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Abstract: To keep the global navigation satellite system functional during extreme conditions,
it is a trend to employ autonomous navigation technology with inter-satellite link. As in the
newly built BeiDou system (BDS-3) equipped with Ka-band inter-satellite links, every individual
satellite has the ability of communicating and measuring distances among each other. The system
also has less dependence on the ground stations and improved navigation performance. Because
of the huge amount of measurement data, the centralized data processing algorithm for orbit
determination is suggested to be replaced by a distributed one in which each satellite in the
constellation is required to finish a partial computation task. In the present paper, the balanced
extended Kalman filter algorithm for distributed orbit determination is proposed and compared with
the whole-constellation centralized extended Kalman filter, the iterative cascade extended Kalman
filter, and the increasing measurement covariance extended Kalman filter. The proposed method
demands a lower computation power; however, it yields results with a relatively good accuracy.

Keywords: inter-satellite link; whole-constellation centralized extended Kalman filter; distributed
orbit determination; iterative cascade extended Kalman filter; increased measurement covariance
extended Kalman filter; balanced extended Kalman filter

1. Introduction

For the global navigation satellite system (GNSS), the master control station (MCS) currently
collects the satellite to monitor station measurement data, estimates the satellite ephemeris and clock
offsets, and generates a time stream of navigation messages. The messages are then uploaded to
satellites by ground antennas to broadcast to the user community [1]. However, the MCS as well as
the other ground-based segments including monitor stations and ground antennas have the risk of
destruction during a warfare or natural disaster. This is the case especially for the monitor stations
which are distributed globally for increasing the accuracy of satellite orbit determination [2]. In order to
enhance the viability of satellite navigation systems under the potentially fatal conditions, as early
as in the 1980s, autonomous navigation techniques using inter-satellite link (ISL) measurements
without support from the MCS were investigated for the global positioning system (GPS) [3]. If the
ISL measurement was the only source for orbit determination and time synchronization, the datum
mark would be insufficient [4]. This problem can be addressed by setting up a few ground anchorage
stations (GASs) which provide a reference coordinate system and a time system [5]. Combining both
the ISL and satellite-to-GAS measurements, the autonomous navigation system has several features:
firstly, data processing will be completed by satellite onboard computers rather than the MCS; secondly,
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the GASs can be considered as pseudo-satellites; and finally, the globally allocated monitor stations
can be replaced by a few domestic GASs [3].

The centralized data processing technique, which is widely applied in the current autonomous
navigation constellation, collects the ISL and satellite-to-GAS measurement data, combines all the
satellite state vectors (including satellite orbit, clock error parameters, etc.) into one matrix, and
computes the optimal state vector for each satellite by a central satellite on-board computer. As a result,
the associated state vector covariance matrix could be very large and the method would require vast
computation power [6]. It is worth mentioning that, in this case, every satellite is observed indirectly
by other satellites.

On the other hand, in the distributed data processing algorithm, computation is broken down and
assigned to each satellite. Each satellite is required to deal with self-related ISL measurements and local
state vectors. In this way, the number of measurement equations and dimension of the state vectors
are reduced. As a result, the computational amount of the whole system is decreased considerably.
Moreover, the accuracy of the orbit ephemeris and clock offsets calculated by the distributed data
processing method could have the same level of accuracy as the results of centralized data processing.

With the measurements from ISLs and satellite-to-GASs, the autonomous navigation constellation
constitutes an extremely complex system. Each satellite has to finish the task of ISL measurement, data
processing, and communicating. A practical algorithm for autonomous orbit determination is still under
development. Based on the methods of the iterative cascade extended Kalman filter (ICEKF) and the
increased measurement covariance extended Kalman filter (IMCEKF), a new distributed method, the
balanced extended Kalman filter (BEKF), is proposed in this paper. Together with whole-constellation
centralized extended Kalman filter (WCCEFK), four different autonomous navigation algorithms are
conducted in simulations for comparisons of accuracy and computation loads.

2. Overview of Orbit Determination Algorithms

Ananda [7] proposed the framework of an autonomous navigation system without a MCS for
the first time and validated the system by simulations. Rajan [3] introduced various autonomous
navigation algorithms and presented preliminary on-orbit experiment results.

In the designing of the GPS Block IIR, the ISLs, programmable microprocessors, and redundant
management were carried out. The following two major features are critical to ensure high precision
autonomous navigation [3,7]:

• the ISL communications and measurements in ultra high frequency (UHF) band;
• a high-precision autonomous navigation algorithm which is adapted to the computing capacity

of the satellite on-board computers.

A time division multiple access (TDMA) system, which has two frames, was employed for ranging
and data transmission. In a ranging frame, each satellite is assigned a 1.5-s slot to make pseudo-range
(PR) measurements with the visible satellites. Two frequencies were used in the measurement for
ionospheric delay corrections. In a data frame, a 1.5-s slot was appointed to each satellite to transmit
data that includes the PR measurements, the estimated satellite state vector, and the associated
covariance matrix to all visible satellites.

The GPS Block IIF follows the design of the GPS Block IIR and improved the performance of ISL
measurements and on-board data processing. Without contacting with the ground system, Block IIF
can operate about 60 days in the autonomous navigation mode and provides navigation messages
which are corrected by ISL measurements with a 3-m user range error (URE) (URE is a root mean
square value and does not consider the impact of the polar motion and UT1). However, it is difficult
to establish a precise prediction system because of the irregular polar motion and uncertain UT1.
Therefore, in autonomous navigation mode, the URE is far greater than 3 m after a 60-day duration [8].
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For GPS III, each satellite in the constellation will have the ability of ISL measurements and
communications. It is designed that once there are enough satellites in the orbit, the GPS constellation
will be able to operate autonomously in wartimes, but currently it is still under investigation [9].

Galileo navigation system is also planned to employ an autonomous navigation algorithm
based on ISLs [10]. The spatial orientation problem is solved by the combination of the ISL and
satellite-to-ground measurements. The simulation for the Galileo system showed that URE is on the
level of decimeters [10], which is better than that of GPS.

For the distributed navigation algorithms, several techniques including the iterative
cascade extended Kalman filter (ICEKF), increased measurement covariance EKF (IMCEKF), and
Schmidt-Kalman Filter (SKF) are discussed by Schmidt, Park, and Ferguson [11–13]. The ICEKF is
employed to processes a large number of space-borne GPS measurement data and a small quantity of
ISL measurement data for low-Earth orbit formation flying satellites. In this method, the computation
process will iterate for 3 to 4 times for convergence, and a good orbit accuracy is presented. For the
method of IMCEKF, amendments are made based on ICEKF and it presents a better performance.
On the other hand, the SKF yields results with less accuracy compared to IMCEKF while processing
the GNSS ISL measurement data [4]. Recently, the International Association of Geodesy (IAG) initiated
a GPS Dancer project which develops a distributed data processing algorithm to analyze the precision
of GPS [14].

In China, distributed orbit determination and time synchronization algorithms based on ISL
measurements were studied [15–21]. Distributed autonomous ephemeris updating was discussed
for navigation satellites [22]. There are also many studies on developing higher precision orbit
determination methods for new BeiDou (BDS-3) experimental satellites in the literature [23–26]. Currently,
the developments for autonomous orbit determination, time synchronization, and autonomous
operation and management are being widely investigated. More progress on designing an efficient
distributed data processing algorithm, however, needs to be made.

3. Fundamental Equations for Measurement and Motion

3.1. Equations for Measurement

The position vectors,
→
r

i
= [ xi yi zi]

T
, velocity vectors,

→
v

i
= [vi

x vi
y vi

z ]T , and dynamic
parameter vector, xi

D, constitute the state vector which needs to be estimated:

Xi =

[
→
r

iT →v
iT xi

D
T
]T

(1)

where the superscript T denotes the transpose of a matrix, and the superscript i denotes that it is for
the ith satellite. The reference values for the state vector are stored in Xi∗, and the improving values for
the state vector are written in:

δxi = Xi −Xi∗ (2)

After correcting the hardware delay, ionospheric delay, relativistic effect, multi-path effect, and
the antenna phase center offset [4], two one-way ISL PRs between the ith satellite and jth satellite need
to be translated into the same measurement epoch (e.g., ranging frame epoch t). The PR equations are:

ρi→j(t) = c · [δtj(t)− δti(t)] + d(Xj(t), Xi(t)) + εi→j(t) (3)

ρj→i(t) = c · [δti(t)− δtj(t)] + d(Xj(t), Xi(t)) + εj→i(t) (4)

where, c is the speed of light, δti(t) and δtj(t) are clock errors for the ith satellite
and the jth satellite, respectively, εi→j(t) and εj→i(t) are the measurement errors,

and d(Xj(t), Xi(t)) =

√
(xi − xj)

2
+ (yi − yj)

2
+ (zi − zj)

2 is the geometric distance between
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the two satellites. Combining Equations (3) and (4), the distance measurement equation that only
contains orbit parameters is derived as:

ρij(t) =
[
ρj→i(t) + ρi→j(t)

]
/2 = d(Xj(t), Xj(t)) + εij(t) (5)

where, εij(tk) = [εi→j(tk) + εj→i(tk)]/2. Subtracting Equation (4) from Equation (3), the time
measurement equation that only contains clock error parameters is deduced as:

ρ
ij
clock(t) =

[
ρj→i(t)− ρi→j(t)

]
/2 = c · [δtj(t)− δti(t)] +

[
εj→i(t)− εi→j(t)

]
/2 (6)

Following the steps above, the distance measurements and the clock bias measurements are
decoupled. The orbit ephemeris and clock offsets can therefore be estimated independently.

Linearizing Equation (5) with Taylor expansion at the reference state vector Xi∗ and Xj∗ yields:

ρij(t) = d
(

Xi∗, Xj∗
)
+

ρij(t)
∂Xi

∣∣∣∣
Xi∗

δxi +
ρij(t)
∂Xj

∣∣∣∣
Xj∗

δxj + · · ·+ εij(t) (7)

After that, Equation (7) is converted into a linear measurement equation:

zij(t) = Hiδxi(t) + Hjδxj(t) + εij(t) (8)

where zij(t) = ρij(t)− d
(

Xi∗, Xj∗
)

is the innovation. Hi and Hj are the measurement matrices.

Hi =
ρij(t)
∂Xi

∣∣∣∣
Xi∗

=

[
xi−xj

d(Xi∗ ,Xj∗)
yi−yj

d(Xi∗ ,Xj∗)
zi−zj

d(Xi∗ ,Xj∗)

]
Xi∗

(9)

Hj =
ρij(t)
∂Xj

∣∣∣∣
Xj∗

= −Hi (10)

Similarly, GAS can be considered as a pseudo-satellite. The PR needs to be corrected by an extra
tropospheric delay compared to a normal satellite. The distance measurement equation that contains
orbit parameters between the gth GAS and ith satellite is derived as:

ρig(t) =
[
ρg→i(t) + ρi→g(t)

]
/2 = d(Xi(t), Xg(t)) + εig(t) (11)

In the Equation (11), the array of state parameters of GAS Xg(t) is known; only the state vector
of the ith satellite is unknown. The reference ground coordinate is hence introduced into the satellite
state by Equation (11), which overcomes the lack of the datum mark in data processing while only
ISL measurements are utilized. The current linearized measurement equation, which is similar to
Equation (8), becomes:

zig(t) = Hiδxi(t) + εig(t) (12)

3.2. Equations for Motion

Satellites can be affected by a variety of factors when operated in orbit. For navigation satellites,
only the gravitational forces, solar radiation pressure, and relativistic effects are considered [27].
The gravitational forces include the attractions from the earth, the moon, and other planets in the solar
system. The dynamic equation for the ith satellite can be written as:

.
X

i
(t) = f c(Xi, wi) (13)

where f c is a continuous function, wi is the system disturbances that have the following properties:
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E
[
wi(t)

]
= 0, E

[
wi(t)(wi(τ))

T
]
=

{
Qi(t) t = τ

0 t 6= τ
(14)

E[·] denotes the expected value, and Qi(t) is a covariance matrix which is symmetric, non-negative,
and definite. Here, the system disturbances are simulated by Gaussian white noise. Because the
continuous function f c and the system disturbance wi are not coupled with each other, Equation (13)
can be written as:

.
X

i
(t) = F c(Xi(t)) + Gwi (15)

In which G =
[

0 I 0
]T

is the coefficient matrix, I is the identity matrix, and 0 is the zero matrix.

Equation (15) is then linearized by Taylor expansion at the reference state vector Xi∗:

.
X

i
(t) = F c(Xi∗(t)) +

∂F c(Xi)

∂Xi

∣∣∣∣∣
Xi∗

(Xi(t)−Xi∗(t)) + · · ·+ Gwi (16)

From the equation above, the state increments are then derived as:

δ
.
xi
(t) = F(t)δxi(t) + Gwi (17)

where δ
.
x =

.
X−F c(Xi∗(t)), and F(t) is the dynamic partial derivative matrix [6]:

F(t) =
∂F c(X)

∂X

∣∣∣∣
X∗

=

 0 I 0
∂F c

∂r
∂F c

∂ṙ
∂F c

∂pD

0 0 0


|X∗

(18)

Equation (17) is the state equation of the stochastic linear continuous systems and its general
solution is:

δxi(t) = Φi(t, t0)δxi
0(t) + G

∫ t

t0

Φi(t, τ)wi(τ)dτ (19)

in which Φi(t, t0) is the system state transition matrix and the solution of the following equations:

Φ
i
(t, t0) = F(t)Φi(t, t0), Φi(t0, t0) = I (20)

where I is the identity matrix with the same dimensions as dynamics matrix, F(t).
The state transition matrix Φi(t, t0) has the following features:

Φi(t, τ)Φi(τ, t0) = Φi(t, t0),
[
Φi(t, τ)

]−1
= Φi(τ, t) (21)

In the actual computation process, discretization needs to be implemented for Equation (19).

δxi
k = Φi(tk, tk−1)δxi

k−1 + G
∫ tk

tk−1

Φi(tk, τ)wi
k−1(τ)dτ (22)

In a sampling interval from tk−1 to tk, the white noise wi
k−1(τ) can be considered as a constant.

The integral coefficient denotes that:

Gi
k = G

∫ tk

tk−1

Φ(tk, τ)dτ (23)

For simplicity, the white noise will be denoted as wi
k−1 in the following. The discretized state

equation derived from Equation (22) then is:
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δxi
k = Φi

k−1δxi
k−1 + Gi

kwi
k−1 (24)

where Φi
k−1 denotes the state transition matrix from tk−1 to tk. According to Equation (24), the predicted

state covariance matrix is:
Pi

k = Φi
k−1P̂i

k−1ΦiT
k−1 + Gi

k−1Qi
k−1GiT

k−1 (25)

4. Whole-Constellation Centralized Extended Kalman Filter

The whole-constellation centralized extended Kalman filter (WCCEKF) is one of the centralized
data processing methods. According to this method, a main satellite and a back-up satellite are assigned
to complete the task of data processing. The other satellites in the constellation need to send their
measurement data, state vectors, and corresponding covariance matrices to the main satellite for
orbit determinations.

For all the satellites in the constellation, the states and corresponding improving values from
Equations (1) and (2) are collected and stored in a state vector Xk and an improving values vector
δxk [6,28], as in

Xk =

[ (
X1)T (

X2)T · · ·
(

Xi
)T

· · · (Xn)T
]T

(26)

δxk =
[ (

δx1
k
)T (

δx2
k
)T · · ·

(
δxi

k
)T · · ·

(
δxn

k
)T
]T

(27)

where n is the number of satellites in the system. In this way, the state equation for all the satellites can
be obtained through Equation (24).

δxk = Φk−1δxk−1 + Gkwk−1 (28)

The state transition matrix Φk and integral coefficient matrix Gk are diagonal matrices and can be
expressed as:

Φk−1 = diagonal
[ (

Φ1
k−1

) (
Φ2

k−1
)
· · ·

(
Φi

k−1

)
· · ·

(
Φn

k−1
) ]

(29)

Gk = diagonal
[ (

G1
k

) (
G2

k

)
· · ·

(
Gi

k

)
· · · (Gn

k )
T
]

(30)

The state noise vector, wk−1, stores the noise for all the satellites in the constellation,

wk−1 =
[ (

w1
k−1

) (
w2

k−1

)
· · ·

(
wi

k−1

)
· · ·

(
wn

k−1

) ]T
, (31)

and it has the statistical characteristics as follows:

E
[
wk−1

]
= 0, E

[
wi

k−1(w
j
k−1)

T
]
=

{
Qi

k−1 i = j

0 i 6= j
(32)

E
[
wk−1wT

k−1

]
= Qk−1 = diagonal

[
Q1

k−1 Q2
k−1 · · · Qi

k−1 · · · Qn
k−1

]
(33)

The measurement equation, which is a combination of Equations (8) and (12), is then derived as:

zk = Hkδx + εk (34)

where Hk = [0 · · · (Hi)
T · · · 0 · · · (Hj)

T · · · 0]
T

, zk = zij
k (tk), and εk = εij(tk) for the ith satellite

and jth satellite with ISL; Hk = [0 · · · (Hi)
T · · · 0]

T
, zk = zig

k (tk), and εk = εig(tk) for GAS-to-ith
satellite measurements. Next, the measurement covariance matrix Rk = E(εkεT

k ), the initial state vector
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X0 = E(X∗0), and the initial state vector covariance P0 = E[X∗0X∗T0 ] are defined. Finally, the method of
WCCEKF that combines the satellite-to-satellite measurements and satellite-to-GAS measurements can
be expressed as [29]:

Pk = Φk−1P̂k−1ΦT
k−1 + Gk−1Qk−1GT

k−1 (35)

Kk = PkHT
k

(
HT

k PkHk + Rk

)−1
(36)

δx̂k = Kkzk (37)

X̂k = Xk + δx̂k (38)

P̂k = (I−KkHk)Pk (39)

The dimension of state vector Xk is

NW = 6n +
n

∑
i=1

Di (40)

where Di is the number of dynamic parameters for the ith satellite.
In the method of WCCEKF, each satellite is correlated with the other satellites through the state

vector covariance matrix which has the dimension of NW × NW . Furthermore, matrix (HT
k PkHk + Rk)

with the dimension of m×m (m is the dimension of the measurement vector) needs to be inversed
during the process, and a huge computation amount is expected. The computation amount for
a process of WCCEKF is:

4N2
W(N2

W − 1) + (NW − 1)NW(NW + 1)/6+(2N2
W + 7NW + 1)×m (41)

If the WCCEKF algorithm is employed, the on-board computer of the main satellite would need
to process all the ISL measurement and satellite-to-GAS measurement data to finish the task of orbit
determination and navigation message generation for satellites in the constellation. Due to the huge
computation amount and great complexity of communication, WCCEKF is difficult to be implemented
in a satellite constellation with limited on-board computation ability.

In addition, the WCCEKF is also vulnerable. Once the main satellite and its backup satellite
failed, the entire navigation constellation would stop working. To avoid the drawbacks in the
WCCEKF method, many researches nowadays are focusing on developing a distributed data
processing algorithm.

5. Distributed Orbit Determination

For distributed orbit determination algorithms based on ISL, data processing is assigned to each
satellite. In this process, each satellite collects the ISL measurement data with respect to its visible
satellite and estimates the self-related state vectors.

5.1. Reduced-Order Iterative Cascade EKF

For ith and jth satellites with ISL measurements, the iterative cascade EKF (ICEKF) [12] assumes
that the state vector Xj of the jth satellite is known. Thus, the measurement equation, which is similar
to Equation (34), is derived as:

zi
k = Hi

kδxi
k + εi

k (42)

For ISL measurement, the innovation is zi
k = zij

k (tk), the measurement error is εi
k = Hj

kδxj
k +

εij(tk) and measurement covariance matrix is Ri
k = E[εi

k(ε
i
k)

T
] = E[εij(tk)ε

ij(tk)
T ] = Ri

k,ISL.

For satellite-to-GAS measurement, the innovation is zi
k = zig

k (tk), the measurement error is εi
k = εig(tk),

and measurement covariance matrix is Ri
k = E(εi

k(ε
i
k)

T
] = E(εig(tk)ε

ig(tk)
T ] = Ri

k,GAS. An initial state
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vector Xi
0 = E(Xi∗

0 ) and an initial state vector covariance matrix Pi
0 = E[Xi∗

0 Xi∗T
0 ] are defined. Results

from the method of ICEKF that combines the ISL measurement and satellite-to-GAS measurement can
be obtained from:

Pi
k = Φi

k−1P̂i
k−1Φi T

k−1 + Gi
k−1Qi

k−1Gi T
k−1 (43)

Ki
k = Pi

kHi T
k

(
Hi T

k Pi
kHi

k + Ri
k

)−1
(44)

δx̂i
k = Ki

kzi
k (45)

X̂i
k = Xi

k + δx̂i
k (46)

P̂i
k =

(
I−Ki

kHi
k

)
Pi

k (47)

In this way, only the local state vector related to the ith satellite itself is included in the
measurement equation. The dimension of state vector Xi

k is:

Ni = 6 + Di (48)

The computation amount for the ICEKF algorithm is:

4N2
i (N2

i − 1) + (Ni − 1)Ni(Ni + 1)/6+(2N2
i + 7Ni + 1)× (m/n) (49)

As a result, the computational complexity is greatly reduced. However, the state vector of the
ith satellite is only correlated with the measurement of itself and this method must be referred to as
a reduced-order suboptimal filter. In order to improve the filtering accuracy, a common approach
is to iterate the process above until convergence. In a data frame, after receiving the state vectors
of the other visible satellites, the ith satellite updates its own state vectors and covariance matrix by
Equations (42)–(47). Other satellites do the same process in turn and iterate until the state vector of
each satellite is converged.

However, the method of ICEKF assumes that the state vectors of the other satellites have no errors,
but this is not the case. Therefore, the method of ICEKF needs an uncertain number of iterations to
approach convergence. In a constellation with a large number of satellites, reaching convergence could
be time-consuming [12,13].

5.2. Reduced-Order Increased Measurement Covariance EKF

To accelerate the data-processing in the ICEKF method, the reduced-order increased measurement
covariance EKF (IMCEFK) [12] is carried out. This method includes the error of the state vectors
of the jth satellite into the measurement covariance matrix Ri

k between the ith satellite and the jth

satellite. If we regenerate the ISL measurement error in Equation (42) as εi
k = Hjδxj

k + εij(tk), then the
corresponding measurement covariance matrix is:

E
[
εi

kεi
k

T] = E
[
(Hj

kδxj
k + εij(tk))(H

j
kδxj

k + εij(tk))
T
]

= Hj
kPj

kHjT
k + Ri

k

(50)

where Pj
k is the state vector covariance matrix of the jth satellite. Equation (50) implies that ISL

measurements contain not only the measurement errors, but also the jth satellite state vector error;
thus, the measurement covariance matrix is assembled as:

Ri
k assembled = Hj

kPj
kHjT

k + Ri
k (51)

where the subscript assembled indicates that it is an assembled measurement covariance matrix.
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Next, the Ri
k in Equation (44) is replaced by Ri

k amp, and the gain matrix becomes:

Ki
k = Pi

kHiT
k

(
HiT

k Pi
kHi

k + Hj
kPj

kHjT
k + Ri

k

)−1
(52)

After repeating the steps in Equations (42), (43), (51), (45)–(47), the orbits for ith satellites are
determined. In this way, a reduction of the number of iterations is expected. The computation amount
of IMCEKF is:

4N2
i (N2

i − 1) + (Ni − 1)Ni(Ni + 1)/6+(2N2
i + 7Ni + 1)× (m/n) (53)

In some situations, iteration may not be required [18]. To summarize, compared to ICEKF, the
IMCEKF is a reduced-order approach and needs to transmit not only the local state vector but also its
covariance matrix to the other satellites.

5.3. Balanced Extended Kalman Filter

In one computation cycle, the ICEKF and IMCEKF algorithm only improve the state vector on
one end of the ISL. To increase the efficiency and accuracy, the balanced extended Kalman filter
(BEKF) is proposed. For the ith and jth satellite, the satellites’ state vectors on the both ends of the ISL
can be improved simultaneously. To keep the balance of the accuracy increments on both satellites,
the improving state vectors should be adjusted by:(

Pi
k

)−1
δx̂i

k =
(

Pj
k

)−1
δx̂j

k (54)

With the constraint of Equation (54), the BEKF can be derived from Equations (8), (12), and (24),
and it can be completed by the following steps:

Pi
k = Φi

k−1P̂i
k−1Φi T

k−1 + Gi
k−1Qi

k−1Gi T
k−1 (55)

Pj
k = Φ

j
k−1P̂j

k−1Φ
j T
k−1 + Gj

k−1Qi
k−1Gj T

k−1 (56)

NB =

 Hi
kR−1Hi

k +
(

Pi
k

)−1
Hi

k
T R−1Hj

k

Hj
k

T R−1Hi
k Hj

k
T R−1Hj

k +
(

Pj
k

)−1

 (57)

C =

[(
Pi

k

)−1
−
(

Pj
k

)−1
]

(58)

NC = CN−1
B CT (59)

MC = N−1
B CTN−1

C C (60)

Kij
k = (I−M)

[
Pi

kHi T
k

Pj
kHj T

k

][
Hi

k Pi
kHi T

k + Hj
kPj

kHj T
k + Ri

k

]−1
(61)

[
δx̂i

k
δx̂j

k

]
= Kkzi

k (62)

[
X̂i

k

X̂j
k

]
=

[
Xi

k

Xj
k

]
+

[
δx̂i

k
δx̂j

k

]
(63)

[
P̂i

k P̂ij
k

P̂ji
k P̂j

k

]
=
{

I− KK

[
Hi

k Hj
k

]}[ Pi
k 0

0 Pj
k

]
−M

[
Pi

k 0
0 Pj

k

]
(64)
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The dimension of state vectors Xi
k and Xj

k of the ith and jth satellites, respectively, is:

Nij = 12 +
n

∑
i=1

(
Di + Dj

)
(65)

The computation amount of BEKF is:

4N2
i (N2

i − 1) + (Ni − 1)Ni(Ni + 1)/6 + (2N2
ij + 7Nij + 1)× (m/2n) (66)

The method has the following features:

1. The method of BEKF collects the data of ISL measurements, satellite-to-GAS measurements
(if they are available), and the satellite state vectors as well as their covariance matrices on both
ends of the ISL. After the calculation of the BEKF algorithm, the improved state vectors and
their covariance matrices are sent to the other visible satellites. The BEKF method modifies the
denominator of the gain matrix Kij

k to Hi
k Pi

kHi T
k + Hj

kPj
kHj T

k + Ri
k, which is similar to the method

of IMCEKF. Furthermore, it modifies the gain matrix by a factor of (I−MC). Therefore, the BEKF
algorithm is expected to yield results with higher precision.

2. It seems that BEKF requires more ISL processes than the other EKFs. In fact, the state vectors
and their covariance matrices on both ends are improved at the same time. It is unnecessary to
repeat the ISL process for the same two satellites. The computation load of BEKF is similar to that
of IMCEKF.

3. The iteration process that is implemented in the ICEFK algorithm is not required in the BEKF
method to achieve high accuracy.

4. The improving state vectors are balanced in such a way that the satellite with lower-state precision
will undergo more increments in accuracy while the satellite with higher-state precision will have
fewer adjustments.

5. Compared to the other EKFs, in Equation (64), MC

[
Pi

k 0
0 Pj

k

]
is subtracted from the state vectors’

covariance matrices of the two satellites. Therefore, the values in the matrices are reduced and
the accuracy of the state vectors is improved.

6. The two satellites are correlated by P̂ij
k and P̂ji

k in Equation (65); however, these two matrices have
to be ignored in this distributed filter. As a result, the current method should be categorized as
a reduced-order sub-optimal orbit determination method.

6. Simulations and Analyses

In order to compare the performance of the abovementioned methods, navigation constellation
simulations were carried out with the parameters of Walker 24/3/2:55◦, 22,116 km [30]. The dynamic
model applied to satellite orbit was:

(1) the earth’s gravitational effects of 70 × 70,
(2) the lunar, solar, and other planetary gravitational perturbations,
(3) the solar radiation pressure, and
(4) the other general relativistic forces.

The eighth-order Runge–Kutta method was employed for orbit integration. The IERS96 model
was adopted for the Earth orientation parameters [31]. Besides, the TDMA mode was adopted in ISL
with measurement frames and data transmitting frames. The total error of Ka-band ISL PR was 0.5 m
(1σ). To avoid ground atmospheric disturbance, the ISLs with a vertical distance of less than 1000 km
to the Earth surface were not considered. Eight GASs that are located in Xiamen, Kashi, Beijing,
Lhasa, Sanya, Urumqi, Jiamusi, and Xi’an in China were set up in the simulation. With a minimum
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elevation of 10◦, the Hopfield - Marini model [1] were employed in tropospheric delay correction for
the satellite-to-GAS PR which had a total error of 3 m (1σ).

The impact of complex factors was not considered in the simulations. In addition, the ISL
PR measurement noise was assumed to be normally distributed without pollution, to have better
comparisons for the different algorithms.

The orbit determination simulations were carried out in two steps:

(1) An analytical orbit was generated and the corresponding ISL and satellite-to-GAS PRs
were calculated.

(2) Using the abovementioned PRs, the satellite orbits were calculated by the different methods and
compared with the analytical orbit to find out orbit determination precisions.

The position error, radial error, along track error, and cross track error versus time normalized by
day for satellite SV-01 computed from different methods are presented in Figures 1–4. It should be
noted that plots of the errors from the other satellites in the constellation are excluded since the errors
are similar to those of satellite SV-01.
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Figure 1. Orbit determination errors of SV-01 by the whole-constellation centralized extended Kalman
filter (WCCEKF) algorithm. (a) the position error and radial error; (b) along track error and cross
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Figure 2. Orbit determination errors of SV-01 by the iterative cascade extended Kalman filter (ICEKF)
algorithm. (a) the position error and radial error; (b) along track error and cross track error.
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Figure 3. Orbit determination errors of SV-01 by the increased measurement covariance extended
Kalman filter (IMCEKF) algorithm. (a) the position error and radial error; (b) along track error and
cross track error.
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Figure 4. Orbit determination errors of SV-01 by the balanced extended Kalman filter (BEKF) algorithm.
(a) the position error and radial error; (b) along track error and cross track error.

For each method, the orbit determination errors tended to oscillate steadily after poor initial
results. However, differences can be observed among the four algorithms. To have quantitative
comparisons, the root mean square (RMS) of different errors for all the satellites in the constellation
was calculated for the stable section. The average RMSs were then obtained by averaging the data
from all the satellites and are plotted in Figure 5. It is worth pointing out that the average RMS of
position error for the WCCEKF, ICEKF, IMCEKF, and BEKF algorithms was around 1.6 m, 4.5 m, 2.9 m,
and 1.9 m, respectively.
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Next, the computation amounts for the different methods are summarized in Table 1 and
visualized in Figure 6.

Table 1. Computation amounts, unit: FLOPS (floating-point operations per second).

Methods Computation Amount (FLOPS: Floating-Point Operations Per Second)

WCCEKF 4N2
W(N2

W − 1) + (NW − 1)NW(NW + 1)/6 + (2N2
W + 7NW + 1)×m

ICEKF or IMCEKF 4N2
i (N2

i − 1) + (Ni − 1)Ni(Ni + 1)/6 + (2N2
i + 7Ni + 1)× (m/n)

BEKF 4N2
i (N2

i − 1) + (Ni − 1)Ni(Ni + 1)/6 + (2N2
ij + 7Nij + 1)× (m/2n)
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The WCCEKF algorithm yielded optimal results with the highest precision. Among the three
distributed orbit determination algorithms (ICEKF, IMCEKF, and BEKF), the highest orbit estimation
precision was observed in the method of BEKF. When it comes to computation amounts for the
four methods in Table 1 and Figure 6, the largest calculation amount was required in the WNCEKF
algorithm, which achieved the best orbit accuracy. In the methods of ICEKF, IMCEKF, and BEKF with
sub-optimal distributed orbit determination, significant reductions of the computation amount were
observed when compared to the method of WNCEKF.

Finally, the performances of the WCCEKF, ICEKF, IMCEKF, and BEKF algorithms are summarized
and provided in Table 2, considering different aspects.

Table 2. Comparisons of performances.

Algorithm Description Computation Amount Orbital Accuracy

WCCEKF Whole-constellation centralized EKF Maximum Best
ICEKF Iterative cascade EKF Minimum Normal

IMCEKF Increased measurement covariance EKF Minimum Normal
BEKF Balanced EKF Minimum Better

7. Conclusions

The fundamental theory of satellite orbit determination for autonomous navigation is introduced.
Four algorithms for autonomous navigation with onboard data processing, i.e., whole-constellation
centralized extended Kalman filter (WCCEKF), iterative cascade extended Kalman filter (ICEKF),
increased measurement covariance extended Kalman filter (IMCEKF), and balanced extended Kalman
filter (BEKF), are illustrated. The WCCEFK technique processes the measurement data for orbit
determination by a main satellite while the other three algorithms distribute the computation on
every satellite in the constellation. The simulation results show that the method WCCEKF has the
optimal orbit determination accuracy among the four methods but demands the largest computation
loads. Similar computation amounts are observed in the three distributed algorithms. Compared to
the ICEKF technique, covariance matrices of the other satellites are absorbed into the measurement
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covariance matrix in the method of IMCEKF. As a result, a smaller orbit error is observed in the
IMCEKF algorithm than in the ICEKF. Since the BEKF method estimates the state vectors of the
satellites on both ends of the ISL in a balanced mean and increases their accuracy simultaneously, this
method yields the best results among the three distributed estimation algorithms. The BEKF can be
considered as an appropriate distributed data processing algorithm for a GNSS.
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