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Abstract: This paper reports the indoor wireless measurement of pressure from zero-power
(or passive) microwave (24 GHz) sensors. The sensors are packaged and allow the remote
measurement of overpressure up to 2.1 bars. Their design, fabrication process and packaging
are detailed. From the measurement of sensor scattering parameters, the outstanding sensitivity
of 995 MHz/bar between 0.8 and 2.1 bars was achieved with the full-scale measurement range of
1.33 GHz. Moreover, the 3D radar imagery technique was applied for the remote interrogation of
these sensors in electromagnetic reverberant environments. The full-scale dynamic range of 4.9 dB
and the sensitivity of 4.9 dB/bar between 0.7 and 1.7 bars were achieved with radar detection in a
highly reflective environment. These measurement results demonstrate for the first time the ability
of the radar imagery technique to interrogate fully passive pressure sensors in electromagnetic
reverberant environments.

Keywords: chipless sensors; electromagnetic clutter mitigation; radar imagery technique; sensor
packaging; wireless pressure sensors; zero-power sensors

1. Introduction

Wireless, zero-power (i.e., passive or without embedded battery) and chipless (i.e., without
electronic circuit or integrated circuit) sensors constitute a very convenient solution for the
measurement of any physical or chemical quantity, because their lifetime is unlimited and the
remote monitoring of any physico-chemical quantities in harsh environments is made possible [1].
Literature has reported many developments on such passive and wireless sensors for measuring, e.g.,
temperature [2–4], humidity [5,6], stress [7,8], gas concentration [9–11] or pressure [12–14].

The state-of-the-art nature of passive pressure sensors is summarized in Tables 1 and 2. Various
approaches and technologies have been investigated, the use of inductor-capacitive (LC) cells [15],
dielectric resonators (DR) [16], surface acoustic wave (SAW) devices [17], millimeter-wave identification
(MMID) structures [18] and microwave planar resonators [12,19–21] (see Table 2). The sensing devices
reported in the literature are often dedicated to pressure measurement at high temperatures (>400 ◦C),
using structures based on sapphire [22] and ceramic [13,17,23–27] materials. The sensor performance
is usually characterized by the available full-scale measurement range, the measurement accuracy,
and/or the sensitivity, that is, the variation of an electromagnetic (EM) descriptor (e.g., the resonant
frequency, S-parameters, at a fixed frequency [20,21] or the radar cross-section [12,20]) when a small
change occurs in the physical or chemical quantity of interest.
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Table 1. Characteristics of published wireless and passive pressure sensors—sensing performance.

Reference Range of Applied
Pressure a

EM Estimator Value
of Reference

Maximum Absolute Sensitivity
(Relative) b

Absolute Accuracy
(Relative) c

Absolute Full-Scale
Response (Relative) b

Equipment for Measuring the
Device d

[23] 0–3 bars 21.633 MHz 25.6 kHz/bar (0.12%/bar) NR 75 kHz (0.35%) SA Anritsu MS620J
[24] 0–2 bars 22.68 MHz 164 kHz/bar (0.72%/bar) ±19 mbars (0.95%) 0.3 MHz (1.3%) IA HP9141A
[13] 0.7–2 bars 32.6 MHz at 400 ◦C 1.96 MHz/bar (6.0%/bar) at 400 ◦C ±50 mbars (3.8%) 2.6 MHz (8.0%) at 400 ◦C NA Agilent E5061B
[28] 0.15–3 bars 39.3 GHz 370 MHz/bar (0.94%/bar) NR 1.1 GHz (2.8%) VNA
[12] 0–4 bars −18.3 dBm 0.8 dBm/bar (4.4%/bar) NR 4.8 dBm (26%) FM-CW Radar
[17] 0–97 bars 434 MHz 8.4 kHz/bar (1.9 × 10−3%/bar) NR 0.8 MHz (0.18%) VNA Keysight E5061B
[19] 0–0.8 bars 9.61 GHz 16 MHz/bar (0.17%/bar) NR 30 MHz (0.31%) PNA Agilent E8362B
[22] 0.5–8 mbars 14.78 GHz 2.17 GHz/bar (15%/bar) NR 15.4 MHz (0.10%) NA Agilent E5071C
[16] 1–2 bars 20.53 GHz 455 MHz/bar (2.2%/bar) NR 500 MHz (2.4%) « Reader Device »

[25] e 0–5.33 bars 11.75 GHz at 800 ◦C 35.88 MHz/bar (0.31%/bar) at 800 ◦C NR 180 MHz (1.5%) at 800 ◦C PNA-L Agilent 40 GHz
[26] 0–0.8 bars 18.94 MHz 0.344 MHz/bar (1.8%/bar) NR 0.275 MHz (1.5%) IA Agilent E4991A
[27] 1–2 bars 22.0 MHz 0.225 MHz/bar (1.0%/bar) ±12 mbars (1.2%) 0.25 MHz (1.1%) Phase difference detector circuit

[20]
0.75–2.8 bars 23.65 GHz 440 MHz/bar (1.9%/bar) ±100 mbars (4.9%) 900 MHz (3.8%) PNA-X Agilent N5247A
1.2–2.4 bars −21.9 dB 3.4 dB/bar (16%/bar) NR 4.12 dB (19%)
0.5–2 bars −43.9 dB 5.7 dB/bar (13%/bar) ±10 mbars (0.67%) 9.1 dB (21%) FM-CW Radar

[21]
1–2 bars 22.95 GHz 620 MHz/bar (2.7%/bar) ±129 mbars (13%) 620 MHz (2.7%) PNA-X Agilent N5247A
1–2 bars −6.92 dB 2.29 dB/bar (33%/bar) NR 2.29 dB (33%)

This work
0.8–2.1 bars 23.65 GHz 995 MHz/bar (4.2%/bar) ±44 mbars (3.4%) 1.33 GHz (5.6%) PNA-X Agilent N5247A
0.7–2.1 bars −21.9 dB 4.2 dB/bar (19%/bar) ±124 mbars (8.9%) 6.0 dB (27%)
0.7–1.7 bars −38 dB f 4.9 dB/bar (13%/bar) ±10 mbars (1.0%) 4.9 dB (13%) FM-CW Radar

a The indicated ranges of applied pressure correspond to overpressures relative to atmospheric pressure. b The sensitivities and full-scale ranges are indicated by the absolute and
relative values. The relative value is the ratio between the absolute value and the value of the electromagnetic (EM) descriptor at atmospheric pressure. NR—rot reported. c The
measurement accuracies are indicated in absolute and in relative values with respect to the range of applied pressure. d The different acronyms corresponding to the equipment’s of
measurement are defined here: Performance Network Analyzer (PNA); Vector Network Analyzer (VNA); Spectrum Analyzer (SA); Impedance Analyzer (IA); Network Analyzer (NA) and
Frequency-Modulated Continuous-Wave (FM-CW). e In this reference, different forces were applied by using an alumina rod to characterize the pressure sensor. f The value of this EM
descriptor is taken at the lowest pressure in the linear region. For the other cases, the value is given at atmospheric pressure.
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Table 2. Characteristics of published wireless and passive pressure sensors—materials and dimensions.

Reference Transducer Materials * Sensor’s Dimensions

[23] LC resonator Ceramic, Ag paste 56.4 mm × 40.7 mm × 0.56 mm
[24] LC resonator Ceramic, Ag ink 38 mm × 38 mm × 5.16 mm
[13] LC resonator Ceramic, Ag paste 36.2 mm × 36.2 mm × 0.57 mm

[12,28] Microwave resonator Glass, Al, Si 5.8 mm × 3.8 mm × 1.4 mm
[17] SAW resonator Ni, Cr, Steel, Quartz, Ceramic adhesive 177 mm2 × ~7 mm
[19] Microwave resonator Si, Quartz, Al 5 mm × 4 mm × 0.3 mm
[22] Capacitive sensor Sapphire, Pt 10 mm × 10 mm × 0.32 mm
[16] Dielectric resonator Steel, DR coated by Ni and Au 1257 mm2 × 5.5 mm
[25] Evanescent-mode resonator SiAlCN, PDC ceramic, Pt 134 mm2 × 1.8 mm
[26] LC resonator Ceramic tape, Ag paste 26 mm × 26 mm × 0.5 mm
[27] LC resonator Alumina ceramic, Ag paste 3.3 mm × 3.3 mm × 0.48 mm
[20] Microwave resonator Glass, Si, photoresist 11.02 mm × 8.22 mm × 0.61 mm
[21] Microwave resonator Glass, Si, photoresist 11.02 mm × 8.22 mm × 0.61 mm

This work Microwave resonator Glass, Si, photoresist 11.02 mm × 8.22 mm × 0.61 mm

* Ag, Ni, Cr, Pt, Si and PDC stand respectively for silver, nickel, chromium, platinum, silicon and Polymer
Derived Ceramic.

Table 1 gives the performances at ambient temperature for the wireless pressure sensors reported
in the literature. The full-scale range of the pressure, the full-scale measurement response and the
sensor sensitivity are given for when the used EM descriptor is linearly dependent on the applied
pressure. When the resonant frequency (>100 MHz) of a cavity was used as the EM descriptor, the
highest full-scale range of reported fully passive pressure sensors was 1.1 GHz (see [28]).

Many industrial applications of wireless sensors require: (i) a reading range (or sensor-to-reader
separation distance) of a few tens of meters in electromagnetic reflective or reverberant environments,
and (ii) the use of a compact and portable reader of sensor data. However, most of the pressure sensors
reported in the literature (see Table 1) are measured from non-portable and bulky equipment, e.g.,
network, spectrum or impedance analyzers. The notable exception is reported in Reference [27], where
a portable and compact (17 cm × 17 cm × 8 cm) electronic phase-difference detector circuit was used
for measuring the resonant frequency variation of a pressure sensor. Nevertheless, the detection range
reported in Reference [27] was limited to only 17 mm.

The long-range detection and interrogation of wireless passive sensors in electromagnetic
reverberant environments are very challenging [29,30]. The electromagnetic clutter eventually
generated by metallic objects or structures such as walls, machines, pipes or shelves (as shown
in Figure 1) affects the wireless monitoring of wireless zero-power sensors, due to the multi-path
propagation effect, electromagnetic interferences, degradation of the signal-to-noise ratio and masking
of the electromagnetic backscattering from sensors [31,32]. Few studies have discussed the wireless
measurement of physical or chemical quantities in cluttered environments. In Reference [22],
a waveguide was designed to prevent the impact of the undesirable electromagnetic reflections,
but the proposed solution is suitable only for short reading ranges (up to few meters). The wireless
measurement of a passive pressure sensor in an electromagnetic reflective environment is composed
of three specific metallic objects in front of—or behind—the sensor and is reported in Reference [16].
No measurement results for different applied pressures were reported. To the best knowledge of the
authors, no published study has been devoted to the in-situ wireless interrogation of passive pressure
sensors in electromagnetic reverberant environments.
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The resonator is a microstrip half-wavelength coupled-line microwave (24 GHz) resonator 
designed to perform overpressure measurements up to 2.1 bars (see Figure 2). When a gradient of 
pressure is applied between the inside and outside of the cavity, it causes both mechanical and 
electromagnetic effects on the passive sensor. This pressure gradient leads to the deformation of the 
membrane and, consequently, causes a changing of the gap between the membrane and the planar 
resonator. Accordingly, the resonant frequency of the resonator is modified [21]. From the 
measurement of this modification, the pressure gradient can be derived, as will be shown in the next 
section. The transduction principle is explained in detail in Reference [21]. The performance of the 
EM sensor was actually predicted using the full-wave ANSYS HFSS simulation tool [33]. The 
simulation results (reported in Reference [21]), performed on a very similar structure, depicted 
agreement between the experimental and the simulation results. The manufacturing process was 
performed on a 500 µm thick borosilicate glass (B33) using the same protocol as reported in 
Reference [20]. A seed layer composed of 0.05 µm thick titanium (Ti) and 0.5 µm thick copper (Cu) is 
first deposited on the substrate. Next, the electrochemical growth of Cu allows an increase in the 
thickness, up to 9 µm of the resonator ports. The half-wavelength microstrip resonator is then 
patterned through the standard photolithography and etching process. However, the protection of 
the structure against oxidation is required, and the additional electro-less deposition of the thin gold 

Figure 1. Industrial environments considered in this paper. The walls, metallic pipes and machines
generate undesirable clutter that challenge the long-range detection and wireless reading of zero-power
sensors for the monitoring of pressure.

In this paper, the remote monitoring of zero-power pressure sensors in electromagnetic
reverberant environments was investigated. A 3D radar imagery technique was used for the detection
and remote interrogation of the sensor, and a generic method applicable to any wireless sensor is
presented in order to derive the applied pressure from radar images. In addition, the full-scale range
obtained from the measurement of the scattering parameters of the designed pressure sensors was
found to be larger than the one reported (Table 1).

The design and packaging of the sensors is detailed in Section 2. The sensor characterization is
reported in Section 3, and the wireless interrogation in electromagnetic reverberant environments is
reported in Section 4. Finally, conclusions are drawn in Section 5.

2. Design and Fabrication of Packaged and Zero-Power Microwave Pressure Sensors

The geometry and topology of the passive microwave pressure sensor are reported in Figure 2 [20],
while Tables 3 and 4 give, respectively, the dimensions of the transducer and dielectric properties
of the materials used. As can be observed, the sensing device is composed of a thin, flexible silicon
membrane placed on the top of a circular cavity, within which the resonator operates.
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Figure 2. (a) Photos of the microwave (24 GHz) sensor after bonding with its high resistivity (Si-HR)
membrane. ρ denotes the resistivity parameter. The insets (i) and (ii) show, respectively, the microstrip
half-wavelength resonator below the membrane and the input or output port (9 µm thick Cu) of the
planar resonator; (b) cross-sectional view of the different sensor layers [20].
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Table 3. Transducer dimensions (in mm).

L W T Lp Lr Wr g Lm

11.02 8.22 0.61 0.85 3.5 0.075 0.02 6.0

Table 4. Dielectric parameters of sensor materials.

Material Relative Permittivity Loss Tangent

B33 4.6 9 × 10−3

Photoresist 3.5 2 × 10−2

The resonator is a microstrip half-wavelength coupled-line microwave (24 GHz) resonator
designed to perform overpressure measurements up to 2.1 bars (see Figure 2). When a gradient
of pressure is applied between the inside and outside of the cavity, it causes both mechanical and
electromagnetic effects on the passive sensor. This pressure gradient leads to the deformation of
the membrane and, consequently, causes a changing of the gap between the membrane and the
planar resonator. Accordingly, the resonant frequency of the resonator is modified [21]. From the
measurement of this modification, the pressure gradient can be derived, as will be shown in the next
section. The transduction principle is explained in detail in Reference [21]. The performance of the EM
sensor was actually predicted using the full-wave ANSYS HFSS simulation tool [33]. The simulation
results (reported in Reference [21]), performed on a very similar structure, depicted agreement between
the experimental and the simulation results. The manufacturing process was performed on a 500 µm
thick borosilicate glass (B33) using the same protocol as reported in Reference [20]. A seed layer
composed of 0.05 µm thick titanium (Ti) and 0.5 µm thick copper (Cu) is first deposited on the
substrate. Next, the electrochemical growth of Cu allows an increase in the thickness, up to 9 µm of
the resonator ports. The half-wavelength microstrip resonator is then patterned through the standard
photolithography and etching process. However, the protection of the structure against oxidation
is required, and the additional electro-less deposition of the thin gold (Au) layer is then performed
to protect the resonator from further high-temperature fabrication steps. Next, the ground plane is
implemented by the PVD deposition of a layer of 0.05 µm thick chromium (Cr) and 1.5 µm thick
aluminum (Al) on the back-side of the substrate. The patterning of a 10 µm thick spin-coated low-losses
microwave photoresist is used to build the 5.5 mm diameter cylindrical cavity. The last technological
step consists of bonding the 100 µm thick high resistivity silicon (Si-HRS) membrane directly to the
photoresist by thermo-compression, at a temperature of 100 ◦C. This curing allows the reticulation
of the photoresist. This proposed technological process is fast and requires few fabrication steps and
masks for photolithography. Furthermore, the manufacturing process ensures that the pressure sensor
is sufficiently airtight for the proof-of-concept.

In order to perform the overpressure measurement, the microwave sensor is finally positioned
inside an aluminum cavity with the dimensions 11.25 mm × 8.3 mm × 5.56 mm. It is worth
emphasizing that the selection of the packaging dimensions is crucial in terms of avoiding the excitation
of undesirable cavity resonant modes (see Figure 3 (i), (ii) and (iii)) and locating the resonant frequencies
of cavity modes outside the radar bandwidth. The use of fifteen brass films with thicknesses of 80 µm,
located under the sensing device, allows enhancement of the electrical contact between the resonator
feeding lines and the SMA connectors. Furthermore, the air-tightness of the packaging is also crucial
for measuring the performances of the sensing device. In order to achieve full air-tightness, long-term,
conductive and hermetic silver grease (from chemtronics, Reference [34]) is applied at the surface
between the cavity and its cover.
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Figure 3. (a–c) Experimental setup for measuring the variation of the scattering parameters
(S-parameters) when pressure is applied on the packaged sensor [21]. Insets (i), (ii) and (iii) represent
photos of the sensor package. With its package, the dimensions of the pressure sensor are 36 mm ×
24 mm × 42 mm.

3. Microwave Characterization of the Packaged Pressure Sensor from S-Parameters

The sensitivity of the packaged sensor is investigated for various applied pressures up to 3.5 bars.
The calibrated vector network analyzer (VNA) PNA-X N5247A from Agilent was used to measure the
scattering parameters (S-parameters) of the sensor (Figure 3a–c) with the accuracy of ±13 MHz for the
frequency and of ±0.05 dB for the S-parameter magnitude. For monitoring the applied pressure, the
automated pressure calibrator (APC) module (series 600 from Mensor) connected to a compressed air
tank, was used. The pressure was applied with a precision of ±2.5 mbars.

From S-parameter measurement, the following two descriptors were displayed as a function of
the applied pressure: (i) the resonant frequency fres of the microwave resonator and, (ii) the magnitude
S11 of the input reflection coefficient at fc = 23.8 GHz (Figure 4). The reproducibility of the measurement
results was first checked from the multiple (10) connections and disconnections from the VNA of the
packaged sensor. At atmospheric pressure, fres and S11 at fc = 23.8 GHz fluctuated at around 23.65 GHz
and −20.87 dB, respectively, during the experiment, with variations of ±31 MHz and ±0.47 dB (that
is, an error of ±0.13% on the fres and of ±2.3% on the S11 parameter). By taking into account the
measurement errors of the calibration step, the total measurement accuracies on the resonant frequency
and input reflection coefficient S11 were ±44 MHz (±0.19%) and ±0.52 dB (±2.5%), respectively.

The air-tightness of the cavity in photoresist was evaluated by the measurement of the resonant
frequency variation, in time, when the transducer was placed in a vacuum chamber. A decrease of
7.54 MHz per hour was observed during almost 50 h. This air-tightness level was acceptable for
the duration of our pressure monitoring (a couple of minutes). Figure 4 displays the variation of
the resonant frequency fres and input reflection coefficient S11 at fc (=23.8 GHz) with respect to the
applied pressure. It should be noted that no significant change of fres and S11 occurred for applied
pressure above 2.1 bars. A possible interpretation of this measurement result is that the membrane
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is in contact with the planar resonator for pressure above 2.1 bars. As a consequence, the maximum
applied pressure, which is detectable by the sensor, was about 2.1 bars.
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Compared with our previous results [20], the resulting full-scale measurement range was slightly
smaller, but the sensitivity to pressure variation in this range was significantly higher due to the
improvement of the air-tight packaging. The measurement sensitivities were found to be 995 MHz/bar
between 0.8 bars and 2.1 bars, and 4.2 dB/bar between 0.7 bars and 2.1 bars. Furthermore, the full-scale
measurement range, in terms of resonant frequency variation, was found to be 1.33 GHz (5.6% of fres).
This range is larger than the one reported in the literature for passive pressure sensors working above
100 MHz (see Table 1).

4. Wireless Pressure Measurement in Electromagnetic Reverberant Environments

The passive pressure sensors were intended to be functional in electromagnetic reverberant
environments (see Figure 1). The detection and interrogation of sensors, performed here through the
original 3D radar imagery technique described in Reference [35], used 24 GHz FM-CW radar (IMST
DK-sR-1030e model, see Reference [36]). The chirp at the frequency fc = 23.8 GHz with a modulation
bandwidth B = 2 GHz (±1 GHz around fc) was transmitted by means of a horn lens antenna (gain of
28 dBi and beam width of 6◦), as shown in Figure 5. The theoretical depth resolution d of the radar
was of c/2B (=7.5 cm), where c denotes the speed of light in a vacuum. The simultaneous remote
reading of two passive targets is reported: the Target n◦1 is the zero-power pressure sensor described
in Section 2, while the Target n◦2 is an antenna loaded by a variable microwave resistor that mimics a
pressure variation (see, for example, Reference [35]). The scene, as shown in Figure 5, is composed
of multiple metallic objects and structures, such as pipes, grids and large tanks. Parasitic echoes or
clutter generated by the electromagnetic reflective environment may alter the signal backscattered by
the two targets and, as a result, may render target detection a challenge. To analyze the impact of the
electromagnetic clutter on the remote measurement of pressure variation, the Target n◦1 was placed at
the range of 6.5 m from the radar, just behind the tanks (see Figure 5a,b).
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Figure 5. Wireless measurement setup in an electromagnetic reverberant environment. (b) indicates
the position of Targets n◦1 (pressure sensor) and Target n◦2 (antenna loaded by a variable microwave
resistor that mimics a pressure variation). (a) and inset (i) show the connection setup for Target n◦1.
(c) shows the connection setup for Target n◦2.

The sensing device of Target n◦1 was: (1) terminated by a 50 Ω load on the first port and (2)
connected on the second port to a horn antenna (gain of 20 dBi) through a delay line (characteristic
impedance of 50 Ω) with the effective length of 0.6 m. This length allows placement of the sensing
mode in a region offering a high signal-to-noise ratio. A 50 Ω load was chosen for impedance matching
with cables and antenna. The pressure applied to the sensing device was generated by the APC
module which was connected to a compressed-air tank. The applied pressure ranged from 0 to
2.5 bars. The Target n◦2 was placed near the metallic tanks (see Figure 5b,c) and at 4.5 m from the
radar. This target was a horn antenna (identical to that used for Target n◦1), which was connected to a
variable resistor through a delay line (characteristic impedance of 50 Ω). The effective length (1.2 m) of
this line was chosen in order to place the radar echo associated with the sensing mode of Target n◦2 in
a region with low clutter (a shadow zone). The resistor was the input impedance of a two-port variable
microwave attenuator (CVA35-30D commercialized by MCLI, see [37]). The available magnitude of
the input reflection coefficient ranged from −19 dB to −1 dB, or, equivalently, the input impedance
varied between 60 Ω and 530 Ω.

The radar beam scanning of the scene was performed from −15◦ to 10◦ in azimuth and from −10◦

to 10◦ in elevation. The obtained radar image of the scene is displayed in Figure 6 in the cut-plane
ϕ = 2◦. Among clutters, the antennas (red squares) and loading devices (red circles) associated with
the two targets were detectable. These measurement results were obtained for the applied pressure of
2.4 bars (Target n◦1) and a load impedance of 530 Ω (Target n◦2). The location of the pressure sensor
was assumed to be known. Consequently, the statistical analysis of radar echoes could be performed in
a small region where the sensing mode was present and the eventual clutter was weak. The selection
of this region, which was expected to mitigate the electromagnetic clutter, was performed from the
computation of isosurfaces in radar images. An isosurface is defined as the set of image voxels having
the same magnitude and is usually computed from the marching cubes method [38]. Figure 7 shows
the superposition of many computed isosurfaces in a radar image obtained from multiple radar echo
amplitudes between −50 dB and −30 dB. As expected, radar echo of Target n◦1 increased when the
applied pressure increased. From the computed isosurfaces, the small region in which, (1) the sensing
mode is present and (2) the clutter is weak, can be easily identified and selected.
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input ranged from −7.9 to −1.0 dB. For reflection coefficients lower than −7.9 dB, the estimator was 
found to be less accurate and gave values lower than the noise level (−34.5 dB). Let 𝜀  be the 
deviation from the measurement results from the linear regression. This descriptor may be defined 
as follows: 
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Figure 6. Radar image of the scene in the cut-plane ϕ = 2◦. The scene includes two passive targets.
(1) Target n◦1: the zero-power pressure sensor with its horn antenna (the applied pressure is of 2.4 bars).
(2) Target n◦2: the horn antenna loaded by a variable microwave resistor (the resistance is of 530 Ω).
The antennas are indicated by red squares while the loading devices (i.e., pressure sensor and variable
resistor) are indicated by red circles.
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Figure 7. 3D radar images of the zero-power pressure sensor using isosurfaces for applied pressures of
(a) 1.9 bars and (b) 0 bar. Scale: −50 dB (blue) to −30 dB (red).

Next, inside the selected small region, the statistical estimator eMax of the pressure was defined
as the largest echo level. A convenient linear variation of this estimator with respect to the applied
pressure was obtained from 0.7 to 1.7 bars (see Figure 8a) with a sensitivity of 4.9 dB/bar. The statistical
estimator was also computed for Target n◦2, which was located 6.0 m from the radar (see Figure 8b).
Again, the linear variation was observed when the reflection coefficient at the resistor input ranged
from −7.9 to −1.0 dB. For reflection coefficients lower than −7.9 dB, the estimator was found to be
less accurate and gave values lower than the noise level (−34.5 dB). Let ε lin be the deviation from the
measurement results from the linear regression. This descriptor may be defined as follows:

ε lin =

√√√√ 1
N

N

∑
n=0

(elin,n − emeas,n)
2 (1)

where N is the total number of measurement results, and elin,n and emeas,n denote the results given by
the linear model and by the radar data for the n-th measurement, respectively.
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Figure 8. (a) Variation of the statistical estimator eMax with respect to the applied pressure (the sensing
mode was located 7.5 m from the radar). A linear variation was obtained from 0.7 and 1.7 bars with
the coefficient of determination R2 of 0.993 and slope (or measurement sensitivity) of 4.9 dB/bar; (b)
Variation of the statistical estimator eMax as a function of the input reflection coefficient of the variable
resistor (the sensing mode was located 6.0 m from the radar). The noise level at this position is around
−34.5 dB.

The deviation ε lin is of 0.11 dB. Moreover, the precision δlin of the linear model may be defined as
follows:

δlin =
ε lin

α × ∆P
(2)

where ∆P denotes the full-scale range of the pressure sensor and α is the slope of the linear regression.
The precision δlin of the linear model was only 2.2%.

The pressure sensor was designed for the wireless measurement of pressure between 0 and
2.5 bars in uncluttered environments. However, as can be observed from Figure 8a, the detection
of applied pressure lower than 0.7 bars is not possible due to the presence of undesirable echoes
(or clutter) in this particular environment. Advanced signal processing techniques (not reported here)
could eventually be applied for increasing the signal-to-noise ratio and, as a result, for mitigating the
undesirable clutter occurring for low applied pressures.

5. Conclusions

This paper reported a new packaged, portable, passive and wireless pressure sensor designed
for in-situ pressure monitoring. The technological process allows the fabrication of highly sensitive
pressure sensors, with sensitivities of 995 MHz/bar between 0.8 and 2.1 bars and 4.2 dB/bar between
0.7 and 2.1 bars. Compared with the state-of-the-art of passive and wireless pressure sensors (Table 1),
this device exhibits the largest full-scale measurement range (1.33 GHz between 0.8 and 2.1 bars).

In electromagnetic reverberant environments, the proposed 3D radar imagery technique makes
possible not only the simultaneous detection of several sensing nodes, but also the wireless
measurement of the pressure with sensitivity of 4.9 dB/bar between 0.7 and 1.7 bars.

The results reported here confirm the benefits of 3D radar imagery techniques for performing
wireless pressure measurements from zero-power sensors, even in electromagnetic reverberant
environments. They demonstrate the ability of this technique to perform in situ wireless measurement
of pressure in multi-path propagation channels.
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