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Abstract: The wide availability of sensing modules and computing capabilities in modern mobile devices
(smartphones, smart watches, in-vehicle sensors, etc.) is driving the shift from mote-class wireless sensor
networks (WSNs) to the new era of crowdsensing WSNs. In this emerging paradigm sensors are no longer
static and homogeneous, but are rather worn/carried by people or cars. This results in a new type of
wide-area WSN—crowd-based and overlaid on top of heterogeneous communication technologies—that
paves the way for very innovative applications. To this aim, the positioning of mobile devices operating
in the network becomes crucial. Indeed, the pervasive, almost ubiquitous availability of smart devices
brings unprecedented opportunities but also poses new research challenges in their precise location
under mobility and dense-multipath environments typical of urban and indoor scenarios. In this paper,
we review recent advances in the field of wireless positioning with focus on cooperation, mobility,
and advanced array processing, which are key enablers for the design of novel localization solutions for
crowdsensing WSNs.
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1. Introduction

We are in the middle of the digital era, where more and more amazing features become available
even in entry-level consumer devices (smartphones, tablets, wearable devices such as smart watches, etc.),
which was inconceivable until only a decade ago. As a matter of fact, electronic (smart) devices are
today ubiquitous, and the presence of different kinds of “sensors” both onboard (camera, microphone,
accelerometer, radios, global navigation satellite systems (GNSS) receivers, . . . ) and as external add-ons
(e.g., via Bluetooth connectivity) is opening the doors to unprecedented applications. At the same
time, since its introduction fifteen years ago in the context of radio-frequency identification (RFID) [1],
the internet of things (IoT) idea has been expanding and now envisions “anytime, anywhere” connectivity
with “anyone/anything”, further extended to “any path/network” and “any service” in the so-called
6A-vision [2,3].

A network of devices/subsystems with sensing, processing, and communication capabilities,
which can collaboratively perform a task, is the reference scenario not only for IoT, but also intelligent
transportation systems, multi-agent systems, generally smart systems (smart grids, smart cities, . . . ).
In many of such contexts, opportunistic approaches have also started to emerge, which can take
advantage of existing technologies and services for additional tasks. A simple example is the use
of “over-the-air” Wi-Fi and cellular signals (which were designed for communications purposes) for
positioning based on the received signal power or other features (as done e.g., by Google Maps). The term
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mobile crowdsensing [4–8] has been used to identify approaches that leverage smartphone “apps”
to gather different kinds of data, so creating high-value applications without requiring additional
technology, hardware, or infrastructure, only proper algorithms [9–11]. The applications can be very
diverse, from personal sensing (health indicators, position, etc.) to social sensing, where aggregate
information with group dynamics is of interest, and public sensing for environmental data (noise, air
pollution, etc.) or fine-grained information (parking slots, traffic jams, security/safety alarms, etc.)
beneficial to the general public.

In the emerging crowdsensing paradigm sensors are no longer static and homogeneous, but are
rather worn/carried by people or cars. This results in a new type of wide-area wireless sensor network
(WSN)—crowd-based and overlaid on top of heterogeneous communication technologies—whose ad-hoc
topology closely follows human-life dynamics. Such a novel interconnected and heterogeneous framework
can serve as a critical enabler for innovative applications, in which a large number of devices cooperate
and exchange locally-sensed data to solve global problems in a distributed way, so bringing the IoT idea to
a new dimension. Examples are the monitoring of environmental parameters [12] such as temperature,
pollution level, ambient noise level, electromagnetic exposure [13], as well as other types of variables
that have a spatial profile (Obtaining capillary information on environmental variables is of utmost
importance to fight pollution, global warming, generally to cope with climate changes and prevent natural
disasters) [14–16]—a problem that is sometimes referred to as field reconstruction [17–19].

From the discussion above, it is evident that the positioning of devices operating in such networks
becomes crucial. In principle, the enhanced capabilities of modern smart devices could give the wrong
impression that the localization task can be easily accomplished simply due to the availability of a GNSS
receiver onboard. However, the latter is power-hungry hence it is often kept switched-off for most of the
time [20]. Furthermore, even when it is active, GNSS positioning suffers from several major limitations
(e.g., degraded satellite visibility, multipath propagation, . . . ) that prevent its application in many urban
areas and indoor environments [21]. Unfortunately, such contexts are indeed among the most relevant for
emerging crowdsensing applications (e.g., environmental monitoring, traffic management, . . . ).

To overcome these limitations, a number of terrestrial technologies have been extensively researched
in the past two decades. Many papers have addressed the localization problems in different scenarios,
including WSNs and other network scenarios [22,23] also in mobility conditions [24]. Classical range-based
or range-free techniques have been revisited in this context [25]. In [26] it is shown that range-based
localization using received signal strength (RSS) data can be improved by adopting more sophisticated
estimation tools; a palette of algorithms with diversified accuracy-vs-complexity trade-off can be obtained,
applicable to different types of wireless signals. Indeed, as explained above, the latter are nowadays
found in almost any environment of daily life, hence the possibility to opportunistically exploit them for
other purposes, namely localization, is attracting more and more interest [27]. This emerging paradigm is
somewhat complementary to dedicated localization technologies implementable in WSNs. Prominent
examples of such technologies include RFID, ultra-wide band (UWB), and the latest long range (LoRa)
positioning system. The RFID technology exploits RF electromagnetic propagation to store and retrieve
data from an integrated circuit [28–30]. More precisely, a position estimate can be obtained by leveraging
short-range communications between an RFID reader (transmitter) and a (usually passive) RFID tag [31].
RFID positioning systems have been mainly employed to identify objects in indoor environments such
as supermarkets, libraries, and warehouses, thanks to their reduced cost and complexity [32], but can
provide operational ranges only in the order of few meters. For much higher resolution and range
capabilities, the UWB technology has been introduced [33,34]. It is based on the IEEE 802.15.4 standard
and exploits a very large bandwidth (i.e., fine time resolution pulses) to perform accurate range estimation
via a dedicated two-way time of arrival (TOA)-based protocol. The main advantage of such a technology
resides in its ability to resolve all the different paths generated by multipath propagation. More precisely,
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the availability of a large bandwidth allows receivers to correctly estimate the delays of each separate path,
which can be then coherently processed to improve the localization performance [35]. On the other hand,
it requires WSN nodes to be equipped with enhanced computational and communication capabilities,
hence it generally demands for much higher costs and power consumption. With the advent of the IoT era,
another interesting localization technology called LoRa has been developed [36,37]. This system uses RSS
measurements to locate targets in outdoor environments (mainly smart cities). In particular, by operating
in the sub-GHz frequency band, LoRa gains improved penetration capabilities, which makes it more robust
against noise and multipath when communicating over larger distances [38]. Moreover, LoRa is designed
to work with low transmitting power and very limited bandwidth, which is a plus for localization in the
IoT context [39,40].

As mentioned, however, the advent of ubiquitous connectivity enables a different paradigm, in which
dedicated technologies are complemented (or replaced) by the opportunistic exploitation of communication
signals for localization purposes. Pioneering approaches have attempted to exploit earlier cellular network
technologies [41] and Wi-Fi [42], before location awareness experienced impressive momentum in the
industry [43]—for instance, currently Google Maps already tries to use a mix of different signals in
addition or absence of GPS, to enable everywhere-localization and improve the location accuracy. A more
heterogeneous scenario is theoretically addressed in [44], where signals of opportunity are exploited in
conjunction with device-to-device (D2D) communications, solving at the same time the synchronization
problem, albeit in a static scenario. References [45,46] studied cases in which the transmitted power
and/or the attenuation factor need to be estimated before positioning can be performed, but consider
an homogeneous scenario, an assumption no longer valid in crowdsensing. In [47] a cognitive approach
is proposed in which an hypothesis test decides whether the environment is homogeneous or not,
and provides estimates of the unknown parameters in a fully-adaptive way; based upon the sensed
scenario, a proper maximum likelihood (ML) localizer is implemented. The latter work, however,
still assumes a WSN-like setting. Novel advanced methodologies are needed to tame the complexity of
schemes that have to be simultaneously opportunistic, cognitive, and adaptive: for instance, inaccurate
channel estimation can produce instability in some location estimators [48], and more generally the
interaction between multiple inference tasks is an important issue.

The complexity of the localization task stems from the fact that the variety of emerging applications
require differentiated precision, different smart devices hosting these applications carry diverse sets of
sensors, and the behavioral characteristics of such sensors also depend on the operational environment.
Thus, while the topic is not novel per se, the peculiarities of crowdsensing require to go beyond classical
assumptions [49].

In particular, we identify three major aspects on which mote-class and crowdsensing WSNs
significantly differ, as shown in Figure 1. More precisely:

(i) Cooperation. In terms of processing power and energy constraints, mote-class WSNs are much more
limited; the novel smart devices involved in crowdsensing WSNs are conversely very well-equipped
in hardware, which enables sophisticated computations as well as orders of magnitude higher
communications compared to the extremely low data rate of mote-class WSNs (especially when
nodes are low-cost and low-power). This, in turn, paves the way for cooperative schemes that can
significantly improve the accuracy and availability of localization.

(ii) Mobility. In mote-class WSNs, sensors are static or only slowly moving, while in crowdsensing
WSNs the involved nodes are human-centric, i.e., revolve around people’s activities; as such,
they are tightly connected to human life and mobility [8], including private/public transportation
(car, bycicle, subway, tram, bus, ...) and, through vehicle-to-anything (V2X) technologies, they can also
communicate with “smart vehicles”, further increasing the potential of crowdsensing in Intelligent
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Transportation System (ITS) and Smart City contexts [50,51]. On the one hand, this makes the
localization problem more difficult; on the other hand, the presence of inertial sensors onboard
(e.g., accelerometer) makes it possible also to exploit mobility to improve the localization accuracy, for
instance to cope with dense-multipath environments typical of urban and indoor scenarios;

(iii) Array processing. The widespread of multiple-input multiple-output (MIMO) technologies in
4G/LTE cellular networks is opening novel possibilities for localization, and will produce a revolution
in future 5G mmWave scenarios in which array size significantly shrinks hence can be integrated in
mobile terminals (smartphones) [52]. Interestingly, the multipath environment for mmWave is sparse
in angle [53], which reduces the complexity of the localization task in this respect.

       Mobility
          

        Cooperation

        Estimation
               &
        Prediction

GNSS

(Position, Velocity)

PHY-layer
signal processing

Figure 1. Three major ingredients for localization in emerging crowdsensing wireless sensor networks (WSNs).

In summary, although the research on localization in WSNs has come a long way, with many
contributions from both academia and industry, most literature has inherited the oversimplified
and “well-behaved” (homogeneous, neutral, under control) paradigm of mote-class WSNs, while in
crowdsensing WSNs the “nodes” are not part of a whole system designed for a specific purpose:
as explained above, they are rather a collection of heterogeneous devices carried/worn by people in their
daily life for other reasons (communication, navigation, work, gaming, ...) [54], possibly interconnected
with “things” as different as smart objects, external wireless add-ons, or (possibly low-cost) “gadgets”
(e.g., dongles or stations with radio interfaces). In this novel kind of network scenario, it is necessary to
extend localization approaches used in mote-class WSNs with more advanced techniques that have been
developed in different fields, hence are currently scattered across the literature. The aim of this paper is
exactly to review recent advances in the field of wireless positioning with focus on cooperation, mobility,
and array processing, which as explained are key enablers for the design of novel localization solutions for
crowdsensing WSNs.

The rest of the paper is organized as follows. In Section 2, we provide a review of the classical
localization approaches adopted in mote-class WSNs. Then, in Section 3, we shift from the traditional
assumption of static sensors to novel positioning techniques that exploit the presence of moving sensors.
In Section 4, we describe the emerging topic of cooperative positioning, which allows nodes to improve
their location by exchanging position-related data over the network. Then, in Section 5, we present
a collection of the latest research results based on the adoption of advanced signal processing techniques.
We conclude the paper in Section 6.
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2. Review of Traditional WSN Localization Techniques

Localization in WSNs has been an active topic for more than two decades. The early progresses in
the field of wireless communication technologies led to the design of small, cheap, and limited-power
sensors able to interact among themselves across short distances. A large deployment of such smart and
interconnected sensors provided new opportunities for monitoring different environments such as homes,
industries, and cities at large [55].

Localization algorithms adopted in traditional WSNs aim at estimating the unknown positions
of sensors by leveraging the known locations of a reduced set of nodes. Such a priori information is
coupled with the availability of some position-related measurements such as TOA, time-difference of
arrival (TDOA), received signal strength (RSS), or angle of arrival (AOA). In particular, among all the
possible choices, RSS is very popular due to its ready availability and low complexity. Sensors with known
positions are usually called “anchors”. Their locations are computed by resorting to the availability of
GNSS receivers, or by deploying anchors at fixed known positions. Owing to different limitations regarding
energy consumption, the specific environment at hand (e.g., GNSS is not available), and the impossibility
of deploying nodes at desired positions (e.g., sensors are randomly scattered in the considered area),
the position of most sensors is unknown. These nodes are typically called non-anchor nodes and their
positions should be estimated within the WSN.

The widespread of sensor nodes in very different application areas led to a plethora of localization
approaches for WSNs over the last years, which can be categorized according to four main groups as
follows: (i) least squares (LS) methods; (ii) projection onto convex sets (POCS) methods; (iii) multihop
methods; (iv) range-free methods. In the following, we briefly present some of them with the aim of
providing a concise but sufficiently wide overview of traditional localization solutions in WSNs.

2.1. Least Squares (LS) Methods

One of the most common method to estimate the unknown locations of sensors in a WSN is based on
LS and, more precisely, on the weighted LS (WLS) approach. Assume we are provided with a measurement
vector d̂ = d(x) + n, which represents a set of (noisy) distance estimates carried out among nodes in
a given WSN. The corresponding WLS estimate of position x of a specific node is obtained as

x̂WLS = arg min
x

(d̂− d(x))TW−1(d̂− d(x)), (1)

where W is a weighting matrix introduced to give greater weight to estimates that are deemed more
accurate. In practical implementations, W is typically chosen as a function of the estimated covariance
matrix. On the one hand, this method enables positioning capabilities even in very large WSNs, provided
that a sufficient number of measurements d̂ has been collected (e.g., TOA, RSS, AOA, or their combinations).
On the other hand, the cost function in (1) represents a nonlinear optimization problem for which
a closed-form solution is typically unavailable. In some cases, an approximate solution can be obtained by
resorting to numerical optimization techniques. However, numerical routines suffer from the well-known
issue of local minima, which may cause the optimization algorithms to converge towards a wrong
solution. Furthermore, the numerical minimization of (1) involves a computational load that can become
prohibitively high as the number of nodes increases. Hence, scalability and complexity are often the main
issues with WLS-based position estimators.

2.2. Projection onto Convex Sets (POCS) Methods

Differently from the WLS estimator given in (1), POCS methods sequentially project points in a given
space onto convex domains obtained from different sets of position-related estimates (e.g., distances,
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angles, . . . ). The projection procedure is iterated until a point common to the intersection of all the
considered sets is found. This point can be further refined by resorting to additional post-processing
procedures (e.g., smoothing) or retained as an ultimate estimate of the node position. Examples of common
geometries adopted for the convex sets include hyperbolas, ellipsoids, and cuboids. The main advantages
of POCS-based approaches are the low complexity required to implement the estimators and the intrinsic
simplicity to realize distributed solutions.

It is worth noticing that POCS-based methods are robust against the problem of local minima [56].
Furthermore, such methods can overcome the problem related to the overestimation of distances
among nodes, as typical in TOA-based measurements subject to non-line-of-sight (NLOS) or multipath
propagation phenomena [57]. On the other hand, the main disadvantage of adopting POCS methods is
that they require nodes to be located within a limited distance from the anchor nodes. Indeed, when a
node is located outside the perimeter defined by an anchor node, the intersection among the convex sets
will be large and, as a consequence, the uncertainty on the position estimate will also be large.

2.3. Multihop Methods

In many real WSN deployments, nodes can typically interact only with a limited number of anchor
nodes. Consequently, a very basic form of interaction among nodes is required to carry out the positioning
process. Multihop localization algorithms have been proposed to this aim. A detailed comparison among
different multihop methods is presented in [58], where authors outlined a three-step procedure common to
most of the proposed algorithms. In the first step, nodes with unknown position information estimate their
distances to anchor nodes in a multihop fashion. In a second step, each node employs some multilateration
procedure (e.g., WLS) to obtain a coarse estimate of its position [59]. During the third and last step,
each node refines its own position estimate by exploiting information about the neighboring nodes.

One of the most important methods, known as N-hop multilateration algorithm, was introduced
in [60]. In this approach, nodes can approximate their distances to anchor nodes by adding the ranges
measured at each separate hop. More precisely, the localization procedure starts when anchor nodes
broadcast a first beacon over the network. This message contains, in addition to position and identity
information, also a path length accumulator initially set to zero. Nodes that are able to receive the
message can, in turn, estimate their range with respect to the previous node and add it to the path length
accumulator. Then, they broadcast the updated message across the network. The main limit of multihop
methods is that they tend to accumulate error at each hop; therefore, the ultimate distance estimate can be
affected by a significant error. Multihop methods are preferable to other conventional approaches when
operating in small WSN, and when an accurate hardware for range measurements is available. However,
we again stress the fact that approximating LS cost functions as the one in (1) involves quite expensive
operations, often not affordable in traditional low-cost nodes.

Following the main idea behind the N-hop algorithm proposed in [60], a much simpler approach
called min-max has been proposed. In this method, each node exploits the presence of anchor nodes to
constrain its position estimates to be within a given range from each anchor. For the sake of illustration,
a pictorial description of the min-max multilateration method is reported in Figure 2.

More specifically, if we assume that each node measures its distance di to the i-th anchor node, then it
can enforce its position to be within a bounded region whose coordinates are given by

[xi − di, yi − di]× [xi + di, yi + di], (2)

where (xi, yi) denotes the known position of the i-th anchor node. The ultimate position estimate can be
then restricted to lie within a more limited region, obtained as intersection among the set of bounded
regions computed with respect to all the available anchor nodes, i.e.,
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[max
i

(xi − di), max
i

(yi − di)]× [min
i
(xi + di), min

i
(yi + di)]. (3)

As a final step, each node selects the center of the region in (3) as its actual position estimate. The main
advantage of min-max approaches is that they only require simple and low-complexity operations,
hence can be implemented even in nodes with very limited computational capabilities.

Figure 2. Min-max multilateration for the case of three anchor nodes.

Authors in [58] investigated the performance of the above discussed methods in terms of both
positioning accuracy and coverage capacity. They considered a WSN deployment characterized by
225 nodes located in a squared area. Anchor nodes are the 5% out of the total number of nodes and
are equally distributed over the network. Each node has an average connectivity of about 12–13 nodes and
can interact with at least one anchor. Interestingly, it is shown that all methods exhibit almost the same
sensitivity with respect to the number of anchors. Moreover, the approaches based on multilateration
significantly outperform other competitors in presence of small ranging errors. The min-max method has
been shown to be very robust to ranging errors, but it requires a careful deployment of anchor nodes.
As a general conclusion, all the approaches exhibit different trade-offs between localization accuracy and
coverage capacity.

2.4. Range-Free Methods

Another common way to infer location awareness is to exploit a rough information of proximity
with respect to some reference points. Localization algorithms based on such a knowledge are typically
called range-free. It is worth pointing out that, in the literature, the term range-free is also used to indicate
localization techniques that directly exploit a statistical model to relate (typically in a highly non-linear
fashion) the received raw signals to the unknown positions. However, such techniques are typically too
complex for the limited processing capabilities of low-cost sensors in WSN. In the following, we will focus
only on proximity-based approaches.

We consider, as a reference scenario, a WSN deployed over a given area. Let us assume that m
anchor nodes have been installed in fixed and known positions, i.e., xa = [(x1, y1) (x2, y2) · · · (xm, ym)]T .
In addition, assume that n − m nodes with unknown positions xn = [(xm+1, ym+1) · · · (xn, yn)]T are
present. The typical problem in this context is to estimate xn subject to a set of constraints derived from
coarse proximity information. Proximity constraints are usually formalized through the well-known
circular radio coverage model. In such a model, the limited transmission range of each node is represented
with a circle having fixed radius r. For the sake of illustration, in Figure 3 we depict the set of possible
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solutions xn (shaded area) as function of the number of anchor nodes (black dots), namely m = 1, 2, 3.
As it can be seen, each proximity constraint contributes to a significant reduction in the size of the region
of possible solutions for xn.

Figure 3. Region of possible solutions for xn as function of the number of proximity constraints.

Authors in [61] investigated the effect of deploying anchor nodes on a regular grid, separated by
a known distance d from each other. Each node exploits the presence of the anchors in order to infer a set
of proximity constraints. Interestingly, they demonstrated that higher values of the ratio r/d leads to
much more accurate position estimates. Authors in [62] addressed the same problem by applying linear or
semidefinite programming techniques. Remarkably, they noticed that the degree of network connectivity
plays a key role in the positioning process.

The DV-Hop algorithm developed in [63] is one of the most important range-free positioning
algorithms. Similarly to what happens in the N-hop multilateration technique, nodes exploit the coarse
information contained in the number of hops to estimate their distance from each anchor. The localization
process is supported by the anchor nodes which cooperatively compute the average single hop distance
and broadcast it to all the other nodes. In doing so, each node can convert the number of counted hops into
a meaningful (physical) distance from each anchor. In a final step, nodes apply a multilateration technique
(e.g., min-max) to determine their position estimate.

Several algorithms have been proposed in literature to improve the performance of the DV-HOP
approach. Just to provide some concrete example, authors in [64] derived a novel algorithm called
weighted Monte Carlo localization (WMCL) based on a sequential Monte Carlo approach. By exploiting
the position information provided by neighboring nodes within two-hop distance, the proposed WMCL
can significantly reduce the average size of the bounding boxes up to 87%. As a direct consequence,
the set containing the candidate position estimates shrinks, thus resulting in an improvement of the
sampling efficiency up to 95%. Compared to the DV-HOP algorithm, the WMCL is able to provide a higher
positioning accuracy while keeping both communication and computational costs at a reasonable level.
In [65], a sequential Monte Carlo localization algorithm which exploits nodes mobility to achieve improved
performance is devised. More precisely, each node dynamically updates a set of weighted samples
representing its possible positions over time, subject to a constraint on the maximum allowed velocity.
The final position estimate is then obtained by averaging only those samples that are consistent with the
measurements obtained from the anchor nodes, while filtering out the remaining ones. The simulation
analysis demonstrated that the proposed algorithm can achieve satisfactory localization performance even
in presence of few anchor nodes and assuming a very limited amount of memory. An interesting fully
distributed localization method called Orbit has been presented in [66]. This algorithm exploits additional
connectivity-based constraints derived from the knowledge of the maximum range of coverage of each
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node. More precisely, nodes exchange their own range information on a cooperative basis and build a
connectivity graph that can be used to reduce the set of feasible positions for each node. A first performance
analysis has been conducted by means of simulations, also including a probabilistic communication model
to reproduce realistic operating conditions; then, the algorithm has been tested on a real WSN deployment.
The experimental results are in agreement with those obtained in the simulation analysis and showed that
the proposed approach provides good localization performance, outperforming direct competitors under
different configurations of the environment.

3. Localization and Tracking: Exploiting Sensor Mobility

In most of the current and previous generation of mote-class sensor networks, both anchor nodes,
which have known locations, and non-anchor nodes have been assumed to be stationary and fixed.
In the new era of crowdsensing networks, smart sensors are no longer static, but are rather characterized
by an intrinsic mobility owing to the dynamic operating conditions in which they work (e.g., smartphones
moving with people, in-vehicle sensors moving with cars, ...). In this section, we depart from the traditional
assumption of static sensors and review more recent localization techniques that can benefit from the
presence of moving sensors.

3.1. Integration with Inertial Sensors

In the introduction of this paper, we have seen that the performance of GNSS-localized sensors can
severely degrade in harsh environments such as (dense) urban areas or indoor scenarios. In such cases,
in fact, the different sources of errors (e.g., multipath, shadowing, . . . ) can cause a complete outage of the
GNSS positioning service.

Recent research has shown that localization performance can be improved by leveraging on additional
position-related information from other sensors (e.g., kinematic) available on-board. For instance,
the measurements from smartphone built-in sensors (e.g., accelerometer, magnetometer, and gyroscope)
can be fused together to estimate motion parameters such as speed, acceleration, orientation, etc. In such
techniques, satellite positioning is integrated with inertial navigation [67,68], and nodes exploit only their
own information, without interacting among themselves. For this reason, they are typically known as
standalone methods.

The main idea consists of exploiting inertial sensors and the GNSS system in a complementary way.
More precisely, inertial sensors can provide relatively accurate measurements (velocity, acceleration, . . . ),
but rapidly integrate errors over time owing to some intrinsic bias. On the other hand, a GNSS receiver
is able to track nodes for longer periods, but it provides measurements that are typically affected by
larger errors due to propagation effects from satellites to Earth. Furthermore, we recall that signals from
satellites may be completely unavailable even in common environments environments (e.g., urban areas,
indoor, etc.), thus causing an outage of the positioning system. In this section, we describe how both
systems can be efficiently combined to produce a hybrid standalone approach able to improve their
performance in those conditions when one system alone would fail to work, or would work with very
poor performance.

In the literature [69], three conceptual approaches can be identified for integrating inertial navigation
and GNSS-based positioning: (i) loose integration, (ii) tight integration, and (iii) ultra-tight integration.
The main difference among these approaches consists of the way the information obtained from the
two systems is jointly used as well as in the specific type of interaction among them.

An error-state Kalman filter (KF) approach, also known as complementary KF, is commonly used as an
integration tool for all the considered methods. In such formulation, a node exploits the separated solutions
provided by both inertial sensors and GNSS in order to compute a reference error [70]. In most practical
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applications, such an error is computed by subtracting the GNSS output from the predicted positions
provided by the inertial sensors. The estimated error can be subsequently used to perform a correction
in the inertial measurements. Mathematically speaking, the error-state KF is based on a state vector that
accounts for the incremental differences among predicted and estimated values [71]. More precisely,
the basic state vector xk is defined as

xk =
[
∆xe

k ∆ve
k ∆ψe

k bb
ak bb

gk

]T
, (4)

where ∆xe
k is the incremental node position in the Earth frame, ∆ve

k is the incremental node velocity,
∆ψe

k denotes the node attitude errors, and bb
ak and bb

gk are the biases affecting the accelerometer and
gyroscope in the body frame, respectively. Additional states have been also been considered in the
available literature [72]. Omitting the details, which can be found in [73], the state-space model can be
formalized as

xk+1 = Fkxk + Gkwk, (5)

where the transition matrix Fk is given by [73]:

Fk =


I3×3 Ts I3×3 03×3 03×3 03×3

Ne I3×3 − 2TsΩe
E −TsΦk TsCe

bk I3×3

03×3 03×3 I3×3 − TsΩe
E 03×3 −TsCe

bk
03×3 03×3 03×3 I3×3 + TsDa 03×3

03×3 03×3 03×3 03×3 I3×3 + TsDg

 , (6)

where 0N×N denotes the N × N matrix of zeros, Ts denotes the sampling step, Ωe
E is a skew-symmetric

matrix accounting for the Earth turn rate, Ne represents the centripetal and gravitational accelerations,
Da and Dg are the accelerometer and gyroscope models for bias, and Φk is a skew-symmetric matrix
representing the type of measured forces f b

k . Under standard hypothesis for the inertial sensors biases,
the noise-state transition matrix Gk is

Gk =


03×3 03×3 03×3 03×3

TsCe
bk 03×3 03×3 03×3

03×3 −TsCe
bk 03×3 03×3

03×3 03×3 Ts I3×3 03×3

03×3 03×3 03×3 Ts I3×3

 . (7)

As it can be noticed, different noise models lead to different KF formulations, hence to a different
type of integration among GNSS and inertial systems, as will be clearer in the following.

We start by discussing the loosely integrated method. As the name suggests, this type of framework
exploits the outputs obtained by using the inertial sensors and the GNSS receiver as separated navigation
systems. More precisely, the KF observation vector is built by considering the difference between position
and velocity estimates as produced by each independent system. It is worth highlighting that this method
requires that both solutions are available at the same time. However, it is well-known that GNSS receivers
have an acquisition rate much lower than the one of the local inertial sensors. Furthermore, GNSS-based
navigation can suffer from severe outages (caused by bad environmental conditions) that may prevent its
use even for long periods of time.

The observation equation for such a framework can be expressed as [69]

ylo
k = H loxk + νlo

k (8)
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where

• ylo
k = ysat

k − yins
k is the measurement vector;

• ysat
k =

[
psatT

k vsatT

k

]T
is the vector containing GNSS-based position and velocity estimates at time

instant k;

• ye
k =

[
peT

k veT

k

]T
is the vector containing inertial-based position and velocity estimates at time instant k;

• H lo is the observation matrix for the loosely coupled framework, expressed as

H lo =

[
I3×3 03 03 03 03×6

03 I3×3 03 03 03×6

]
; (9)

• νlo
k is the measurement noise.

As it can be noticed, the loose integration scheme described by (5) and (8) is inherently linear.
Therefore, the localization problem can be solved within the optimality conditions guaranteed by the KF.

In a tightly coupled framework, the localization performance can be improved by processing the
information provided by both GNSS and inertial systems at the pseudorange level. Differently from
what happens in a loosely coupled method, the KF is directly fed with an information that is somewhat
proportional to the quality of the ultimate position estimates. Interestingly, this framework allows nodes
to perform an integration even when only few satellites in view are available, while we highlight that
at least four satellites are needed to compute a GNSS-based position estimate when resorting to loosely
coupled methods. vIn the specific case of tight integration, the measurement vector can be defined as [73]

yti
k = ζsat

k − ζ̂k, (10)

where

• ζsat
k is the vector of GNSS-measured pseudoranges ρk and pseudorange rates ρ̇k obtained at time

instant k;
• ζ̂k is the vector containing the predicted pseudorange and pseudorange rates obtained from the last

available estimate.

Therefore, we can write the observation vector as

yti
k = Hti

k xk + νti
k , (11)

where Hti
k is a matrix expressing how the pseudoranges and the current states of the system are related

to each other, while νti
k denotes the measurement noise. In this case, the relation among positions and

measured pseudoranges is non-linear, hence a linearization process should be applied, that is [74]

Hti
k =

[
Uk 0Nsat×3 0Nsat×3 0Nsat×3 0Nsat×3

0Nsat×3 Uk 0Nsat×3 0Nsat×3 0Nsat×3

]
, (12)

Uk =


−uT

1k 1
−uT

2k 1
...

...
−uT

Nsatk
1

 , (13)
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unk =
pn

k − p̂k

‖pn
k − p̂k‖

, ∀n = 1, . . . , Nsat, (14)

where pn
k denotes the n-th satellite position, Nsat represents the number of available satellites at time

instant k, and p̂k
def
= p̂(tk) denotes the last position estimate.

The ultra-tight integration framework is derived similarly to the tight integration one, but it considers
as input to the KF filter both the in-phase and quadrature components obtained from the GNSS local
correlators [75,76]. Also in this setup, the inertial-based measurements are corrected on the basis of the
GNSS information. However, the specific type of information together with the particular correction
applied to the position estimates are peculiar characteristics of the ultra-tight integration framework.
It is interesting to observe that this approach provides better tracking performance and an improved
robustness against the lack of satellites in view [77].

3.2. Hybrid RSS, TOA, and AOA Positioning

Filtering techniques as the ones discussed in the previous section allow nodes to track their positions
and velocities when some dynamic aspect such as mobility comes into play, yielding a recursive framework
that can be exploited to achieve more accurate estimation performance. To complete the overview of
mobility-based positioning algorithms, in this section we present a common method to combine different
types of terrestrial-based measurements, namely TOA, RSS and AOA, in a hybrid GNSS-free positioning
system, based on the extended Kalman Filter (EKF) algorithm.

For the sake of explanation, we assume a 2D scenario, where a non-anchor node exploits the
presence of several anchor nodes to localize itself. The N anchor nodes are available at known locations
pn = [xn yn]T , n = 1, . . . , N. In the following, we assume that each node is equipped with different wireless
devices (including an antenna array), providing TOA, RSS and AOA information. Thus, the observation
vector yk ∈ R3N×1 at the time instant k is expressed as

yk =
[
yT

RSS,k yT
TOA,k yT

AOA,k

]T
, (15)

while the related noise vector is given by

νk =
[
νT

RSS,k νT
TOA,k νT

AOA,k

]T
, (16)

with time-invariant covariance matrix expressed as

Rhyb =

 RRSS 0N×N 0N×N
0N×N RTOA 0N×N
0N×N 0N×N RAOA

 . (17)

To mitigate potential biases deriving from the presence of NLOS propagation, the KF state is typically
extended in order to include an additional unknown parameter that capture the shadowing effects
experienced during the interaction with each anchor node [78]. In this respect, the new state vector is
defined as xhyb

k = [xT
k bT

k ]
T where xk = [px(k) py(k) vx(k) vy(k)]T is the vector of node position and

velocity components at time k and the elements of the vector bk are the distance measurement bias at each
anchor. Accordingly, the state transition matrix Fhyb

k can be written as

Fhyb
k =

[
Fk 0
0 IN×N

]
, (18)
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where, assuming a nearly constant velocity model, the state transition matrix

Fk =


1 0 ∆tk 0
0 1 0 ∆tk
0 0 1 0
0 0 0 1

 , (19)

with ∆tk
def
= tk − tk−1. The additive process noise vector is given by wk = [02 ws wb]

T , where ws and
wb represent the velocity and bias noise vectors, and Qs and Qb denotes the corresponding covariance
matrices. The exact expression of the measurement matrix for each different measurement can be found
in [69]. The final matrix Hhyb

k can hence be obtained by concatenating the linearization matrices associated
to each different measurement, that is,

Hhyb
k =

 HRSS,k
HTOA,k
HAOA,k

 . (20)

Starting from the above mentioned models, each node can track its own position and velocity
components by iterating the well-known KF prediction and update phases [69].

4. Cooperative Positioning

Positioning algorithms in WSNs are required to satisfy stringent constraints in terms of energy-saving,
robustness to hardware faults, and should also cope with different propagation phenomena at play
in typical real-world deployments (e.g., NLOS propagation, multipath, interferences, . . . ). As we have
seen in the previous sections, in practical WSNs only few anchors can be installed in fixed and known
positions, likely leaving most of the remaining nodes in isolated regions. In absence of anchors supporting
the localization task, conventional methods adopted in traditional WSNs are not often able to provide
a sufficient accuracy. To overcome such limitations, the positioning process can be performed cooperatively,
i.e., by allowing nodes to exchange their own position-related information over the network, as shown
in Figure 4.

The adoption of cooperative approaches lead to a number of important advantages: (i) large WSNs can
benefit from the availability of a huge number of position-related measurements; (ii) the positioning task
can be performed even in absence of anchor nodes; (iii) the availability of nodes equipped with different
positioning systems (e.g., GNSS, 4G/5G cellular systems, and other terrestrial technologies) can have a
substantial benefit over a cooperative framework. A prominent example of application of cooperative
localization techniques can be found in vehicular ad hoc networks (VANETs), where cooperative
positioning (CP) approaches have been considered in order to support the emerging road safety
applications (e.g., overtaking-assistance, collision avoidance, etc.). Given the critical nature of such
applications, a substantial research effort has been devoted in this direction from both academia and
industry in recent years [79,80].
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Figure 4. Principle of cooperative positioning.

CP methods can be broadly categorized in two main classes, namely centralized or distributed, based
on the considered network architecture, as depicted in Figure 5. More precisely:

• Centralized approaches: in this paradigm, both anchor and non-anchor nodes send their collected
measurements to a central (master) node, which is responsible for implementing the WSN localization
algorithm that estimates the positions of all nodes in the network. The main advantage of this method
resides in its simplicity. On the other hand, centralized approaches suffer from the critical risk of single
point of failure. Furthermore, they typically require that the master node has high computational and
networking capabilities.

• Distributed approaches: the WSN localization algorithms are executed over all the nodes, and the
position estimate is computed locally. More precisely, nodes combine their own information with
the measurements received from neighbour nodes in the network. In doing so, each node iteratively
refines its own position estimate until a given criterion of convergence is reached. The main advantage
of this paradigm lies in the reduced computational and communication complexity, which in turn
lead to a significant energy saving. Indeed, distributed approaches avoid the burdensome operations
required to send all collected data to a master node and receive position information back to all nodes
in the network. This is a very important aspect, especially when dealing with large WSN deployments.
Furthermore, distributed approaches do not require any fixed infrastructure, allow scalability,
and foster the creation of time-varying WSNs having heterogeneous participating nodes.

Figure 5. Centralized vs distributed cooperative positioning (CP) architecture.

The choice between centralized and distributed approaches is driven by several different aspects:
(i) the type of network and sensors technology; (ii) the specific application area; (iii) the requirements in
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terms of response overhead; (iv) the limited autonomy of WSN nodes. From these points, it is evident that
there exists a main trade-off among the computational capabilities of nodes and the maximum traffic load
allowed in the network. It is worth pointing out that both distributed and centralized approaches solve
the localization problem in a suboptimal way. This is clearly related to the the fact that they are subject to
different types of constraints with respect to more traditional non-cooperative localization approaches.

In principle, CP techniques may extend traditional WSN localization algorithms by simply adding the
dimension of the cooperation. A lot of research has been devoted to this topic; we refer the interested reader
to [23,81,82] and references cited therein for a detailed overview. On the other hand, the design of novel
CP solutions is also driven by various requirements related to the specific application areas. Just to give
an example, a lot of effort has been put in the design of efficient CP techniques that can jointly satisfy all
the typical constraints of low-cost WSNs. The problem of real-time node localization is also a critical aspect
of many positioning systems. In this respect, the main challenge consists in adapting classical tracking
techniques (e.g., Bayesian) to non-centralized (time-varying) topologies that should account for additional
cost related to the exchange of information over the network [83]. Another important topic concerns the
integration of multiple positioning systems in a unified CP solution able to provide anywhere and anytime
location awareness.

In this section, we review the main CP paradigms where different position-related data and
information are shared within nodes to enhance individual localization performance. In particular,
the first devised CP strategy provided for the sole exchange of GNSS data. Clearly, this kind of approach
can work only in presence of nodes equipped with a GNSS receiver. Examples of GNSS data are the
measured pseudoranges, the number of visible satellites, the estimated position and velocity, and so on.
Then, we move towards more recent CP methods which aim at combining heterogeneous position-related
information coming from all the cooperative nodes available in the network. More precisely, they not
only exploit the exchange of GNSS data, if available, but additionally consider information obtained from
other systems (e.g., RSSs, TOAs, AOAs, inertial sensors, etc.). This hybrid approach, typically known as
hybrid CP, requires that each node is equipped with a GNSS receiver and a proper hardware to estimate
position-related data from the other nodes in the network.

4.1. Cooperation Based on GNSS-Only Information

GNSS-based navigation systems are characterized by information signals traveling from satellites to
ground receivers. In order to compute a valid position estimate, each receiver should collect a minimum
number of observations (e.g., four for a 3D localization) from satellites in view. To further improve
the localization performance, additional ground-based augmentation systems have been developed.
The standard GNSS scenario is represented in the left part of Figure 6. As multi-constellation and
interconnected GNSS receivers will be soon available in the global market, GNSS cooperative positioning is
expected to become a valid alternative to ground-based augmentation systems. The basic idea behind such
approaches consists of observing that nodes in harsh operating conditions can exploit data received from
other GNSS-equipped nodes in the network which are experiencing better satellite visibility. Then, they can
apply their own positioning techniques for estimating their locations faster and with higher reliability,
as shown in the right part of Figure 6.

One of the most promising approaches consists of exploiting exchanged raw GNSS observables in
order to compute range estimates from other nodes [84]. These methods seem similar to the differential
GPS (DGPS) approach, but they do not require the presence of fixed ground stations. According to the open
literature, we can categorize GNSS data in two main groups: (i) carrier measurements and (ii) raw code [85].
Although carrier phase measurements are known to be very precise, they suffer from problems related to
phase ambiguities and other intrinsic inefficiencies [86]. For these reasons, most of the research available in
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literature mainly focused on the adoption of raw codes [87–89]. Authors in [87] investigated the possibility
to exchange GNSS code pseudoranges to estimate distances from neighbors and then subsequently used
them within a particle filter (PF). Double difference (DD) of pseudoranges have been first proposed in [88]
and later in [84] for static scenarios, then extended to mobile contexts in [89]. Since then, the adoption of
DD of GNSS pseudoranges widespread across the CP framework [90,91].

Figure 6. Non-cooperative vs. cooperative GNSS positioning.

4.2. Cooperation Based on Heterogeneous Information

It is well known that GNSS signals can suffer from severe blockages due to harsh propagation
environments (e.g., urban canyons, indoor areas), thus resulting in a complete outage of the positioning
service. A first approach to combat these drawbacks consists in exploiting information coming from
on-board kinematic sensors within a standalone integrated system, as discussed in Section 3. However,
we have seen that GNSS/Inertial systems tend to accumulate errors over time. Just to give an example,
the lack of GNSS signal for a short period of 30 s would correspond to accumulated errors in the order of
about 10–20 m for a node moving at 100 km/h. To solve the impasse, multi-system approaches that combine
GNSS and terrestrial localization methods have been recently considered to improve both positioning
availability and accuracy.

In this section, we focus on hybrid CP systems, where different information exchanged among
heterogeneous nodes are used in the localization process. The main idea behind these techniques consists
in exploiting the diffusion of position-related information made possible by the cooperation among nodes.
Indeed, each node in the network can improve its position by jointly processing all the position-related data
received from neighbors and combine them together with its own information through a proper estimation
algorithm. This approach can provide significant improvements in terms of localization availability,
even for GNSS-denied nodes; in fact, nodes having few satellites in sight may be able to compute
their position by using terrestrial signals and neighbors information. Furthermore, nodes without any
positioning capability can still be able to localize themselves by leveraging the information received over
the network. In addition, hybrid CP methods do not require any dedicated infrastructure: each node
performs its computation independently, starting from its own information and the messages received
from neighboring peers. As a whole, such approaches are able to provide anywhere location capability,
that is, in case of GNSS-only, terrestrial-only, and GNSS plus terrestrial available signals.

Different CP approaches have been investigated in recent years, mainly targeted to the automotive
industry. Some CP schemes exploit the presence of terrestrial signals such as RSS, TOA, and TDOA
in order to improve GNSS-based positioning [80,92], possibly combined with inertial information of
nodes. For instance, authors in [80] addressed the problem of CP of a group of nodes by exploiting the
exchange of RSS-based range estimates and the availability of local velocity measurements. Similarly,
reference [92] proposed a novel EKF-based tracking algorithm fed with range estimates computed
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from TDOA measurements between nodes and GNSS position and velocity information. Interestingly,
authors in [93] showed that the main limitation of such CP approaches resides in the insufficient
information contained within the considered signals. More precisely, they proven that TOA/TDOA
and RSS measurements cannot provide a sufficient accuracy, especially in harsh environments where the
path-loss exponent cannot be properly estimated, and there are no simple methods to guarantee accurate
synchronization among nodes. This issue can be very critical for CP algorithms that can leverage on the
sole availability of terrestrial signals, as typical in urban or indoor scenarios [94–96]. In the following,
we will show that the adoption of advanced signal processing techniques can bring significant advantages
in the positioning process, even when dealing with more difficult operating scenarios.

5. Advanced Signal Processing for Localization and Tracking

So far, we have seen that the performance of most of the methods proposed in literature is limited by
either the insufficient information content of the considered signals (RSS, TOA and TDOA) or the intrinsic
limitations of the adopted technologies. In this section, we present a review of the latest results in the field
of wireless positioning based on the adoption of advanced signal processing techniques. More precisely,
we will show that PHY-layer plays a key role in providing useful position-related data to feed higher-level
estimation algorithms.

5.1. Array Processing

Historically, the main disadvantages of adopting AOA-based localization techniques in low-cost
WSN nodes were related to the fact that they required relatively large and complex smart antenna
array. Nowadays, AOA-based methods are gaining momentum thanks to the widespread use of MIMO
technologies in 4G/LTE cellular networks, and are becoming even more attractive for future 5G scenarios
in which array size significantly shrinks, thus allowing such technologies to be integrated also in common
mobile nodes (smartphones) [52].

In [97], authors proposed three novel tracking algorithms based on AOA measurements, the latter
obtained from signals asynchronously received by several moving platforms. The dynamics of the nodes
is modelled by resorting to the well-known interacting multiple models (IMM). Interestingly, although the
three proposed solutions are only suboptimal, the achieved performance revealed a remarkable agreement
with the theoretical lower bounds. Authors in [98] proposed a novel approach to track a single sensor
by exploiting passive AOA measurements. The adoption of a track splitting algorithm together with
a gaussian mixture model (GMM) for identifying the feasible node positions enable an accurate space-time
tracking of the target. The AOA observations are fed to a bank of linear KFs as soon as they are available.
Simulation results demonstrates the benefits of this approach, which is able to exhibit estimation errors
falling to within 10% of the theoretical lower bounds. An accurate target tracking technique based on the
adoption of beam-steering sensors is presented in [99]. At each step of beam steering, the node computes a
rough estimate of the target location by exploiting the presence of the closest anchor node. Each sensor
is responsible to track the target node until it pass by the field of view (FoV) of the passive sensor.
The algorithm performance has been analyzed for different mobility models of the target. Interestingly,
the proposed approach can effectively track a target moving at speeds that range from a minimum of
3 m/s up to a maximum of 8 m/s.

AOA-based localization approaches have also been considered in the context of indoor localization.
In [100], authors proposed a fine-grained WiFi based localization system called ArrayTack which exploits
the availability of eight-antenna arrays to track users moving inside buildings. Such an approach is able
to distinguish the direct LOS path from the multipath reflections and is able to achieve an accuracy of
below 1 m in typical indoor scenarios. Another interesting method which does not require any dedicated
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device has been derived in [101]. The algorithm leverages the multi-dimensionality of WiFi signals to
passively track multiple moving people. In addition, a path separation procedure is employed to resolve
multipath propagation. The experimental evaluation conducted by implementing the proposed method on
both commodity WiFi devices and software define radio platform demonstrated that an average accuracy
of 47 cm can be achieved. Authors in [102] presented a robust localization approach that exploits WiFi
channel state information to refine the AOAs estimated from NLOS paths. The method uses a background
elimination algorithm and the availability of TOF measurements to remove the NLOS paths from the
target reflected signals. After this preliminary step, the final position estimation is performed by resorting
to a particle filter. The experimental results revealed that the algorithm can provide sub-meter accuracy in
two different indoor scenarios. In [103], a novel localization system called Phaser is proposed. By exploiting
the availability of phased antennas on modern WiFi access points (APs), such an approach is able to
adaptively calibrate itself and to mitigate the effects induced by multipath reflections. The experiment
campaign conducted using an AP equipped with three and five antennas showed that the proposed
approach is able to achieve improved calibration and localization performance. An interesting AOA-based
approach to localize interfering sources has been presented in [104]. It exploits cyclostationary features of
the signals measured at different APs to discriminate the signal transmitted by each interfering station.
Differently from most of the previously discussed approaches, it requires a very limited calibration during
the deployment phase. The algorithm has been validated using WARP software defined radios and the
obtained results showed that it can achieve an average localization accuracy of 0.97 m. A novel device-free
positioning system to track human movements inside buildings has been proposed in [105]. The main idea
consists in exploiting the backscattering signals originated from common WiFi transmissions in indoor
environments to tracing the motion of the reflecting objects. To this aim, a sequential estimation test is
designed which provides a prediction of the most probable trajectories based on the estimated reflection
parameters. Preliminary experiments have been conducted by implementing the proposed approach
on low-cost software defined radios. The obtained results showed that it can provide good localization
performance even in presence of multiple concurrent human motions.

Another interesting research direction has been investigated in [106], where AOA estimates—computed
by applying standard estimation algorithms [107] to beacon packets broadcast by anchor nodes—feed
a novel WLS positioning algorithm. The obtained performance revealed that the proposed WLS estimator
is able to exploit the presence of fixed geolocated nodes to significantly increase the quality of the
position information, with a resulting improvement of about 70% compared to plain GNSS. The same
idea has been extended within a recursive estimation framework in [108] where a more general
scenario which additionally considered the cooperation among a selected set of mobile nodes has
been addressed. Remarkably, the simulation analysis demonstrated that the proposed EKF-based CP
algorithm can achieve a position accuracy closer to the one of the most accurate node exploited in the
network. An alternative localization algorithm based on a change-detection approach to localize nodes
moving in transversally-bounded regions (e.g., roads, rails, corridors, etc.) has been presented in [109].
In such a method, nodes exploit the time-varying nature of AOA estimates collected along their trajectory
to formalize a statistical hypothesis test aimed at identifying the time instant at which they cross a node
(fixed or mobile). The detected events are then combined with local velocity measurements to improve the
localization performance.

The main advantage of using AOA information is that, similarly to RSS measurements, it does not
require any preliminary synchronization. Moreover, when used for multilateration, the number of AOA
measurements required to localize a node are less than that required in case of TOA/TDOA or RSS
measurements. To exploit AOA information, the only additional requirement is that nodes should be
equipped with a multi-antenna receiver, leading to the so called single-input multiple-output (SIMO)
systems. However, directional information has proven to be very valuable for positioning, hence can be
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regarded as a strong candidate for the design of next-generation localization systems where, as will be
clearer in next sections, multiple antennas will be likely available at both transmitter and receiver sides.

5.2. Direct Position Estimation

The problem of node localization in dense multipath environments is a challenging and hot topic
in signal processing. It usually arises when the node operates in the presence of obstacles (e.g., walls,
trees, etc.) that cause the transmitted RF signals to be received via many propagation paths. In such
conditions, typical of indoor and urban areas, traditional approaches like the ones described in previous
sections, commonly known as indirect position estimation (IPE) approaches, may fail in providing reliable
position information. In this section, we review the problem of node localization in multipath environments
by resorting to a direct position estimation (DPE) approach. Contrary to traditional techniques, the key
idea consists in determining the location of the node directly from the raw signals, without estimating
any intermediate position-related parameter (RSS, TOA, AOA). In doing so, the constraints between the
collected measurements and the node positions are explicitly included in the position estimation, resulting
in a significant improvement of the achievable performance [110,111].

Direct localization approaches were first derived in [112,113], then applied to localization based on
AOA measurements [114] and recently, also to hybrid AOA/TOA positioning [115,116]. In static scenarios,
ML DPE has been developed for a single-path channel where multipath phenomena are modeled as
additive noise [115,117], then extended to multiple nodes localization [116]. A novel DPE approach
based on the principle of minimum-variance distortionless response has been proposed in [118,119].
Simulation results demonstrated that it has better resolution and immunity to jamming and interference,
but its accuracy tends to degrade at low SNRs. DPE methods tailored to special signals such as OFDM,
cyclostationary signals, and intermittent emissions have also been proposed [120–122]. In [123] a ML direct
location estimator using wideband signals for nodes in the near field of the sensor array is derived. In [124],
authors proposed a novel DPE method able to work even in presence of dense multipath. The algorithm
is based on the ML principle and exploit TOA information. The main drawback is that it requires some
a priori information about the channel, and is limited to localization of a static node. A novel TOA-based
direct localization technique for multiple nodes leveraging on ideas from the compressive sensing theory
has been recently proposed in [125]. In [126], a novel DPE algorithm for dense multipath scenarios under
mobility is derived. The proposed approach has low complexity and is fully adaptive, i.e., it does not
require any tuning or additional information about the environment. The algorithm employs an adaptive
beamforming technique to reconstruct an estimate of the optimal projection matrix, which is then used
to project the received signal over the suitable directions that maximize the likelihood. Furthermore,
it takes advantage of a simple and effective LOS association method to identify the most probable node
initial position, hence achieving an integration gain over time. The performance assessment revealed
that the approach is very effective in (severe) multipath conditions, significantly outperforming natural
competitors also when the number of antennas and snapshots is kept at the theoretical minimum.

As mentioned, with the widespread of MIMO technologies, AOA-based DPE algorithms are gaining
momentum; in particular, large arrays enable a precise estimation of multipath parameters thanks to their
high angular resolution. A novel ML estimator able to localize a single node in presence of static and
known multipath has been proposed in [127]. Although the idea seems interesting, there is no efficient
way to compute the estimator. Recently, a novel algorithm called direct source localization (DiSouL)
has been proposed [128]. It is based on ideas from the compressed sensing theory and exploits some
peculiar property of the channel in order to discriminate LOS from NLOS signal paths, leading to superior
performance compared to other approaches. However, at more conventional radiofrequencies (cmWave),
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the multipath is not always resolvable; moreover, standard AOA estimation approaches are inapplicable
because of the coherence among the received multiple paths that originate from the same signal.

5.3. Millimeter-Wave (mmWave) Technology

The millimeter-wave (mmWave) band is currently regarded as the leading technology for next
generation wireless systems [129]. Differently from traditional systems that operate at frequencies below
6 GHz, the mmWave technology considers carriers with frequencies ranging from 30 GHz to 300 GHz.
The main advantage of moving towards higher frequencies resides in the availability of larger channels.
Just to give a concrete example, channels with 2 GHz of bandwidth are common for systems operating
in the 60 GHz unlicensed mmWave band. Such a technology is also receiving tremendous interest by
academia, industry, and government as a main building block for future 5G cellular systems [130–132].
To provide improved communication performance, most mmWave systems will be equipped with large
antenna arrays at both the transmitter and receiver sides, thus creating many opportunities to exploit the
benefits of MIMO communications. Large antenna arrays, in turn, enable the design of extremely narrow
beams which can precisely point towards a specific direction, thus allowing accurate spatial resolution
in the angular domain [133,134]. The connection between (massive) MIMO and mmWave paves the way
for innovative mmWave MIMO systems, which are expected to provide unprecedented tools for precise
(cm-level) localization thanks to their high temporal resolution and high directivity.

For the specific case of 2D geometry, a mmWave MIMO channel model can be generally expressed as

H(t) =
M

∑
i=1

Hiδ(t− τi), (21)

where M denotes the total number of paths (including the LOS link), τi is the TOA associated to the i-th
path and

Hi
def
=
√

Nr Ntβiar,i(θr,i)aH
t,i(φt,i) ∈ CNr×Nt , (22)

with Nr and Nt number of receiving and transmitting antennas, βi complex gain of the i-th path, θr,i and
φt,i the AOA and angle-of-departure (AOD) of the i-th path, respectively. As concerns at,i( ·) ∈ CNt and
ar,i( ·) ∈ CNr , they denote the (unit-norm) array steering vectors of the i-th path at the transmitter and
receiver, respectively, and depend on the specific arrays structure [135]. From Equations (21) and (22),
it can be observed that several position-related parameters are available in mmWave MIMO scenarios.
The estimation of channel parameters such as RSS, TOA, AOA, etc., has been largely addressed in
conventional wireless networks as starting point to perform positioning via multilateration techniques.
Most of the available methods typically exploit some correlation metric between the received and expected
signals in order to extract AOA or TOA information [107,136]. Unfortunately, in many cases of interest,
multipath components arrive at the receiver with similar AOAs or TOAs, that is, they overlap in either
the time or space domains. In such situations, the classical methods for AOA and TOA estimation are no
longer optimal [135,137]. Conversely, in mmWave channels, the number of multiple paths M in (21) is
typically small and corresponds only to single-bounce reflections [138]. For this reason, mmWave channels
are considered spatially sparse, that is, all the parameters of different paths can be assumed to be distinct.
Furthermore, as the system bandwidth increases, the multipath components can be more easily resolved
in the time domain. In other words, all the multiple paths can be considered to be orthogonal [139,140],
thus reducing the parameter estimation to a problem of multiple single-path estimation. In this respect,
mmWave MIMO techniques brings the following benefits:

• while conventional methods cannot distinguish two signals arriving from the same direction,
mmWave-based techniques can separate such contributions by exploiting their delays;
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• since more parameters can be exploited in mmWave MIMO channels (namely AOA, AOD, and TOA),
position of nodes can be estimated even in presence of a single anchor;

• mmWave has the ability to turn NLOS propagation, traditionally a pitfall of wireless transmission,
into a benefit for the positioning process.

The theoretical localization performance achievable using mmWave MIMO have been recently
investigated in [141–143]. In [141], the Cramér-Rao lower bound (CRLB) on the position and rotation
angle estimates obtained using mmWave from a single transmitter has been derived. Furthermore,
a novel position and rotation estimation algorithm based on compressed sensing that attains the CRLB
for average to high SNR is proposed. In [143], authors investigated the fundamental limits of position
and orientation estimation for uplink and downlink channels. Authors in [142] have shown that NLOS
components can also be exploited to gain additional information for the positioning task. Despite the
importance of this growing field, a few papers have proposed more sophisticated localization schemes,
trying to take advantage of the peculiarities of mmWave and (massive) MIMO technologies. In [144],
a 3D indoor positioning scheme based on hybrid RSS and AOA, which employs only a single BS has
been presented. A hypothesis testing localization approach is proposed in [145] exploiting the concept of
channel sparsity. A low-complexity AOA-based approach with signal subspace reconstruction is devised
in [146] to localize incoherently distributed sources. An EKF tracking algorithm that jointly exploits AOA
and TOA from uplink reference signals has been proposed in [147]. Authors in [148] addressed the problem
of positioning based on joint TOF, AOD, and AOA estimation and investigated the impact of errors in
delays and phase shifters. A hybrid TDOA, AOA, and AOD localization scheme is presented in [149]
based on linearization of a set of local constraints, while in [150] positioning is addressed using a Gaussian
process regressor based on a fingerprinting technique operating on a vector of RSS measurements. Another
interesting method for the joint estimation of node position and orientation in 5G systems has been devised
in [151]. In this work, authors exploit the sparsity nature of mmWave channels and adopt a compressive
sensing with iterative refinements to accurately estimate AOAs, AODs, and TOAs of all the observed
paths. Based on such estimated parameters, the unknown position and orientation of the target as well
as the scatterers position can be described by resorting to an iterative Gibbs sampling-based approach.
The simulation analysis highlights that the proposed approach can achieve cm-level position accuracy
even in absence of a LOS path. The problem of tracking position and orientation through mmWave MIMO
systems has been recently addressed in [152]. In this work, authors derive a channel training method based
on the availability of lens antenna arrays. The channel estimation problem is formulated separately in both
uplink and downlink following a sparse signal recovery representation. The obtained results revealed that
the proposed approach can achieve superior performance compared to the compressed sensing solutions
proposed in [141].

The potential benefits of mmWave communications have also been investigated in [153] for the
problem of accurate vehicles localization. In this work, authors analyze how the ultimate localization
accuracy is affected by the presence of multipath and clock biases. Interestingly, they demonstrated
that the additional geometric constraints introduced by multipath propagation can be fruitfully used
to solve the position estimation problem. The validity of such findings has been further confirmed
in [154], where authors present a generic localization approach based on downlink signals transmitted by
a single BS. The same idea has been then extended to the problem of vehicle tracking in [155] based on
a Bayesian filtering approach. Authors in [156] presented a novel mmWave-based localization algorithm
called mTrack. It leverages both RSS and signals phase measurements as main features to estimate the
unknown object relative angle with respect to the a transmitter in known position. Such information is
subsequently used to perform a tracking of the object over time. The experimental results revealed that
mTrack can provide 90% of errors below 8 mm for a fine-grained pen tracking in a small office scenario.
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The 60 GHz mmWave band has been also considered in [157] to address the problem of mobile radar
imaging. The proposed approach exploits a set of RSS measurements collected along the object trajectory to
reconstruct its main surface features (including curvature, orientation and boundaries) with high precision.
The whole system has been tested on real 60 GHz beamforming radios. The obtained results showed that
the proposed localization approach achieves high accuracy and is robust against noises in device position
and trajectory tracking.

The mmWave technology has been recently adopted also in the context of simultaneous localization
and mapping (SLAM). Strictly speaking, SLAM consists of constructing and updating a map of
a specific unknown environment while simultaneously tracking the positions of a node moving within it.
Authors in [158] addressed the interesting problem of joint localization and mapping within the emerging
paradigm of mmWave 5G systems. The main idea consists in exploiting the peculiarities of mmWave
channels to gain additional information also from NLOS propagation. To this end, ref. [158] proposes
a message passing-based estimator that uses a non-parametric belief propagation approach to obtain
the unknown target position and orientation, as well as to determine where reflectors and scatterers are
located. The numerical analysis shows that the proposed estimator provides high localization accuracy
even in case of obstructed LOS propagation, without requiring any a priori knowledge of the environment.

Another interesting approach has been proposed in [159], where authors addressed the problem of
mobile node localization within a multiple-input single-output (MISO) system. This setup is motivated
by the fact that massive arrays will be initially implemented only on base stations, likely leaving mobile
nodes with one antenna. While conventional SIMO localization schemes mainly focus on AOA estimation,
the proposed algorithms aim at exploiting the AOD of received downlink signals, which can be estimated
using a single ominidirectional antenna, thus avoiding the high computational cost required by large
arrays. The obtained performance demonstrated that mmWave and MISO are enabling technologies for
designing accurate positioning systems that can be readily implemented in the near future.

6. Conclusions

The advent of the digital era is driving the shift from the concept of mote-class static sensors to
the modern concept of smart devices, paving the way for a new type of wide-area WSN, built on
the top of existing communication technologies and based on massive crowdsensing of heterogeneous
data. Within this novel framework, the provision of ubiquitous and accurate position information is of
vital importance for a variety of emerging applications in the personal, social, and public dimensions.
Compared to the state-of-art of WSN localization, further research is needed to accommodate the
requirements imposed by emerging crowdsensing applications, especially under mobility and harsh
environments typical of urban and indoor scenarios. In this survey, we reviewed recent advances in
the field of wireless positioning, with specific focus on novel localization solutions that can cope with
the peculiarities of crowdsensing WSNs; in particular, we have shown that the combination of mobility
exploitation, cooperation, and advanced signal processing is a promising approach for the design of
accurate next-generation positioning systems in such a context.
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