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Abstract: Prognostics and Health Management (PHM) is an emerging technique which can improve
the availability and efficiency of equipment. A series of related optimization of the PHM system
has been achieved due to the growing need for lowering the cost of maintenance. The PHM system
highly relies on data collected from its components. Based on the theory of machine learning,
this paper proposes a bio-inspired PHM model based on a dissolved gas-in-oil dataset (DGA) to
diagnose faults of transformes in power grids. Specifically, this model applies Bat algorithm (BA),
a metaheuristic population-based algorithm, to optimize the structure of the Back-propagation neural
network (BPNN). Furthermore, this paper proposes a modified Bat algorithm (MBA); here the chaos
strategy is utilized to improve the random initialization process of BA in order to avoid falling into
local optima. To prove that the proposed PHM model has better fault diagnostic performance than
others, fitness and mean squared error (MSE) of Bat-BPNN are set as reference amounts to compare
with other power grid PHM approaches including BPNN, Particle swarm optimization (PSO)-BPNN,
as well as Genetic algorithm (GA)-BPNN. The experimental results show that the BA-BPNN model
has increased the fault diagnosis accuracy from 77.14% to 97.14%, which is higher than other power
transformer PHM models.

Keywords: power transformer PHM; bat algorithm; BP neural network; fault diagnosis

1. Introduction

Prognostics and Health Management (PHM) is an emerging technology related to system life-cycle
support that enables conspicuously lower expenses on maintenance, usage, and support, and enhances
the reliability and availability of the system. It has attracted a great deal of attention in recent
years [1–3]. It focuses on evaluating the health of equipments according to the related information
from abnormal sensing, diagnosis, prognosis, and health management [4]. Several works have
attempted to predict the Remaining Useful Life (RUL) of equipment in the system and to prevent
ultimate catastrophic failure [5].

Regarded as a complex system with numerous equipment, the power grid has become more
intelligent with the continuous promotion of technologies [6]. In general, a power system is composed
of many electric transmission and distribution plants the failure of which may lead to the failure of
the system, so that fault identification of components such as a power transformer which is a critical
component, constitutes an important stake.

A power transformer, with the task of electric transmission and distribution, is a significant
equipment within a smart grid [7]. Therefore, prognostics and health management of its potential
faults play an important role in ensuring the safe operation of the power system. The faults of a power
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transformer can be divided into interior and exterior fault modules [8]. In an oil-immersed transformer,
any harmful operating conditions to the power transformer may lead to decomposition of insulating
materials and release of gaseous decomposition products dissolved in oil [9]. Correspondingly,
Dissolved Gas-in-oil Analysis (DGA) as well as its improved approaches including the Rogers
Ratios, and IEC Ratio are widely used as an efficient method to analyze the characteristic gases
in an oil-immersed transformer and its fault [10,11]. However, traditional DGA methods have
their limitations that cannot produce a reasonable fault result by the simple combination of a few
ratio coding [12].

To tackle the restrictions mentioned above, artificial intelligence (AI) techniques based on
machine-learning theory have been applied to build PHM models including artificial neural network
(ANN) [13] and support vector machine (SVM) [14]. Back-propagation neural network (BPNN) is an
optimized algorithm of ANN, namely, the error in BPNN can be thrown back after the feed-forward
process [15]. BPNN obeys the gradient descent rule, which highly depends on initial weight and
threshold. If the parameter selection is improper, it may cause a slow convergence speed and easily
relapse into local extremes. A newly metaheuristic method, bat algorithm (BA), was proposed by
Yang in 2010 [16]; it is adopted to optimize the initial value of BPNN to obtain a better performance.
Recent research has demonstrated that BA outperforms other swarm intelligence optimization methods
like Particle swarm optimization (PSO) and Genetic Algorithm (GA) [17]. Therefore, a PHM model
based on the theory of machine learning that is combined with BA and BPNN is proposed in this paper.
Then, it is employed in a power transformer to test its reliability.

This paper is recommended by the SDPC 2018 committee; concerning the limitation in the
previous paper, several modifications have been made in this paper including updating the rule of
population initialization and the visualization of some results in the classification process from real
oil-immersed power transformer data collected by sensors in a power grid. The major contributions
are listed as follows: (1) To validate the BA for the power transformer fault diagnosis problem and
utilitie the MSE function to test it. (2) In order to avoid falling into local optima, this paper is based on
the chaos strategy proposes modified BA (MBA), which introduces the sinusoidal map instead of the
random initialization to modify the population of the standard BA. (3) The evaluation of the proposed
machine learning-based PHM model is based on real operational data collected from an oil-immersed
transformer in a power grid. The corresponding result proves the better performance of the proposed
model for transformer fault diagnosis compared to other traditional PHM methods.

This paper is organized as follows: Section 2 describes the basic methodologies of modified BA
and BPNN and modifies the standard BA. The proposed MBA-BPNN PHM model is introduced in
Section 3, and the structure flow of the proposed PHM model is drawn in this part. Section 4 employs
MBA-BPNN to power transformer fault diagnosis, then tests the model with a DGA dataset from a real
oil-immersed power transformer to demonstrate the effectiveness. In addition, Section 4 also compares
a series of newly intelligent PHM models to prove that MBA-BPNN has better performance in reaching
target values. Section 5 provides several remarks and future modifications in the proposed model.

2. Description of Basic Methods

2.1. Modified Bat Algorithm

2.1.1. Standard Bat Algorithm

Bat algorithm is a novel swarm intelligence optimization algorithm, which was proposed by
Yang [18]. It is based on the advanced property of bat species; after emitting ultrasonic pulses into
their surroundings, they make use of echolocation to search for prey and to sense distance. The sound
pulse varies with distance. In particular, the whole process can be formulated as a multi-objective
optimization method. Initially, BA is made up of a great deal of candidate solutions (swam of
bats) which fly at a certain velocity. Meanwhile, the individual in each has its own location and
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is able to adjust the velocity and its location according to the optimal solution [19]. For simplicity,
the echolocation characteristics of the artificial bats are represented as follows [18]:

• All the bats use echolocation property to sense the distance and are able to distinguish the
difference between prey and surroundings.

• Based on the fixed frequency f that fulfills the condition fmin ≤ f ≤ fmax, different loudness
A0 and various wavelength, bats fly randomly with velocity vi at position xi correspondingly.
They are able to adjust the wavelength (or frequency) of the pulses and the pulse emission rate
r ε [0, 1] depending on proximity.

• The loudness A0 ranging from a small predefined value Amin to A0.

According to the assumptions, the whole process consists of global and local search phases.
During the global search phase, the movement at iteration t of each individual bat ith is updated
as follows:

xt
i = xt−1

i + vt
i (1)

vt
i = vt−1

i + (xt
i − x∗) fi (2)

fi = fmin + ( fmax − fmin)β (3)

Here, x∗ is the best solution at present, and the random variable β ε [0, 1], which represents the
uniform distribution. There are some similarities in the update process of the velocities and positions
of bats between PSO and BA [20].

Thereafter in the local search phase, a new solution xt
i for bat i is generated according to the

random walk procedure:
xt

i = x∗ + εAt (4)

where x∗ is a solution selected among the current optimal solutions, ε is a random number
between [−1, 1]. At = 〈At

i〉 is the current mean loudness of all the bats.
Furthermore, the loudness gradually decreases and the pulse emission rate increases as bats get

closer to their prey. With the iterations proceeding, the loudness and the pulse rate are updated by:

At
i = αAt−1

i (5)

rt
i = r0

i (1− exp(−γt)) (6)

Here α is a constant ranging from 0 to 1, another constant γ is larger than 0. As the iteration
number tends to infinity,

At
i → 0, rt

i → r0
i

2.1.2. Modification of Initial Population

According to the description of original BA, the random initialization of bats leads to the lack of
population versatility, which can easily cause local optima [21]. Thus, in order to improve the ability
and to overcome the problem, a modification of the initial population inspired by the chaos strategy [22]
is proposed in [23]. The dynamic characteristics of the chaos strategy allow the algorithm-generated
solution to be fully diversified, potentially reaching each mode in a multi-objective environment [23],
which is the main reason to apply the chaotic initialization of the bat population.

In the modification of the initial population of standard BA, the random initialization of the bat
population is replaced by chaotic maps. Compared with other chaotic maps [24], The Sinusoidal map
has the best performance, which can be described specifically as follows:

xi+1 = αx2
i sin(πxi) (7)
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All the N bats fly in d-dimensional space, they are randomly distributed in a vector zi, and its
iteration obeys Equation (8). Correspondingly, the location x of the bat i can be calculated by:

xi =
xmaxd − xmind

2
zi +

xmaxd + xmind
2

(i = 1, 2, . . . , N) (8)

The pseudo-code of modified BA is shown as Algorithm 1.

Algorithm 1: Pseudo-code of the modified BA.

1 Define the objective function f (x),x = (x1, . . . , xd)
2 Initialize the bat population xi and vi(i = 1, 2, . . . , N)
3 Define the pulse emission rate ri and the loudness Ai

4 Define pulse frequency fi at xi

5 while t ≤ aximumiterations do
6 Adjust frequency by Equation (3)
7 Update velocities by Equation (2)
8 Update locations/solutions by Equation (1)
9 if rand > ri then

10 Select a solution among the best solutions
11 Generate a local solution around the selected best solution by Equation (4)

12 end
13 if rand < Ai & f (xi) < f (x∗) then
14 Accept the new solutions
15 Increase ri by Equation (6)
16 Decrease Ai by Equation (5)

17 end
18 Rand the bats and find the current best x∗
19 t = t + 1

20 end
21 Return results and visualization

2.2. Back-Propagation Neural Network

Back-propagation Neural Network (BPNN) is an erroneous reverse transmission algorithm [25]
with the property of nonlinear mapping between any input and output as well as self-learning,
which makes it extensively used for the diagnosis of transformer faults [26]. It is a local search
algorithm based on the input-hidden-output layer structure to speed up the process of gaining a
weight matrix and threshold. The classification and forecasting process consists of feed-forward and
back-propagation. The Back-Propagation neural network model structure can be seen in Figure 1.
The whole iteration process is expressed as follows:

P(k + 1) = P(k)− η∆ f (P(k)) (9)

2.2.1. Feed-Forward

After recording the input value vector x, the activation al in the input layer l can be computed in a
simple and compact vectorized form:

al = f (ωlal−1 + bl)(l = 2, 3, . . . , L)

here, ωl and bl are the weight and the bias between the (l − 1)th and the (l)th layer.
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A Simple Structure of BPNN
W       B

Figure 1. Back-Propagation neural network model structure.

To set the corresponding activation, this paper uses the Sigmoid function as the transfer function,
which has good performance in solving the relationship between nonlinear input and output [27]:

σ(x) =
1

1 + e−x (10)

The quadratic error criterion function of sample n is C:

C =
1

2n ∑
x
‖y(x)− aL(x)‖2 (11)

2.2.2. Back-Propagation

While reaching at the layer L,the output error δL can be calculated by

δL = 5aC� σ
′
(zL) (12)

5aC contains the rate of C changing. �denotes the entry-wise product of two vectors. Subsequently,
the error in the next layer is

δl = ((ωl+1)T)δl+1)� σ
′
(zl) (13)

where (ωl+1)T is the transpose for the (l + 1)th layer. �σ
′
(zl) is Hadamard product within

interval [0, 1].
The back-propagation network obeys the steepest descent algorithm to adjust the weights and the

thresholds, and the threshold can be calculated as follows:

∂C
∂bl

j
= δl

j (14)
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Any weight in the network is:
∂C

∂ωl
jk
= al−1

k δl
j (15)

The error is obtained through the activation function in layer l by combining above equations; the
problem of slow convergence rate of BPNN is solved correspondingly [28].

3. The Proposed MBA-BPNN PHM Model

According to the description of conventional BPNN, the initial value is of great significance to
the descent method. Once the selection of the related value is highly biased, BPNN falls into the local
minimum. BA has strong global search and fast convergence speed capabilities, which is adopted
to optimize the initial value of BPNN. In this section, this paper combines two sorts of bio-inspired
algorithms, modified BA with BPNN, to complement each other. The modified BA is utilized to
optimize the structure of the BPNN, the matrix weight of which is initialized firstly with the bat
population. Following that, the weight and threshold are passed to BPNN to start the training state;
correspondingly, the best solution among the results of the neural network is selected out. Here,
a random walk of BPNN is imbedded to search new solutions and each new acceptable solution should
be updated by the best solution if it is optimal. This process is accomplished if the last iteration is
reached or if MSE (Mean Square Error) is achieved. Thus, the optimal values of the weight matrix are
found. The combination of modified BA and BPNN can increase the learning ability and make up for
the disadvantage of slow convergence speed [29].

This paper applies MSE between the factual results Yi and expected output Oi to evaluate the
performance of MBA-BPNN, which is calculated by:

f =
1
n

n

∑
i=1
‖Yi −Oi‖2 (16)

where n is the number of training sample.
The flowchart of proposed to improve BA-BPNN is drawn in Figure 2 and the main steps are

discussed below:
Step 1: Randomly load the attribute data and obey the characteristics mentioned in Section 2.2.
Step 2: Initialize the related parameters of the BPNN including the node number of input,

hidden and output layers.
Step 3: Initialize the bat population characteristics, which are positions xi, velocity vi, loudness Ai,

pulse emission rate ri as well as frequencies fi.
Step 4: Set the current optimal solution x∗.
Step 5: Get the global new solution for each individual bat of the population by BPNN.
Step 6: Compare whether the new solution is better than the current solution. The new solution is

accepted if the fitness is better; then, update the location of a bat i and loop to Step 9; if not, return to
Step 7.

Step 7: Calculate the new solution according to the equations and generate a random number
rand, if rand > r; generate a local solution around the best solution.

Step 8: If rand < A&& f (xi) < f (x∗), accept the new solution, update the loudness Ai and pulse
emission rate ri.

Step 9: Rank the bats and update the global optimal solutions.
Step 10: Determine whether the last iteration is reached or MSE is achieved, then, end the process;

if not, return to Step 5.
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Figure 2. Flowchart of MBA-BPNN model.

4. Validation of the Proposed PHM Model for Power Transformer Fault Diagnosis

In this section, the proposed PHM model is employed in a power transformer, specifically,
it focuses on the relationship between the typical gas-in-oil-immersed transformer and actual fault type.

Each set of characteristics gas is mapped to a sort of fault type, which is called classification
process. Following that a new set is produced by the power transformer, it can be predicted the related
fault type based on the MBA-BPNN model as shown in Figure 3. Those two parts of the process achieve
the goal of PHM that the prognostic and health management of equipment. The whole process of
fault diagnosis is simplified as four parts including collection and preprocessing of data, segmentation
of dataset, training process of BPNN, as well as comparison between test set output and training set
output, which is shown as follows.

4.1. The Initialization of BPNN

In this paper, 109 sets of DGA data are collected from power transformer in State Grid of Jiangxi
Province in China and used for the validation of the proposed MBA-BPNN 163 model for power
transformer fault diagnosis. Those power transformers operate in 220 kVA of voltage and 50 Hz of
power frequency. The temperature is 25 ◦C and the humidity is 50%. Each data group consists of the
characteristics gases (H2, CH4, C2H6, C2H4, C2H2) and its actual fault type. The normalization process
samples are 165 to [−1, 1] which are used as the input dataset.
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Figure 3. MBA-BPNN PHM model for power transformer fault diagnosis.

According to IEC60599, the fault type is classified into five sorts including local discharge,
middle-low temperature overheat, high temperature overheat, low-energy discharge and high-energy
discharge. In addition, humidification fault is a complex type, which is challenging to differ based
on the analysis result [30]. It should be decided comprehensively combined with exterior check and
other experimental result. Thus, power transformer faults in this paper discussed are middle-low
temperature overheat (LT), high temperature overheat (HT), low-energy discharge (LD), high-energy
discharge (HD), and partial discharge (PD), as the output, the corresponding code is shown in Table 1.

Table 1. Output code of various fault types.

No. Fault Type Fault Type

1 HT 00001
2 LT 00010
3 HD 00100
4 LD 01000
5 PD 10000

Depending on the input and output set, the structure of BPNN is set as 3-30-5, namely, the input
layer has three nodes, the hidden-layer has 25 nodes, the output layer has five nodes. As the description
of BPNN in Section 2, the weights of BPNN are 3× 30+ 30× 5 = 240 and the threshold are 30+ 5 = 35.
So, the total number of parameters optimized by MBA is 275.

The validation of the proposed MBA-BPNN model is shown in Figure 4. This paper sets different
number of hidden-layer neurons ranging from 5 to 50. Ceteris paribus, the error varies along with
the numbers of hidden-layer neurons. When the hidden-layer neuron is 30, the error reaches the
smallest 0.013.
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Figure 4. The error of MBA-BPNN PHM model as the number of Hidden-layer neurons increasing.

4.2. The Training Process of BPNN

The training part is a process in which weight and threshold, the key parameters of the structure of
BPNN, are adjusted continuously in order to decrease the error as much as possible. The training target
of the proposed model is 0.01, the learning rate is set at 0.2, the iteration number is 1000. During the
training process, the weight can be corrected in order to get the BP neural network error smaller.

In BA, the bat population size is set to 20 and the number of generations is 50. The initial loudness
is set to 0.5, the initial pulse emission rate set at 0.5.

4.3. Classification and Prediction of Bat-BPNN PHM Model

In the experiments, 3/4 of the DGA data (79 objects) is chosen as the training set, and 1/4 of the
DGA data (30 objects) is used as the testing set. The experiment is carried out in the environment of
Matlab and related results are shown in Table 2. The other three PHM methods, traditional BPNN,
GA-BPNN and PSO-BPNN, based on the same DGA data are compared in order to prove that the
proposed method is valid. It is apparently to see MBA-BPNN outperform the traditional BPNN
(77.14%), GA-BPNN (88.57%), PSO-BPNN (91.43%) with higher diagnosis accuracy 95.22%. Moreover,
BA-BPNN is simpler than those optimized methods with less memory usage.

Table 2. Fault Diagnosis Accuracy of MBA-BPNN and other PHM models [31].

Fault Type MBA-BPNN BA-BPNN PSO-BPNN GA-BPNN BPNN

1 100% 100% 100% 100% 100%
2 85.71% 100% 85.71% 57.14% 100%
3 100% 100% 85.71% 100% 85.71%
4 100% 66.67% 100% 100% 100%
5 100% 100% 85.71% 85.71% 0%

Average accuracy 97.14% 93.33% 91.43% 88.57% 77.14%
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To analyze the bat behavior of MBA-BPNN, a fitness function is employed to calculate the error in
this paper; the curve of fitness improves (in Figure 5) as the number of iterations increases. That fitness
value drops rapidly from 0.297 to 0.235 within two generations, which shows high efficiency of global
and local optimization of the MBA-BPNN PHM model, but following that the MBA-BPNN falls into
a local extremum point, the proposed PHM model continues to search for the optimal solutions,
while the fitness is always staying at 0.235. Furthermore, MBA can minimized the training error
in a lower number of set iterations, and succeed to optimize the performance of BPNN in power
transformer fault diagnosis.

Figure 5. The fitness curve of MBA-BPNN PHM model.

In terms of MSE that represents the performance of prediction, MBA-BPNN has outstanding
performance compared to other PHM models, as is shown in Table 3. The proposed PHM model has
both the smallest MSE on training and test samples compared with traditional BPNN, GA-BPNN as
well as PSO-BPNN, which approaches the expected value better.

Table 3. Comparison of MSE of MBA-BPNN and other PHM models.

Fault Type MBA-BPNN BA-BPNN BPNN GA-BPNN PSO-BPNN

MSE_Train Sample 0.0054 0.0092 0.0330 0.0196 0.0124
MSE_Test Sample 0.0190 0.0287 0.1571 0.0378 0.0484

Figure 6 shows the ability of prediction among a few PHM models, the more points overlapping
indicates a better prediction effect. Compared with other optimized models, BA outperforms other
bio-inspired algorithms in predicting the output. It improves the ability of the trained model to predict
that the output is closer to the actual value after acquiring the DGA data. Based on the same data
sample, MBA-BPNN can easily avoid the problem of over-fitting. Therefore, the MBA-BPNN PHM
model is an efficient tool for power transformer fault diagnosis.
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Figure 6. Classification results of several PHM models. (a,c,e,g) are the classification results of train
sample for different methods, respectively. (b,d,f,h) represent the classification results of test sample
for different methods, respectively.
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5. Conclusions

Prognostic and health management of oil-immersed transformers are vital to ensure the stable
reliability. A series of relevant diagnostic models including BPNN based on the relationship between
characteristic gas and typical fault type has been established in recent years, but the accuracy of
classification and prediction cannot meet actual needs.

As a sort of data-driven PHM model, BPNN highly depends on its parameters of structure (weight
and threshold), which are set by experience in the initialization. This paper employs a bio-inspired BA
to BPNN, which can make them complement each other. Here, BA is excellent in a global search to
find the best parameters of BPNN; then, BPNN utilizes the data collected by sensors to predict the next
stage of the power transformer. While standard BA is easy to fall into local optima, a chaos strategy is
applied to make BA fully adopt the dynamic environment and get diverse solutions. Results in Section
4 demonstrate that the accuracy for fault diagnosis has been increased. Compared with other PHM
models, MBA-BPNN has properties of getting closer to the target value and fast speed of convergence.

However, humidification fault cannot be identified by the proposed PHM model due to the
similarity between both. Future modifications to the MBA-BPNN PHM model are to tune the
other parameters mentioned in Section 2.1 based on the theory of machine-learning. In particular,
the updating rule of location should be adjusted by a fixed vector, which can avoid the numeral
operation executing in just one physical dimension. In addition, the procession rule of data collected
by the sensors can be replaced by an IEC-Three Ratio, which can be coded in another form.

In conclusion, the MBA-BPNN model is not only adopted for power transformer fault diagnosis,
but is also suitable for other classification and prediction problems in prognostic and health
management with better performance and high accuracy.
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