measured raw data or the output feature of the deep learning model using
the measured average latency and transmission success ratio, as well as the operation performance
and the power consumption. The expected latency and power consumption are computed based on
the execution time for each layer of the applied deep learning structure and the intermediate output
data size of the corresponding layer. The number of fragmented packets of the intermediate output

Sensors 2019, 19, 835 3 of 17

data is calculated to estimate the expected latency and power consumption for transmitting the total
data to the edge server. Finally, the edge device transmits the raw data or intermediate output data or
final output data to the edge server, according to our proposed offload and transmission strategy with
minimum latency and power consumption.

Figure 1 presents our proposed offload and transmission scenarios based on a shared deep
learning model for IoT edge devices and edge servers (e.g., gateway, access point, and light-weight
server machine). In case the data measured at the edge device are structured data such as temperature
and humidity, or the extracted feature data by traditional signal processing methods or raw data are
smaller than the length of the application payload in packet data units (PDUs), directly transmitting
the measured raw data without any deep learning processing may be effective. Otherwise, if the edge
device generates a relatively large volume of data such as image, video, and sensory signals, the edge
device should determine whether to send fragmented packets of the total data frame or send output
data through deep learning processing. Depending on the expected latency and power consumption,
the intermediate data of the hidden layer or the output data of a deep learning model is transmitted.
To determine the transmission cost, we consider the power consumption of the transceiver and the
microprocessor, the computation time of the microprocessor, and the expected latency to send all the
fragmented packets. The key contributions of our study are summarized as follows:

1. We provide a novel deep learning approach for IoT edge devices and networks to transmit
measured data to edge servers considering the network performance as well as the capacity of
resource-constrained microprocessors.

2. We apply reinforcement learning based on Q-learning to learn the optimal backoff scheme in
the contention-based MAC protocol to improve the network channel utilization considering the
current channel condition (e.g., four states: idle, low, high, and burst traffic).

3. Our proposed offload and transmission strategies can handle the different rates of data flow and
load of the nature of IoT applications.

4. We implemented a deep learning model on a low-power and performance Cortex M7 (216 MHz
and 120 MHz) and Cortex M4 (80 MHz) microprocessor and measured the operation time and
power consumption for each layer of the deep learning model. In addition, we used the measured
performance metrics in a simulation and verified that our proposed methods can be applied to
actual IoT edge networks through experiments.

Sensors 2018, 18, x FOR PEER REVIEW 3 of 17

transmitting the total data to the edge server. Finally, the edge device transmits the raw data or
intermediate output data or final output data to the edge server, according to our proposed offload
and transmission strategy with minimum latency and power consumption.

Figure 1 presents our proposed offload and transmission scenarios based on a shared deep
learning model for IoT edge devices and edge servers (e.g., gateway, access point, and light-weight
server machine). In case the data measured at the edge device are structured data such as temperature
and humidity, or the extracted feature data by traditional signal processing methods or raw data are
smaller than the length of the application payload in packet data units (PDUs), directly transmitting
the measured raw data without any deep learning processing may be effective. Otherwise, if the edge
device generates a relatively large volume of data such as image, video, and sensory signals, the edge
device should determine whether to send fragmented packets of the total data frame or send output
data through deep learning processing. Depending on the expected latency and power consumption,
the intermediate data of the hidden layer or the output data of a deep learning model is transmitted.
To determine the transmission cost, we consider the power consumption of the transceiver and the
microprocessor, the computation time of the microprocessor, and the expected latency to send all the
fragmented packets. The key contributions of our study are summarized as follows:

1. We provide a novel deep learning approach for IoT edge devices and networks to transmit
measured data to edge servers considering the network performance as well as the capacity of
resource-constrained microprocessors.

2. We apply reinforcement learning based on Q-learning to learn the optimal backoff scheme in
the contention-based MAC protocol to improve the network channel utilization considering the
current channel condition (e.g., four states: idle, low, high, and burst traffic).

3. Our proposed offload and transmission strategies can handle the different rates of data flow and
load of the nature of IoT applications.

4. We implemented a deep learning model on a low-power and performance Cortex M7 (216 MHz
and 120 MHz) and Cortex M4 (80 MHz) microprocessor and measured the operation time and
power consumption for each layer of the deep learning model. In addition, we used the
measured performance metrics in a simulation and verified that our proposed methods can be
applied to actual IoT edge networks through experiments.

Figure 1. Offload and transmission strategy overview based on generated data size and computation
performance considering media channel condition on IoT edge device with deep learning model.

Figure 1. Offload and transmission strategy overview based on generated data size and computation
performance considering media channel condition on IoT edge device with deep learning model.

Sensors 2019, 19, 835 4 of 17

Compared to following predefined roles, our proposed the optimal backoff scheme for the
contention-based MAC protocol and the offload and transmission strategy are an effective and adaptive
method for learning the current state of the channel and the computation performance of target devices.

The remainder of this paper is organized as follows: Section 2 discusses related works of deep
learning for IoT edge devices and networks. Section 3 describes the proposed optimal backoff scheme
to improve the channel utilization. Section 4 describes the proposed offload and transmission strategy.
Section 5 summarizes the performance of our proposed methods. Finally, Section 6 summarizes and
concludes the paper.

2. Related Works

We first introduce the applicability and efficiency of machine and deep learning in terms of IoT
edge devices and their applied network protocols, and then we discuss the differences in our work
compared to previous studies.

2.1. Deep Learning for IoT Edge Devices

Deep learning architectures can effectively extract the feature of sensory data (e.g., images, voice,
and time-series) and classify the desired output for diverse IoT applications. Convolutional neural
network (CNN)-based image classification showed state-of-the-art performance. In addition, recurrent
neural network (RNN)-based deep learning structures showed that they could process data effectively
compared to conventional signal processing methods and traditional machine learning methods.
Based on these achievements, studies that analyze the data measured and collected from sensors using
deep learning are increasing, as well as image, video, and natural language processing.

In [18], CNNs have successfully used sensory signals for electrocardiogram (ECG) classification
and anomaly detection. Kang et al. [19] introduced vibration sensor-based structural health
monitoring and an early fault detection system by an ensemble deep learning model. In addition,
hybrid CNN-RNN models are widely used with time-series sensory signals such as human activity
recognition [20] and stock price estimation [21]. However, the applications mentioned above all are
performed on high-performance computational machines in both an offline phase for training and an
online phase for execution. Furthermore, as the size of a deep learning model increases for improving
performance, the memory requirement also increases significantly.

Han et al. [14] and Iandola et al. [22] reported that a trained deep learning model could be
applied to embedded devices by network pruning with quantization (less than 8 bit) and Huffman
encoding with a combination of 1 × 1 convolutional filter. Most of the literature on enabling deep
learning on IoT edge devices also employs pruning and quantization methods to reduce the memory
utilization and specifically designed software and hardware accelerators to speed up the operation [13,23].
Du et al. [24] also proposed a streaming data flow to achieve higher peak throughput and greater
energy efficiency for CNN acceleration architectures for IoT devices. These methods allow minimizing
the loss of accuracy when applying a deep learning model on a resource-constrained device. Because
diagnosis and surveillance applications on IoT environments have often demanded high accuracy
and real-time requirements, an optimized and trained deep learning model should be carefully
considered to achieve results within a limited processing time and with acceptable accuracy on
resource-constrained IoT devices. Additional details of distributed deep learning applied to IoT
devices, networks, and applications are available in [11].

2.2. Deep Learning for IoT Edge Networks

In IoT, a number of edge devices such as sensors and actuators co-operate to transmit data
considering the energy consumption, latency, and packet error rate. The edge devices used in typical
IoT applications consume most of their energy in transmitting and idle time [25]. Therefore, efficient
channel access and scheduling methods such as the MAC protocol, which can decrease the latency and
increase the fairness and transmission ratio, are required.

Sensors 2019, 19, 835 5 of 17

Liu et al. [26] introduced RL-MAC, which estimates an adaptive duty-cycle and transmission
active time based on the traffic load and channel bandwidth by reinforcement learning. In [27],
a QL-MAC with Q-learning is proposed, whereby the sleep and wakeup scheduling is adaptable
depending on the network traffic load. The modified protocol [28] is targeted to vehicle-to-vehicle
communication based on IEEE 802.11p MAC, and Q-learning is applied to select the optimal contention
window (CW) size to reduce the packet collision probability.

Li et al. [17] designed a novel offload scheduling method to optimize the network performance of
deep learning-based applications in edge computing. Their proposed scheduling algorithm attempts to
assign the maximum number of deep learning tasks to both the edge devices and edge servers
with corresponding deep learning layers, considering the service capacity and network bandwidth.
Their proposed method is similar to our work, in that it considers the processing time and the output
data size of the intermediate layer of the deployed deep learning model on edge devices. However,
their proposed method only utilizes the known service capacity and the maximum available bandwidth,
and possible side effects due to collisions and interference are not considered. Considering the current
network conditions is required for a more effective offload and transmission strategy.

2.3. Novelty of Our Work Compared To Related Works

In this section, we summarize the differences in our work compared to other studies. Although we
applied a well-known quantization method that represents a 32-bit floating-point as an 8-bit fixed-point
to operate the trained deep learning model on resource-constrained IoT edge devices [29], our proposed
method is the first offloading approach in the IoT edge layer that considers the output size, execution
time, and power consumption of each layer of the deep learning model on resource-constrained
microprocessors operating at 216 MHz or less.

In addition, our proposed novel offloading and transmission strategy chooses among three cases,
either sending the raw data directly, or the desired output, or the intermediate output data of the deep
learning model, in the most efficient way to reduce the energy consumption and latency considering
the current network status. The transmission cost for each case is computed as a weighted sum of the
required latency and power consumption for transmitting the packets as well as the execution time
and power consumption for the deep learning processing.

In particular, our proposed transmission scheme can be applied widely to systems that can
estimate the average latency and transmission success ratio by channel or packet monitoring.

3. Reinforcement Learning-Based MAC Protocol with an Adaptive Channel Access Scheme

In this section, we introduce our proposed adaptive contention-based MAC protocol with a
backoff scheme that can estimate the optimal CW size using Q-learning. We employed the concepts of
a well-defined Q-learning-based MAC protocol [26–28], and then we redefined the states and action
space as well as the reward function and Q-function according to the channel conditions (i.e., idle, low,
high, and burst traffic). We proposed a reinforcement learning-based adaptive channel access scheme
to improve the performance of the MAC protocol before applying an offload and transmission strategy.

3.1. Q-Learning

Q-learning is one of the most popular and powerful reinforcement learning algorithms, the goal of
which is to obtain the optimal policy of a sequence of actions that maximizes the accumulated reward
in an unknown and model-free environment [30]. Owing to the difficulty in accurately recognizing
the channel environment and designing a communication model considering collisions, padding, and
interference in wireless communications, we employed Q-learning, which is a well-known off-policy
temporal-difference algorithm, for self-learning in IoT edge devices. The Q-function indicates the

Sensors 2019, 19, 835 6 of 17

optimal action at a corresponding state. The Q-values of the state–action pair (st, at) are updated
as follows:

Q̂(st, at)← (1− α)Q̂(st, at) + α

(
rt+1 + γmax

at+1
Q̂(st+1, at+1)

)
, (1)

where Q̂ denotes the learner’s current approximation to Q, α ∈ (0,1] is the learning rate, and γ ∈ [0, 1]
is the discount factor and has the effect of valuing rewards received earlier higher than those received
later. s, a, and r represent states, actions, and reward, respectively, and these are set up for the
proposed methods.

3.2. Estimating optimal Contention Window Size

One of the main goals of a contention-based MAC protocol is to avoid packet collisions. Packet
collision occurs when multiple nodes simultaneously access a channel. Thus, the node must check
whether the state of the channel is idle or busy to avoid collision. Generally, the clear channel
assessment (CCA), provided by the RF transceiver, is used to check the channel status. A backoff
mechanism is required to transmit after a certain delay when the medium channel state is busy.
Determining the backoff duration requires a CW and the channel access efficiency is determined
by how well the CW size is selected. Adaptive CW selection algorithms are most commonly used
in carrier-sense multiple access with collision avoidance (CSMA/CA) to improve the throughput
and fairness, and to reduce the latency and the collision probability in modern applications [31,32].
In general, a random backoff scheme within the CW is used for channel access. The duration of the
backoff is randomly selected in the range of 0 to CW size. The CW increases owing to an increase
in congestion, and a decrease in the CW is performed to access the channel more quickly owing to
reduced congestion. Although designing an optimal channel access mechanism by modeling and
monitoring all of the channel environments is difficult, a policy of selecting the appropriate CW
considering the channel condition is essential. Thus, we adopted a Q-learning-based adaptive CW
selection scheme, and defined a reward function to be maximized when the number of backoffs and
access time is minimum to rapidly access the channel. The state space s contains CW sizes according to
a binary exponential random backoff scheme for each congestion level. ch means the congestion level
(i.e., idle, low, high, burst traffic) according to the generated amount of packet. The actions a determine
the CW at t from CW at t − 1. The proposed reward function to minimize latency is as follows:

s[ch] ∈ {3(CWmin), 4, 5, 6, 7, 8(CWmax)},
CWt = a ∈ {CWmin, CWt−1 − 1, CWt−1, CWt−1 + 1, CWmax},
rt+1 = r(s[ch]t, at)

=

{
CWmax

CWt
× macMaxCSMABacko f f s

NCCA+1 , if transmitted
0, if dropped, NCCA > macMaxCSMABacko f f s

,

backo f f timet = random_uni f orm(0, 2CWt − 1),

(2)

where s[ch] means managing state s, used for the Q-learning by each of the four congestions at level ch.
The values of s are predetermined from 3 (CWmin) to 8 (CWmax). The CW at t is determined by whether
a previous time t − 1 value is held, incremented or decremented by one step, or set to minimum or
maximum. The Q-learning agent selects a CW that maximizes reward in state s[ch] at t, where NCCA
and macMaxCSMABackoffs denote the number of CCA counts and the maximum number, respectively.
A higher reward suggests a lower number of CCA and lower backoff time. Finally, backo f f timet,
which is the value of the backoff duration at t, is randomly selected in the range of 0 to 2CWt − 1.

Sensors 2019, 19, 835 7 of 17

Algorithm 1: Q-learning-based Backoff Mechanism

1 Initialization:
2 NCCA = 0, load_Q_table() // load a previously learned value
3 Input: medium channel state by CCA (idle or busy), packet transmission (success of failure)
4 Output: backoff duration (backofftime)
5 while mac_protocol do
6 if active_mode
7 busy_count += CCA(is_busy) or busy_count −= CCA(is_idle)
8 // channel mode is set to 4 levels according to busy_count
9 ch_mode = channel_mode(busy_count);

10 end if
11 if event_send_request
12 while NCCA < macMaxCSMABackoffs or packet_transmitted
13 // set the largest value in the Q table to next CW
14 CWt = Max_Q_table(ch_mode, CWt − 1)
15 Backoff (backofftime = uniform_random(0, 2CWt − 1))
16 if CCA(is_busy)
17 busy_count += 1; NCCA += 1;
18 else if CCA(is_idle)
19 transmit(packet) and wait(Ack)
20 busy_count −= 1; NCCA = 0;
21 end if
22 ch_mode = channel_mode(busy_count)
23 if learning_mode
24 Q(st[ch_mode]: CWt − 1, at: CWt) - Equation(2)
25 end if
26 // network parameter measurement
27 transmission_success_ratio (rt) = # of received_ack / # of requested packet,
28 average_latency (la) = ack_time – transmit_time (about only transmitted packet)
29 // other parameters else (e.g., meanBackoffduration, channelAccessratio, etc.)
30 end while
31 delete_queue(packet) // transmitted or dropped
32 end if
33 end while

Algorithm 1 shows the mechanism of the proposed Q-learning-based backoff scheme to effectively
access the medium. The IoT edge device periodically monitors the channel during the active mode
and classifies the result into four levels based on the value of busy_count in a short period of time
(e.g., 10 measurements over 500 ms). When a packet transmission event is requested, and NCCA
is less than macMaxCSMABackoffs, the backoff is performed by selecting the CWt considering the
current channel state based on the maximum Q-value in the learned Q-table. After a delay of the
backoff time, CCA is performed to verify that the channel is available. When the channel is busy,
the corresponding parameters, busy_count and NCCA, are incremented. In the other case, the method
sends the packet and waits for an Ack frame to be received, upon which busy_count is decremented
and NCCA is initialized. If in learning mode, the Q-value of the current channel state is updated by
the reward function. The network performance indicators (e.g., transmission success ratio, average
latency, and mean backoff duration) are updated based on the result of packet transmission. The
measured network performance parameters are used in Section 4 to calculate the average number
of retransmission counts (mr) and the expected latency (tc) required to successfully send a packet
to its destination. Our proposed learning-based method can be widely applied to contention-based
MAC protocols.

Sensors 2019, 19, 835 8 of 17

4. Offloading and Transmission Strategy

In this section, we introduce a novel offload-based transmission strategy that considers energy
efficiency and delays in the IoT edge layer, based on the improved MAC protocol, which is the method
proposed in the previous section. We applied the quantization method to migrate the trained deep
learning model to resource-constrained IoT edge devices [29]. We already know the learnable and
hyper-parameters as well as the input data vector of each layer of the deep learning model, as shown
in Figure 2.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 17

4. Offloading and Transmission Strategy

In this section, we introduce a novel offload-based transmission strategy that considers energy
efficiency and delays in the IoT edge layer, based on the improved MAC protocol, which is the
method proposed in the previous section. We applied the quantization method to migrate the trained
deep learning model to resource-constrained IoT edge devices [29]. We already know the learnable
and hyper-parameters as well as the input data vector of each layer of the deep learning model, as
shown in Figure 2.

Figure 2. Applied deep learning structure (i.e., convolutional neural network). Blue cubes and solid
lines present the learnable parameters.

Therefore, we can calculate the execution time based on the system clock of the target
microprocessor and output vector size of the next layer by computing the previous layer’s input data
and weights, and the power consumption can also be calculated or measured during the operation.
The related parameters of the deep learning networks used in our proposed offload and transmission
strategy are given by the following expressions:

()
,

1 2 1
1

1 2 1
1

1

, ,

,

,

,
(),

l l
l l lt e

n

n n n l
l

n

n n n l
l

l l

l l

y f x w

T t t t t t

E e e e e e

y x
S fragmention y

−
=

−
=

+

=

= + + + + =

= + + + + =

=
=








(3)

where lx , lw , and ly denote the input, weight, and output vector in layer l, respectively. ly also

indicates the input of the next layer l + 1. lt and le represent the execution time and power
consumption to compute f(xl,wl), respectively. f(xl,wl) includes all operations such as convolution,
activation, and downsampling to extract the output vector for the next layer; nT and nE represent

the total execution time and power consumption up to layer n, respectively; and lS is the number of

packets, ly is fragmented into packets by the PDU size of the corresponding radio transceiver with
the fragmentation() function. Figure 2 shows an input layer, three convolutional with activation and
down-sampling operation layers, with a fully connected output layer. The execution time and output
vector size for each layer except the input layer can be calculated based on the corresponding deep

Figure 2. Applied deep learning structure (i.e., convolutional neural network). Blue cubes and solid
lines present the learnable parameters.

Therefore, we can calculate the execution time based on the system clock of the target
microprocessor and output vector size of the next layer by computing the previous layer’s input data
and weights, and the power consumption can also be calculated or measured during the operation.
The related parameters of the deep learning networks used in our proposed offload and transmission
strategy are given by the following expressions:

yl =
tl ,el

f (xl , wl),

Tn = t1 + t2 + . . . + tn−1 + tn =
n
∑

l=1
tl ,

En = e1 + e2 + . . . + en−1 + en =
n
∑

l=1
el ,

yl = xl+1,
Sl = f ragmention(yl),

(3)

where xl , wl , and yl denote the input, weight, and output vector in layer l, respectively. yl also indicates
the input of the next layer l + 1. tl and el represent the execution time and power consumption to
compute f (xl,wl), respectively. f (xl,wl) includes all operations such as convolution, activation, and
downsampling to extract the output vector for the next layer; Tn and En represent the total execution
time and power consumption up to layer n, respectively; and Sl is the number of packets, yl is
fragmented into packets by the PDU size of the corresponding radio transceiver with the fragmentation()
function. Figure 2 shows an input layer, three convolutional with activation and down-sampling
operation layers, with a fully connected output layer. The execution time and output vector size for
each layer except the input layer can be calculated based on the corresponding deep learning model

Sensors 2019, 19, 835 9 of 17

and the performance of target microprocessor. Refer to Table 2 for the number of inputs, outputs, and
execution time for each layer.

In addition, we estimated the expected cost to successfully transmit a packet to the destination
such as an edge server or the next hop using our proposed learning-based MAC protocol. As mentioned
previous sections, we measured the average number of retransmission counts (mr = 1/rt) based on
the transmission success ratio (rt) and the average latency (la) needed to transmit one packet from
an IoT edge device to the server according to the channel state. We used the average retransmission
counts and the average latency to define the expected latency (tc = mr × la) required to successfully
send a packet to the destination.

We designed a cost function to select the optimal strategy in terms of minimizing the latency and
power consumption as follows:

Costraw = α(Sraw · tc) + β
(
Sraw ·mr · Txp

)
,

Costo f f load = α(Tn + Sn · tc)︸ ︷︷ ︸
latency

+ β
(
En + Sn ·mr · Txp

)︸ ︷︷ ︸
power consumption

(when n = 0, S0 = fragmentation(y0 = x1) = Sraw, T0 and E0 = 0),

Strategyo f f load = argmin
n∈[0,N]

(
Costo f f load

)
,

(4)

Here, α and β are weight factors for the latency and power consumption, respectively, and Sraw is
the number of fragmented packets of measured raw data according to the PDU size. Costraw represents
the cost that is considered the latency (Sraw·tc) and the energy consumption (Sraw·mr·Txp) required to
transmit the Sraw packets. Txp is the transmission power of the radio transceiver. Costoffload represents
the additional consideration of the execution time Tn and power consumption En when operating up
to layer n of the applied deep learning model. Notice that when n = 0, S0 and Sraw are the same. Using
Strategyoffload, we can find the optimal n parameter minimizing the transmission cost. In short, the edge
device determines how many layers would be processed in terms of latency and energy efficiency.
This means that the IoT edge device performs up to layer n and then transmits the corresponding
output vectors, and the IoT edge server performs from layer n + 1 to the last layer N, considering the
performance of the IoT edge device and the current channel state.

We did not fix α and β, the weight factors of latency and power consumption. Generally,
transmission performance and energy efficiency is a trade-off. Therefore we designed the offload and
transmission strategy to be configurable according to the priority of latency and power consumption
when calculating the offload cost, Costoffload.

5. Experimental Results

5.1. Experimental Setup

In this section, we first describe the experiment settings for the learning-based MAC protocol
and the offload and transmission strategy, and then discuss the evaluation results. In the experiments,
we have two environments: one for network simulation, and another for executing the deep learning
model on a resource-constrained IoT edge device. We designed the following experimental scenarios
so that IoT edge devices can determine their offload based on the medium channel state and its
computation performance: (i) The Q-learning-based adaptive channel access scheme was applied to
improve MAC performance. (ii) We measured the network performance parameters (e.g., latency
and transmission success ratio) according to each simulated congestion level. (iii) We measured and
calculated an execution time, power consumption, and the number of output vectors for each layer of
the deep learning model. (iv) Based on measured network performance parameters, operational
performance of target devices, and the applied deep learning model, IoT edge devices selected which
layer had the minimum cost for offloading and transmitting.

Sensors 2019, 19, 835 10 of 17

To evaluate the performance of our proposed MAC protocol with the adaptive channel access
scheme, we used nonslotted CSMA/CA of the IEEE 802.15.4 standard on OMNet++ (ver. 5.4.1) with
the INET framework. We measured the runtime and power consumption for each layer of the applied
deep learning model on a resource-constrained IoT edge device running at less than at 216 MHz
(i.e., Arm Cortex-M7 (STM32F769) and Cortex-M4 (STM32L486)), and then applied the measured
parameters to the network simulation and carried out our proposed offload and transmission strategy.
In order to migrate the deep learning model learned on the back-end server to the IoT edge device, we
used a quantization method to reduce the 32-bit floating-point weight and bias parameters to 8 bits
fixed-point. A quantization method contributes in terms of memory efficiency and fast operation
while minimizing the loss of the model accuracy. We used the CMSIS-NN kernel [29] for testing
and measuring the performance on STM32F769 and STM32L486 embedded boards; Figure 3 shows
our development boards. We used the MAX17201 stand-alone ModelGauge to measure the current
consumption of the boards.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 17

the INET framework. We measured the runtime and power consumption for each layer of the applied
deep learning model on a resource-constrained IoT edge device running at less than at 216 MHz (i.e.,
Arm Cortex-M7 (STM32F769) and Cortex-M4 (STM32L486)), and then applied the measured
parameters to the network simulation and carried out our proposed offload and transmission
strategy. In order to migrate the deep learning model learned on the back-end server to the IoT edge
device, we used a quantization method to reduce the 32-bit floating-point weight and bias parameters
to 8 bits fixed-point. A quantization method contributes in terms of memory efficiency and fast
operation while minimizing the loss of the model accuracy. We used the CMSIS-NN kernel [29] for
testing and measuring the performance on STM32F769 and STM32L486 embedded boards; Figure 3
shows our development boards. We used the MAX17201 stand-alone ModelGauge to measure the
current consumption of the boards.

(a) (b)

Figure 3. Applied deep learning structure (i.e., convolutional neural network). Blue cubes and solid
lines present the learnable parameters. (a) STM32F769 board. (b) STM32L486 board.

5.2. Performance Evaluation for Learning-Based MAC Protocol

We performed the simulation and evaluation of our proposed learning-based MAC protocol
with channel monitoring, and compared it with the binary exponential backoff (BEB), exponential
increase exponential decrease (EIED), and Q-learning without channel monitoring protocols. Figure 4
illustrates the performance of the proposed scheme in comparison with the fixed-backoff mechanisms
and without channel monitoring scheme. The vertical axis presents the performance metrics. The
horizontal axis is the number of generated packets of length 112 bytes at the sending interval. The
performance results plotted in Figure 4 are averages of 30 nodes, and all the experiments were
performed without retransmissions. Table 1 shows the network simulation parameters.

Table 1. Simulation Parameters for IEEE 802.15.4 with Q-Learning.

Simulation Parameters
Parameter value Parameter value

Simulation time 12 h Tx power 3 dBm
Network topology Star Bit rate 250 kbps

The number of
nodes

30 ea maxMinBE 3

MAC PDU size 112 Bytes macMaxBE 8
Channel state level
of pkt < 3 : idle,

3 <= # of pkt < 6: low,
6 <= # of pkt < 9: high,

9 <= # of pkt <= 12: burst

macMaxCSMABackoffs 5
macMaxRetries 0

Packet generation Uniform (0 s, 1 s)
Send interval 10 s

The number of packets Up to 12 pkt

Figure 3. Applied deep learning structure (i.e., convolutional neural network). Blue cubes and solid
lines present the learnable parameters. (a) STM32F769 board. (b) STM32L486 board.

5.2. Performance Evaluation for Learning-Based MAC Protocol

We performed the simulation and evaluation of our proposed learning-based MAC protocol with
channel monitoring, and compared it with the binary exponential backoff (BEB), exponential increase
exponential decrease (EIED), and Q-learning without channel monitoring protocols. Figure 4 illustrates
the performance of the proposed scheme in comparison with the fixed-backoff mechanisms and without
channel monitoring scheme. The vertical axis presents the performance metrics. The horizontal axis
is the number of generated packets of length 112 bytes at the sending interval. The performance
results plotted in Figure 4 are averages of 30 nodes, and all the experiments were performed without
retransmissions. Table 1 shows the network simulation parameters.

Table 1. Simulation Parameters for IEEE 802.15.4 with Q-Learning.

Simulation Parameters

Parameter Value Parameter Value

Simulation time 12 h Tx power 3 dBm
Network topology Star Bit rate 250 kbps

The number of nodes 30 ea maxMinBE 3
MAC PDU size 112 Bytes macMaxBE 8

Channel state level macMaxCSMABackoffs 5
of pkt < 3: idle, macMaxRetries 0

3 <= # of pkt < 6: low, Packet generation Uniform (0 s, 1 s)
6 <= # of pkt < 9: high, Send interval 10 s

9 <= # of pkt <= 12: burst The number of packets Up to 12 pkt

Sensors 2019, 19, 835 11 of 17
Sensors 2018, 18, x FOR PEER REVIEW 11 of 17

(a) (b)

(c) (d)

Figure 4. Experimental results for our proposed Q-learning-based adaptive channel access with
channel monitoring method in comparison with other backoff methods: (a) Performance of channel
access ratio, (b) number of average backoff for accessing the clear channel, (c) transmission success
ratio, and (d) average latency when a packet is successfully transmitted. The horizontal axes of the
graphs indicate the packets-per-second generated by a node at send interval, which represents the
channel congestion level.

Figure 4a shows the channel access ratio, which is the rate of attempted packet transmissions in
the idle channel after the adaptive backoff time, and can be interpreted as the channel utilization. BEB
had the lowest performance, by increasing the CW size step by step after initialization when there
occurs channel congestion. The learning-based methods of selecting the adaptive CW were more
effective than the fixed-backoff methods, and our proposed method of updating the Q-value for the
corresponding channel state showed the best performance. The channel utilization and fairness were
therefore improved by our method.

Figure 4b presents how many backoffs have to be performed to access an idle channel; it was
not reflected in the results if the channel access failed. The average backoff count is the smallest when
EIED is applied, because EIED allocates the maximum CW when the traffic load is increased. The
reason why the backoff count is gradually decreased when the number of generated packets is more
than four is that the number of nodes allocate the maximum CW owing to congestion. In the case of
BEB, the CW is increased sequentially, and the average backoff count tends to increase as well. In the
case of simple Q-learning without channel monitoring, selecting the next CW based on the previous
CW does not reflect the channel congestion well. Learning based on the corresponding channel
states is also effective in terms of the backoff count.

Figure 4. Experimental results for our proposed Q-learning-based adaptive channel access with channel
monitoring method in comparison with other backoff methods: (a) Performance of channel access
ratio, (b) number of average backoff for accessing the clear channel, (c) transmission success ratio,
and (d) average latency when a packet is successfully transmitted. The horizontal axes of the graphs
indicate the packets-per-second generated by a node at send interval, which represents the channel
congestion level.

Figure 4a shows the channel access ratio, which is the rate of attempted packet transmissions
in the idle channel after the adaptive backoff time, and can be interpreted as the channel utilization.
BEB had the lowest performance, by increasing the CW size step by step after initialization when
there occurs channel congestion. The learning-based methods of selecting the adaptive CW were more
effective than the fixed-backoff methods, and our proposed method of updating the Q-value for the
corresponding channel state showed the best performance. The channel utilization and fairness were
therefore improved by our method.

Figure 4b presents how many backoffs have to be performed to access an idle channel; it was not
reflected in the results if the channel access failed. The average backoff count is the smallest when EIED
is applied, because EIED allocates the maximum CW when the traffic load is increased. The reason
why the backoff count is gradually decreased when the number of generated packets is more than
four is that the number of nodes allocate the maximum CW owing to congestion. In the case of BEB,
the CW is increased sequentially, and the average backoff count tends to increase as well. In the case of
simple Q-learning without channel monitoring, selecting the next CW based on the previous CW does
not reflect the channel congestion well. Learning based on the corresponding channel states is also
effective in terms of the backoff count.

Sensors 2019, 19, 835 12 of 17

Figure 4c shows the transmission success ratio, which has a similar trend to the channel access ratio.
This indicates that the transmission success ratio is improved by the number of channel access instances.

Figure 4d presents the average latency when a packet is successfully transmitted to the
destination. BEB allocates a relatively short backoff time, which leads to congestion and decreases
other performance metrics; however, it has low latency when the packet transmission is successful.
When the transmission is unsuccessful, the average latency is measured in proportion to the increasing
and decreasing tendency of the number of backoffs.

Using the simulation results, we estimated the average number of retransmission attempts
required to successfully transmit a packet based on the average transmission success ratio. For example,
if the transmission success ratio is 50%, the estimated number of retransmissions is 2. tc = mr × tr

defined in (4) can be obtained by using the average retransmission count and the average latency.

5.3. Performance Evaluation for Offload and Transmission Strategy

We carried out the performance of the proposed offload and transmission strategy using
the average number of retransmission and the expected latency through the network simulation,
and measured runtime and power consumption to execute migrated deep learning model on the
resource-constrained IoT edge devices. We applied the deep learning model in Figure 2 to the
STM32F769 and STM32L486 embedded boards; the parameters and the number of operations as well
as the performance for each layer are shown in Table 2.

Figure 5a illustrates a comparison of the execution time for each layer of the applied deep
learning model on two IoT edge devices. The difference in the system clock is 2.7 times; however,
the difference in the execution time is 5.4 times. As shown in Figure 5b, the increases in multiplication
computation lead to a lager difference. We used ARM_MATH_CM4 and ARM_MATH_CM7 library to
take advantage of the digital signal processor (DSP) unit in the Cortex-M4 and Cortex-M7 core,
respectively. The performance results are shown in Figure 5b. As the results show, it would be difficult
to apply our proposed offload and transmission scheme to IoT devices without the advantage of a
DSP core. We measured power consumption for each board. The results were 60 mA and 116 mA,
depending on clock speed. Current consumption for execution time and transmission power are
reflected to calculate offload and transmission costs.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 17

Figure 4c shows the transmission success ratio, which has a similar trend to the channel access
ratio. This indicates that the transmission success ratio is improved by the number of channel access
instances.

Figure 4d presents the average latency when a packet is successfully transmitted to the
destination. BEB allocates a relatively short backoff time, which leads to congestion and decreases
other performance metrics; however, it has low latency when the packet transmission is successful.
When the transmission is unsuccessful, the average latency is measured in proportion to the
increasing and decreasing tendency of the number of backoffs.

Using the simulation results, we estimated the average number of retransmission attempts
required to successfully transmit a packet based on the average transmission success ratio. For example,
if the transmission success ratio is 50 %, the estimated number of retransmissions is 2. c r rt m t= ×
defined in (4) can be obtained by using the average retransmission count and the average latency.

5.3. Performance Evaluation for Offload and Transmission Strategy

We carried out the performance of the proposed offload and transmission strategy using the
average number of retransmission and the expected latency through the network simulation, and
measured runtime and power consumption to execute migrated deep learning model on the
resource-constrained IoT edge devices. We applied the deep learning model in Figure 2 to the
STM32F769 and STM32L486 embedded boards; the parameters and the number of operations as well
as the performance for each layer are shown in Table 2.

Figure 5a illustrates a comparison of the execution time for each layer of the applied deep
learning model on two IoT edge devices. The difference in the system clock is 2.7 times; however, the
difference in the execution time is 5.4 times. As shown in Figure 5b, the increases in multiplication
computation lead to a lager difference. We used ARM_MATH_CM4 and ARM_MATH_CM7 library
to take advantage of the digital signal processor (DSP) unit in the Cortex-M4 and Cortex-M7 core,
respectively. The performance results are shown in Figure 5b. As the results show, it would be
difficult to apply our proposed offload and transmission scheme to IoT devices without the
advantage of a DSP core. We measured power consumption for each board. The results were 60 mA
and 116 mA, depending on clock speed. Current consumption for execution time and transmission
power are reflected to calculate offload and transmission costs.

(a) (b)

Figure 5. Execution time comparison with two boards used in experiment. (a) Execution time of the
three convolutional layers of applied deep learning model. (b) Execution time by increases in the
kernel depth of convolutional layer 1 according to the DSP unit.

Figure 5. Execution time comparison with two boards used in experiment. (a) Execution time of the
three convolutional layers of applied deep learning model. (b) Execution time by increases in the kernel
depth of convolutional layer 1 according to the DSP unit.

Sensors 2019, 19, 835 13 of 17

Table 2. Layer parameters and performance for the applied deep learning model.

Model Structure
Input Kernel Output Vectors

Parameters Operations
Data Size (Bytes),
of Fragmented

Packets by PDU Size

Execution Time (ms)

Dimension
(H × W × D) Stride/Padding Dimension

(H × W × D)
Dimension

(H × W × D) 216 MHz 80 MHz

Input 32 × 32 × 3 3072 B, 27 pkts 55 301

CNN Layer 1
Conv 1 32 × 32 × 3 1/2 5 × 5 × 32 32 × 32 × 32 2432 4.9 M 32,768 B, 283 pkts 55 301

Pool 1 32 × 32 × 32 2/0 3 × 3 16 × 16 × 32 73.7 K 8192 B, 71 pkts 3 14

Relu 1 16 × 16 × 32 16 × 16 × 32 8192 B, 71 pkts <1 <1

CNN Layer 2
Conv 1 16 × 16 × 32 1/2 5 × 5 × 32 16 × 16 × 32 25,632 13.1 M 8192 B, 71 pkts 79 427

Relu 1 16 × 16 × 32 16 × 16 × 32 8192 B, 71 pkts < 1 1

Pool 1 16 × 16 × 32 2/0 3 × 3 8 × 8 × 32 18.4 K 2048 B, 18 pkts 1 4

CNN Layer 3
Conv 1 8 × 8 × 32 1/2 5 × 5 × 32 8 × 8 × 64 51,264 6.6 M 4096 B, 36 pkts 39 212

Relu 1 8 × 8 × 64 8 × 8 × 64 4096 B, 36 pkts < 1 1

Pool 1 8 × 8 × 64 2/0 3 × 3 4 × 4 × 64 9.2 K 1024 B, 9 pkts < 1 1

Fully Connected &
Softmax Output Layer 4 4 × 4 × 64 10 10,240 20 K 10 B, 1 pkts <1

Total: 178
<1

Total: 962

Sensors 2019, 19, 835 14 of 17

Figure 6a–c show the transmission cost in terms of the clock speed of the IoT edge devices and the
number of fragmented packets corresponding to the output vectors of each layer of the applied deep
learning model. The legends of the graphs indicate the number of fragmented packets of the size of
the output vector for each layer according to the PDU size in Table 2. The horizontal axes of the graphs
indicate the number of generated packets of 30 nodes, which represents the channel congestion level.
The estimated transmission cost in the other node is plotted by Costoffload using (4), the latency and
power consumption weight factors are set as same (i.e., α = β =1).

If the clock speed is 216 MHz, it is better to directly transfer the raw data when the number of
generated packets is 1, which means the channel is idle, whereas when the number generated packets of
30 nodes is more than 2, it is more effective to transmit the data of the output layer. When the
number of generated packets is more than 3 and 5, sending the output data of layer 3 and layer
2 is more efficient than transmitting the raw data, respectively. Even when operating at 120 MHz,
our proposed offload and transmission strategy can improve the transmission efficiency. However,
in the case of an ultralow-power and performance IoT edge device with an operating clock up to 80
MHz, such as STM32L486, it is considered difficult to apply the offload concept, because of the increase
in the execution time of the deep learning model.

Sensors 2018, 18, x FOR PEER REVIEW 14 of 17

Figures 6a, b and c show the transmission cost in terms of the clock speed of the IoT edge devices
and the number of fragmented packets corresponding to the output vectors of each layer of the
applied deep learning model. The legends of the graphs indicate the number of fragmented packets
of the size of the output vector for each layer according to the PDU size in Table 2. The horizontal
axes of the graphs indicate the number of generated packets of 30 nodes, which represents the channel
congestion level. The estimated transmission cost in the other node is plotted by Costoffload using (4),
the latency and power consumption weight factors are set as same (i.e., α = β =1).

If the clock speed is 216 MHz, it is better to directly transfer the raw data when the number of
generated packets is 1, which means the channel is idle, whereas when the number generated packets
of 30 nodes is more than 2, it is more effective to transmit the data of the output layer. When the
number of generated packets is more than 3 and 5, sending the output data of layer 3 and layer 2 is
more efficient than transmitting the raw data, respectively. Even when operating at 120 MHz, our
proposed offload and transmission strategy can improve the transmission efficiency. However, in the
case of an ultralow-power and performance IoT edge device with an operating clock up to 80 MHz,
such as STM32L486, it is considered difficult to apply the offload concept, because of the increase in
the execution time of the deep learning model.

(a) (b)

(c) (d)

Figure 6. Experimental results for our proposed offload and transmission strategy based on the
measured network performance metrics and deep learning structure in Figure 4 and its parameters
in Table 2. (a), (b), and (c) present the offload and transmission cost considering computation
performance (operation clock speed), the number of packets generated in the corresponding layers,
and media channel status. The horizontal axes of graphs (a), (b), and (c) indicate packets-per-second
generated by neighboring nodes at each send interval, representing the channel congestion level. (d)
shows the transmission success ratio according to the number of fragmented packets generated in the
application layer.

Figure 6. Experimental results for our proposed offload and transmission strategy based on the
measured network performance metrics and deep learning structure in Figure 4 and its parameters
in Table 2. (a–c) present the offload and transmission cost considering computation performance
(operation clock speed), the number of packets generated in the corresponding layers, and media
channel status. The horizontal axes of graphs (a–c) indicate packets-per-second generated by
neighboring nodes at each send interval, representing the channel congestion level. (d) shows
the transmission success ratio according to the number of fragmented packets generated in the
application layer.

Sensors 2019, 19, 835 15 of 17

Figure 6d presents the transmission success ratio of an application data frame without any
retransmission. An application data frame consists of several packets; we considered a transmission a
failure if one of the packets was lost. The output vector of each layer of the deep learning model should
be handled as an application data frame, and all fragmented packets should be successfully transmitted.
As shown Figure 6d, in order to increase the transmission success ratio, reducing the number of packets
is most important. For example, the output of layer 3 of the applied deep learning model is generated
in nine packets; when 30 nodes transmit nine packets within 1 s (i.e., the packet generation time in
the simulation), the transmission success ratio is only 12.6% where all nine packets are successfully
transmitted in the application layer. However, the transmission success ratio is increased to 99.4%
owing to reducing the number of packets by offloading.

The low-rate wireless personal area network (LR-WPAN) protocol and a low-power MCU were
used for the experiment. In addition, we set the MCU to operate in Run mode without any wakeup
scheduling from Sleep and Standby mode and set the radio frequency (RF) transceiver to send with
low transmission power. Thus, the influence of the current consumption of the MCU and the low
transmission power was small in calculating the offload and transmission cost (4), whereas the
influence of the execution time for matrix multiplication and the network latency was high. The type
of deep learning structures, processors, RF transceivers, and network protocols could significantly
impact to the offload and transmission cost.

6. Discussion and Conclusions

This paper presented a learning-based MAC protocol with an adaptive channel access scheme
using Q-learning to update the Q-values according to channel states and an offload and transmission
strategy based on the execution time and the number of generated packets on IoT edge devices.
Experiments have shown that our proposed learning-based MAC protocol can improve the
transmission success ratio and reduce the latency by an effective channel access method based on
optimal backoff time considering the channel congestion levels. Although we have not considered
various deep learning structures and experimental environments, the proposed methods can be widely
applied because the IoT edge device itself determines whether or not to perform the offload function
by considering its computation performance and the number of generated packets according to the
current media channel environment.

In the future, we would need to focus on researching how to effectively embed various deep
learning structures into ultralow-power and performance MCUs. We are considering applying
optimization techniques to quantize the weight parameter to less than 8 bits, such as 3-bit or binary
quantization [33,34] and to prune the deep learning network.

Finally, we hope that the contributions of this study will be to motivate researchers to apply a
novel approach for optimizing and offloading IoT edge devices and networks.

Author Contributions: Conceptualization, J.K. and D.-S.E.; Formal analysis, J.K.; Methodology, J.K. and D.-S.E.;
Project administration, J.K. and D.-S.E.; Software, J.K.; Supervision, D.-S.E.; Validation, J.K. and D.-S.E.; Writing –
original draft, J.K.; Writing – review & editing, D.-S.E.

Funding: This research was funded by the Korea University Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Irene, C.L.; Susan, Y.L. The Internet-of-Things: Review and research directions. Int. J. Res. Mark. 2017, 34,
3–21. [CrossRef]

2. Premsankar, G.; Francesco, M.D.; Taleb, T. Edge computing for the internet of things: A case study.
IEEE Internet Things J. 2018, 5, 1275–1284. [CrossRef]

http://dx.doi.org/10.1016/j.ijresmar.2016.11.003
http://dx.doi.org/10.1109/JIOT.2018.2805263

Sensors 2019, 19, 835 16 of 17

3. Kaur, K.; Garg, S.; Aujla, G.S.; Kumar, N.; Rodrigues, J.J.P.C.; Guizani, M. Edge computing in the industrial
internet of things environment: Software-defined-networks-based edge-cloud interplay. IEEE Commun. Mag.
2018, 56, 44–51. [CrossRef]

4. Taherizade, S.; Stankovski, V.; Grobelnik, M.A. Capillary computing architecture for dynamic internet of
things: Orchestration of microservices from edge devices to fog and cloud provider. Sensors 2018, 18, 2938.
[CrossRef] [PubMed]

5. Lyu, X.; Tian, H.; Jiang, L.; Vinel, A.; Maharjan, S.; Gjessing, S.; Zhang, Y. Selective offloading in mobile edge
computing for the green internet of things. IEEE Netw. 2018, 32, 54–60. [CrossRef]

6. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling
technologies, security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]

7. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the
internet of things. IEEE Access 2017, 6, 6900–6919. [CrossRef]

8. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for
internet of things data analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]

9. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming
analytics: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]

10. Wang, J.; Ma, J.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and
applications. J. Manuf. Syst. 2018, 48, 144–156. [CrossRef]

11. Hatcher, W.G.; Yu, W. A survey of deep learning: Platforms, applications and emerging research trends.
IEEE Access 2018, 6, 24411–24432. [CrossRef]

12. Park, E.; Ahn, J.; Yoo, S. Weighted-entropy-based quantization for deep neural networks. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017. [CrossRef]

13. Tang, J.; Sun, D.; Liu, S.; Gaudiot, J.L. Enable deep learning on IoT devices. Computer 2017, 50, 92–96.
[CrossRef]

14. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks.
In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS),
Montreal, QC, Canada, 7–12 December 2015.

15. Lane, N.D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.; Jiao, L.; Qendro, L.; Kawsar, F. DeepX: A software
accelerator for low-power deep learning inference on mobile devices. In Proceedings of the 2016 15th
ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Vienna, Austria,
11–14 April 2016. [CrossRef]

16. Verhelst, M.; Moons, B. Embedded deep neural network processing: Algorithmic and processor techniques
bring deep learning to IoT and edge devices. IEEE Solid-State Circuits Mag. 2017, 9, 55–65. [CrossRef]

17. Li, H.; Ota, K.; Dong, M. Learning IoT in edge: Deep learning for the internet of things with edge computing.
IEEE Netw. 2018, 32, 96–101. [CrossRef]

18. Li, Y.; Pang, Y.; Wang, J.; Li, X. Patient-specific ECG classification by deeper CNN from generic to dedicated.
Neurocomputing 2018, 314, 336–346. [CrossRef]

19. Kang, J.; Park, Y.-J.; Lee, J.; Wang, S.-H.; Eom, D.-S. Novel leakage detection by ensemble CNN-SVM and
graph-based localization in water distribution systems. IEEE Trans. Ind. Electron. 2018, 65, 4279–4289.
[CrossRef]

20. Ordonez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable
activity recognition. Sensors 2016, 16, 115. [CrossRef] [PubMed]

21. Liu, S.; Zhang, C.; Ma, J. CNN-LSTM neural network model for quantitative strategy analysis in stock
markets. In Proceedings of the Lecture Notes in Computer Science, Guangzhou, China, 14–18 November
2017; pp. 198–206. [CrossRef]

22. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5 MB model size. arXiv, 2016; arXiv:1602.07360v3.

23. Wang, Y.; Li, H.; Li, X. Re-architecting the on-chip memory sub-system of machine-learning accelerator for
embedded devices. In Proceedings of the 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), Austin, TX, USA, 7–10 November 2016. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2018.1700622
http://dx.doi.org/10.3390/s18092938
http://www.ncbi.nlm.nih.gov/pubmed/30181454
http://dx.doi.org/10.1109/MNET.2018.1700101
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1016/j.dcan.2017.10.002
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1016/j.jmsy.2018.01.003
http://dx.doi.org/10.1109/ACCESS.2018.2830661
http://dx.doi.org/10.1109/CVPR.2017.761
http://dx.doi.org/10.1109/MC.2017.3641648
http://dx.doi.org/10.1109/IPSN.2016.7460664
http://dx.doi.org/10.1109/MSSC.2017.2745818
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1016/j.neucom.2018.06.068
http://dx.doi.org/10.1109/TIE.2017.2764861
http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.1007/978-3-319-70096-0_21
http://dx.doi.org/10.1145/2966986.2967068

Sensors 2019, 19, 835 17 of 17

24. Du, L.; Du, Y.; Li, Y.; Su, J.; Kuan, Y.-C.; Liu, C.-C.; Chang, M.-C.F.A. Reconfigurable streaming deep
convolutional neural network accelerator for internet of things. IEEE Trans. Circuits Syst. I Regul. Pap. 2018,
65, 198–208. [CrossRef]

25. Wu, G.; Xu, P. Improving performance by a dynamic adaptive success-collision backoff algorithm for
contention-based vehicular network. IEEE Access 2017, 6, 2496–2505. [CrossRef]

26. Liu, Z.; Elhanany, I. RL-MAC: A QoS-aware reinforcement learning based MAC protocol for wireless sensor
networks. In Proceedings of the 2016 IEEE International Conference on Networking, Sensing and Control,
Ft. Lauderdale, FL, USA, 23–25 April 2006.

27. Galzarano, S.; Liotta, A.; Fortino, G. QL-MAC: A Q-learning based MAC for wireless sensor networks.
In Proceedings of the Lecture Notes in Computer Science, Algorithms and Architectures for Parallel, ICA3PP,
Vietri sul Mare, Italy, 18–20 December 2013; pp. 267–275. [CrossRef]

28. Pressas, A.; Sheng, Z.; Ali, F.; Tian, D.; Nekovee, M. Contention-based learning MAC protocol for broadcast
vehicle-to-vehicle communication. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC),
Torino, Italy, 27–29 November 2017. [CrossRef]

29. Lai, L.; Suda, N.; Chandra, V. CMSIS-NN: Efficient neural network kernels for arm cortex-M CPUs. arXiv
1801, arXiv:1801.06601v1.

30. Khan, Z.A.; Samad, A. A study of machine learning in wireless sensor network. Int. J. Comput. Netw. Appl.
2017, 4, 105–112. [CrossRef]

31. Henna, S.; Sarwar, M.A. An adaptive basckoff mechanism for IEEE 802.15.4 beacon-enable wireless body
area networks. Wirel. Commun. Mob. Comput. 2018, 2018, 9782605. [CrossRef]

32. Syed, I.; Roh, B.-H. Adaptive backoff algorithm for contention window for dense IEEE 802.11 WLANs.
Mob. Inf. Syst. 2016, 2016, 8967281. [CrossRef]

33. Hwang, K.; Sung, W. Fixed-point feedforward deep neural network design using weight +1, 0, and −1.
In Proceedings of the 2014 IEEE Workshop on Signal Processing Systems (SiPS), Belfast, UK, 20–22 October
2014. [CrossRef]

34. Daun, Y.; Lu, J.; Wang, Z.; Feng, J.; Zhou, J. Learning deep binary descriptor with multi-quantization.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVRP), Honolulu,
HI, USA, 21–26 July 2017. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCSI.2017.2735490
http://dx.doi.org/10.1109/ACCESS.2017.2783909
http://dx.doi.org/10.1007/978-3-319-03889-6_31
http://dx.doi.org/10.1109/VNC.2017.8275614
http://dx.doi.org/10.22247/ijcna/2017/49122
http://dx.doi.org/10.1155/2018/9782605
http://dx.doi.org/10.1155/2016/8967281
http://dx.doi.org/10.1109/SiPS.2014.6986082
http://dx.doi.org/10.1109/CVPR.2017.516
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Deep Learning for IoT Edge Devices
	Deep Learning for IoT Edge Networks
	Novelty of Our Work Compared To Related Works

	Reinforcement Learning-Based MAC Protocol with an Adaptive Channel Access Scheme
	Q-Learning
	Estimating optimal Contention Window Size

	Offloading and Transmission Strategy
	Experimental Results
	Experimental Setup
	Performance Evaluation for Learning-Based MAC Protocol
	Performance Evaluation for Offload and Transmission Strategy

	Discussion and Conclusions
	References

