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Abstract: Currently, there are no established procedures for limit of detection (LOD) evaluation
in multisensor system studies, which complicates their correct comparison with other analytical
techniques and hinders further development of the method. In this study we propose a simple
and visually comprehensible approach for LOD estimation in multisensor analysis. The suggested
approach is based on the assessment of evolution of mean relative error values in calibration series
with growing analyte concentration. The LOD value is estimated as the concentration starting from
which MRE values become stable from sample to sample. This intuitive procedure was successfully
tested with a variety of real data from potentiometric multisensor systems.

Keywords: limit of detection; multisensor systems; first-order multivariate calibration; electronic
tongue; potentiometric sensors

1. Introduction

Multisensor system is an analytical device which is based on arrays of cross-sensitive chemical
sensors combined with multivariate data processing tools [1]. These systems can be successfully
applied for a variety of analytical tasks [2,3] including such non-trivial examples e.g., toxicity
assessment [4] or taste evaluation [5]. Various multisensor systems are an effective tool for
the improvement of analytical selectivity in complex multicomponent samples where individual
high-selective sensors are hardly convenient. In spite of the large progress in this field through
the last decade [6,7], there are still certain points left unattended by researchers. The absence of
formal figures of merit for multisensor systems (like e.g., LOD and selectivity) definitely hinders
the development of the general multisensor concept and its integration into a common laboratory
practice. The existing inconsistency in estimation of analytical characteristics of multisensor systems
complicates the comparison of this approach with other analytical methods. It would be beneficial
for the researches to have established and agreed definitions for sensitivity, selectivity, and limit of
detection in multisensor studies when it is applicable (for example, when an integral parameter is
evaluated—such as water toxicity or taste attributes—the LOD concept itself is not defined and cannot
be used for a system characterization).

Limit of detection is one of the key characteristics of any analytical method which allows for
comparison between different analytical techniques and for choosing the most efficient and suitable
one for particular analytical task. The LOD value indicates the lowest quantity of an analyte which can
be distinguished from the absence of that substance with a certain confidence level [8]. This parameter
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is widely used in analytical chemistry, but the limit of quantification (LOQ) might also be useful
as a figure of merit, which defines the lowest reliably detected analyte concentration. Nevertheless,
these two values can be easily converted into each other, so here and after only LOD will be taken
into consideration. A modern formula for LOD value estimation in case of univariate calibration
(LODU)—when certain sample attribute (i.e., concentration) is associated with one particular signal
value (i.e., peak intensity at a certain wavelength in a spectrum)—is recommended by IUPAC [8]:

LODU =
3.3sy/x

A

√
1 + h0 +

1
I

(1)

where sy/x is a residual standard deviation, A is a slope of a univariate calibration graph, I is a total
number of samples used for the calibration, h0 is a leverage for the blank sample. This general formula
can be specified for different analytical methods for the sake of usability. In case of a single chemical
sensor LOD value should be estimated as a point of intersection of extrapolated linear regions of the
calibration curve [9,10]. If the comparison with other analytical methods is required, LOD estimation as
a standard deviation of the potentiometric signal noise sbi multiplied by three is more consistent [11]:

xl =
3sbi
A

(2)

Evaluation of LOD in case of multivariate calibration represents a non-trivial task due to the
complexity of obtained data—concentration value of a single analyte can be associated with a row
vector of signal values (first-order data) or even with a signal matrix (second-order data). In these
cases, the representation of a calibration curve as a function of signal intensity from concentration
is hardly possible. Multisensor systems generally provide their response as a first-order data set
and multivariate calibration models are required to relate the vector of responses from all sensors
with particular sample parameter of interest, e.g., concentration of an analyte. Obviously, classical
univariate approach for LOD estimation cannot be directly applied to this kind of data.

Currently, there is no officially accepted procedure for LOD estimation in multivariate
measurements. However, intense development of analytical methods employing multivariate
modelling of first and second-order data makes this problem vital and different approaches to
multivariate LOD definition and calculation have been presented [12–16]. The majority of them
have been suggested for spectroscopic methods, for example, the concept of net analyte signal (NAS),
developed by Lorber [17]. The main idea of NAS concept is to find, for an analyte under study,
its own contribution to the entire spectral data set, which is orthogonal to the spectra of other mixture
components, and to use this part of spectra for further analyte quantification and signal-to-noise
ratio, LOD and other figures of merit estimation. The NAS approach applicability for electrochemical
data was also demonstrated by Burgués et al. [18] for mixed-oxide semiconductor sensors for CO
detection in the air. However, in cases of multisensor systems with cross-sensitive sensors, developed
for simultaneous quantification of several analytes in different concentration ranges, the underlying
condition of data homoscedasticity is not always fulfilled. Heteroscedastic data are very typical for
this kind of measurements and can be used for further regression model building without any concern.

The group of Olivieri [19–23] has proposed the universal approach for multivariate LOD interval
estimation, potentially applicable to any type of analytical measurements and any data processing
method. Nevertheless, its application for multisensor systems data (that are mainly electrochemical)
is not straightforward, as it is for spectroscopic data. The main difficulty is in different nature of
variables: while in spectroscopy the variance of instrumental signal can be obtained by simple replicate
analysis due to the equivalence of all wavelengths, in multisensor systems each variable or sensor can
be unique by its membrane composition and its pattern of response on the same analyte due to the
cross-sensitivity and different way of “ionophore-target ion” interaction. Thus, the contribution of
each sensor has to be taken into account in the total variance of instrumental signal estimation. In the
recent work of Burgués et al. [24], devoted to the multivariate LOD calculation for the same type of
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sensors, the adaptation of Olivieri method for mixed-oxide sensors was demonstrated. Nonetheless,
the approach suggested in this paper has the same drawback as Olivieri method: the estimation of
analytical signal standard deviation is still required. Also, the authors had two types of sensors (7 units
of each type) and described them separately; in case of multisensor systems, all sensors of different
types have to be entirely taken into consideration.

The common disadvantage of the majority of proposed LOD estimation approaches is in the
complexity of involved calculations. While it is surely important to have methods which comply with
the existing formalism and obey strict definitions, such fundamentality is not usually required for
applied analytical tasks, when a chemist or an engineer has to rank available analytical methods as
potentially suitable or not for the given task. A fast, simple, and intuitive method of LOD estimation
would be a good helper at this step. The pseudounivariate LOD approach [19] seems to be relatively
simple, but, as it was shown by the authors themselves, in 3 of 6 examples of LOD calculation for real
data sets, the results obtained with this simplified formula exceed the LOD interval values in 3–6 times.
The question which one should be taken as a true LOD value is disputable.

The purpose of this study was to propose a simple and intuitive methodology for LOD estimation
in multisensor studies. The idea of the approach is based on the mean relative error evolution and
it does not require any sophisticated calculations. Moreover, the proposed approach allows for
visualization of the multisensor system performance in different regions of the analyte concentration
range. Obviously, the obtained LOD value is not theoretically strict, but it can give an idea about
multisensor system applicability to a given task. Certainly, this value can be defined more precisely by
any other fundamentally justified approach if required.

2. Theory

2.1. LOD Interval Calculation

In this section, the procedure suggested in the work of Olivieri [19] is adapted to the data from
potentiometric multisensor system as a typical example of such instruments. According to that study,
it is more consistent to calculate the LOD interval instead of one value to avoid dependence of the
LOD value on the sample analytical matrix, which is not constant in case of multivariate systems.
The formula for LODmin and LODmax are given below:

LODmin = 3.3
[
SEN−2var(x)(1 + h0min) + h0minvar

(
ycal
)]1/2

(3)

LODmax = 3.3
[
SEN−2var(x)(1 + h0max) + h0maxvar

(
ycal
)]1/2

, (4)

where SEN is the sensitivity (inversed vector of regression coefficients), var(x) is the variance in
instrumental signals, h0 is the estimated blank sample leverage (minimal or maximal, respectively),
and var(ycal) is the variance of the analyte concentrations in the calibration set. If the estimation of
sensitivity of a multivariate regression model and of the var(ycal) seem to be easy, the evaluation of the
variance in instrumental signals poses a problem. In spectroscopic measurements, the var(x) can be
estimated by replicate analysis. In case of electrochemical data obtained with a multisensor system,
this approach is not so evident because of the necessity of including the individual contribution of
each sensor into the final var(x) estimation. This aspect can be taken into account by applying the
formula of experiment reproducibility variance S2

reprod for each sensor from an array (Figure 1):

S2
reprod,k =

∑N
n=1 ∑J

j=1
(
xnj − x

)2

N (J− 1)
(5)
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where xnj is a response value of a sensor k obtained for nth sample and jth replics, x is an average
instrumental response for all J repeated measurements, N is a number of samples, and J is the number
of repeated measurements.
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Figure 1. Schematic representation of the reproducibility variance calculation. (A) A sample set contains
N samples, each of them is measured J times by a multisensor system with K sensors. (B) Step-by-step
calculation of reproducibility variance shown for the sensor #1.

This formula allows for obtaining a single value of variance which characterizes a sensor’s ability
to give reproducible results. Nevertheless, it can be used only for homoscedastic data. To verify the
homogeneity of the data, the Cochran’s C test [25] can be applied in a column-wise mode. This test
detects if the maximal value of the reproducibility variance does not exceed the Cochran’s C statistic
for the same number of samples and repeated measurements [26]:

Cnj =
max(S2

n)

∑N
n=1 S2

n
(6)

where Cnj is a Cochran’s C statistic for n samples and j repeated measurements, S2
n—reproducibility

variance for each sample. Cnj value for any number of samples can be approximated by Fischer’s
distribution [27]:

Cnj =

[
1 +

n− 1
Fc
(
α
N , (j− 1), (n− 1)(j− 1)

)]−1

, (7)

where a is a significance level, Fc—critical value of Fisher’s F ratio (available from the tables or
calculated by computer software, e.g., Microsoft Excel).

The total variance of analytical signal for the system, var(x), represents a sum of all calculated
S2

reprod:



Sensors 2019, 19, 1359 5 of 11

var(x) =
K

∑
k=1

S2
reprod,k, (8)

The Cnj value, calculated for each sensor, can be used as an exclusion criterion either for the
samples (they can be excluded from the entire data set until the Cochran’s C test is passed for all
sensors in the array), or for the sensors, if the number of possibly excluded samples seems to be
significant. In the latter case, it can be an indication of inappropriate state of the sensor (deterioration,
etc.). Nevertheless, when the number of sensors or samples is large, such rejections can be cumbersome
and excessive. Thus, for certain data sets this approach is hardly applicable (see Results section). In this
situation, the pseudounivariate LOD estimation can be used instead of the LOD interval:

LODpu = 3.3·s−1
pu

[(
1 + h0min +

1
I

)
varpu

]
, (9)

where spu is the slope of the “measured vs. predicted” line, varpu is the variance of the
regression residuals.

In case of potentiometric multisensor systems, this fundamental approach can be applied
with certain limitations, because the condition of data homoscedasticity is not always fulfilled for
electrochemical measurements. The described procedure allows for choosing the samples with
homoscedastic sensor responses, but in some situations it leads to the undesirable loss of information
and significant reduction of number of samples in the data set.

2.2. Mean Relative Error Evolution Approach

A method proposed in this study is based on the idea of visual representation of mean relative
error (MRE) increment evolution dependent on an analyte concentration. Basically, MRE is calculated
by the formula given below:

MRE =
|M− P|

M
, (10)

where M is measured value (taken as actual), P—predicted value.
MRE describes the difference between the measured analyte concentration and the predicted one,

related to the actual value to avoid the effect of different concentration magnitude on the borders of
the concentration range. Obviously, for analyte concentrations lower than the LOD, average MRE
has to be high, because an instrument cannot properly determine such a small amount of the analyte.
The idea is to find the analyte concentration, starting from which the average MRE value significantly
decreases, according to the following procedure:

• sort the column with measured analyte concentration yn in ascending order (yn becomes ỹn);
• calculate MRE for each sample;
• average MRE values and the measured concentrations for the first n samples (with the lowest

concentration). n = 2 is the most convenient choice. Than use step by step the following formula:

MREn′ =
1
n′

n′

∑
n=2

∣∣∣ỹn meas − ỹn pred

∣∣∣
ỹn meas

, (11)

where n′ is a number of samples for which MRE is averaged (n′ = 2, 3, . . . , N).
A plot of averaged MRE against averaged concentrations can be used for visualization of

a measurement system performance on various concentration intervals. In order to estimate a LOD
value, the next step should be added:

• calculate the increment of averaged MRE as ∆<MRE> = |MREn+1′ −MREn′|.
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Finally, averaged MRE increment absolute values should be plotted as a function of averaged
concentrations. Thus, a LOD for the given analyte is a concentration, starting from which the
∆<MRE> value fluctuations around zero are equal or less than 1% (see Results and Discussion section).
Depending on the task and on the desired accuracy level of LOD estimation, the appropriate ∆<MRE>
fluctuations magnitude can be varied. The higher is it, the more optimistic is the LOD estimation.

The simplicity of this approach represents its main advantage: only two parameters are required
to have an idea about a multisensor system LOD value. The first parameter is known a priori before the
multivariate model building, and it includes such uncertainty sources as the analyte signal variance,
and the second is the result of the analyte concentration prediction, taking into account the model
sensitivity. Besides, since no variance of analytical signal is directly included in the LOD calculations,
there is no need to fulfill the condition about data homoscedasticity.

3. Experimental

3.1. Multisensor Systems

To estimate the LOD values, the electrochemical data from three different potentiometric
multisensor systems have been taken (Table 1).

Table 1. Characteristics of the multisensor systems under study.

Multisensor
System

Composition of the
Solution under Study Analyte Concentration Range,

mmol/L
Number of

Sensors

1 Ca/Mg + Na (background) Ca2+ 0.1–9.9 10

2 La/Y/Gd La3+ 0.01–1 24

3 Urine
Na+ 3.8–255.5

22Cl− 11.1–22.3

The first multisensor system has been developed for Ca2+ and Mg2+ quantification in their aqueous
mixtures with Na+. The detailed information about membranes preparation and potentiometric
measurements is available in Supplementary Materials (S2). To demonstrate the different approaches
of the LOD estimation, only the data with Ca2+ as an analyte were taken into account.

The second multisensor system was designed for simultaneous quantification of rare earth
metals (La, Y, Gd) in complex mixtures [28]; in this work only La3+ was taken as an analyte.
The third multisensor system has been developed for the determination and quantification of urine
ionic components [29]. From 12 identified compounds, we took the data for two of them: Na+,
Cl−. The precise concentration of urine components was measured by capillary electrophoresis as
a reference method.

3.2. Data Processing

Partial Least Squares (PLS) algorithm was employed to build the regression models for each
data set [30]. PLS models were computed with The Unscrambler® 9.7 (CAMO Software AS, Norway).
The models were validated using the full cross-validation (FCV). This validation type was chosen in
order to unify the estimation approach for all studied data sets and to avoid the variability caused by
possible different choice of the test sets induced by different size of the data. During this procedure,
all samples from the data set employed for the model building, are one by one excluded from the
calibration set, and used as a test sample. The validation results are described by the root-mean square
error of cross-validation (RMSECV):

RMSECV =

√√√√√ N

∑
n=1

(
yn pred − yn meas

)2

N
, (12)
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where ynpred is predicted analyte concentration in the sample n, ynmeas is a measured analyte
concentration in the sample n, N is a number of samples in the data set.

MRE calculations and further LOD estimation were performed using MATLAB R2017a (The
Mathworks, USA). A script with the applied function is available in Supplementary Materials (S1).

4. Results and Discussion

4.1. Multisensor System for Ca2+ Quantification in Ca/Mg/Na Mixture

The experimental data (40 samples × 10 sensors) were pretreated according to the procedure
detailed before in order to estimate the variance of instrumental signal (Figure 1B). Three samples
were excluded to assure the homoscedasticity of the data. Var(ycal) was estimated by replication and
was equal to 8 × 10−9 mol2/L2. The PLS model for prediction of Ca2+ content was built based on
the data set and optimal number of latent variables (LV) was equal to 4. Equations (3), (4), and (9)
were applied for LOD interval and LODpu calculation. The results are shown in the Table 2, RMSECV
and LOD values are given in mol/L units. LODpu value, as it usually occurs [14], is larger than the
calculated LODmax, but all three values are of the same order and do not contradict each other.

Table 2. Partial Least Squares (PLS) model characteristics and calculated limit of detection (LOD)
values (mol/L) for the multisensor system #1. RMSECV: root-mean square error of cross-validation.

Analyte
PLS Model Characteristics LOD Calculation, mol/L

Slope R2 RMSECV LODmin LODmax LODpu

Ca2+ 0.90 0.89 7.27 × 10−4 2.5 × 10−4 3.3 × 10−4 4.5 × 10−4

Results obtained with mean relative error evolution approach are in a good agreement with the
LOD values calculated above (Figure 2). The abrupt decrease of average MRE increment can be clearly
observed on the Figure 2B. Estimated LOD value is equal to 6 × 10−4 mol/L, which is close to the
LODpu value.

Figure 2. Comparison of calculated and estimated LOD (Ca2+) values for the Ca/Mg/Na multisensor
system. (A): blue rectangle corresponds to the calculated LOD interval, magenta dash line—to the
LODpu value. (B): the concentration region corresponding to the ∆<MRE> from 0 to 5% is shown.
The horizontal red line indicates the maximal acceptable magnitude of ∆<MRE> fluctuations around
zero. The vertical red line indicates the LOD value.
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4.2. Multisensor System for La Quantification in La/Y/Gd Mixtures

The experimental data (34 samples × 24 sensors) were not suitable for LOD interval assessment
approach because of only two measurements performed for each sample, which is insufficient for
reliable instrumental response variance calculation. Besides, the large number of sensors and the
heteroscedasticity of their responses lead to major reduction of the sensor set for var(x) further
calculation, which is undesirable. Nevertheless, LODpu value can be calculated from the PLS model
built on the first three latent variables (Table 3).

Table 3. PLS model characteristics and calculated LOD value (mol/L) for the La/Y/Gd multisensor
system and the multisensor system designed for determination of urine ionic composition.

Object of Analysis Analyte
PLS Model Characteristics LOD Calculation

Slope R2 RMSECV LODpu, mol/L

La/Y/Gd La3+ 0.92 0.91 9.02 × 10−5 4.4 × 10−4

Urine
Na+ 0.83 0.83 2.17 × 10−2 8.0 × 10−2

Cl− 0.83 0.83 1.93 × 10−2 6.2 × 10−2

In this case, the LOD value, estimated by the MRE evolution algorithm (3 × 10−4 mol/L), is lower
than LODpu, but the both values are still in a good agreement.

4.3. Multisensor System for Determination of Urine Ionic Composition

As in the previous case, the variance of instrumental signal was difficult to calculate because of
the large number both of the samples and the sensors (132 samples × 22 sensors). PLS models have
been built for two chosen compounds (Na+, Cl−) on the three first LVs. The results of PLS model
cross-validation and LODpu values are shown in the Table 3. Since Na+ and Cl− concentrations are in
the same range, it is possible to compare their estimated LOD values looking directly on the graph
(Figure 3). The more abrupt is the transition from high MRE values to low ones, the better is the PLS
model performance.

Figure 3. Performance visualization of the multisensor system, designed for determination of urine
ionic composition. Violet triangles correspond to the PLS model built for Na+, blue circles—for Cl−.
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The estimated LOD value for Na+ and Cl− is in the range of 3–4 × 10−2 mol/L (Table 4). It is half
the calculated LODpu values, as well as in the previous case. It might be explained by moderate quality
of the built model and, consequently, large variance of the residuals, which effects on the LODpu value.

Table 4. Comparison of pseudounivariate and estimated by mean relative error evolution approach
LOD values for all data sets.

Analyte LODpu, mol/L Estimated LOD, mol/L

Ca2+ 4.5 × 10−4 6 × 10−4

La3+ 4.4 × 10−4 3 × 10−4

Na+ 8.0 × 10−2 4 × 10−2

Cl− 6.2 × 10−2 3 × 10−2

5. Conclusions

The proposed methodology can be considered as a simple and intuitive approach to LOD
estimation for multisensor systems. The better is a regression model quality and the more
homoscedastic are the instrumental responses; the more satisfying is the agreement between the
estimated LOD and the LOD calculated according to more theoretically strict approaches (for example,
pseudo-univariate LOD). Nevertheless, in all cases mentioned in this work, the difference between the
estimated and pseudo-univariate LOD values do not exceed 3 times. The MRE evolution approach
does not require some additional measurements or calculations, but it is recommended to fulfill the
following requirements:

• the PLS model (or any other regression model) has to be optimized;
• sample concentration values should uniformly cover the concentration range.

The proposed approach allows for comparison between different multisensor systems, applied for
the same task, or for comparison of LODs for several analytes determined with the single multisensor
system. The graphical representation of a multisensor system functioning in the whole range of the
given concentration set might be useful as a visual illustration of its performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/6/1359/
s1, S1: LOD estimation function, S2: CaMgNa multisensor system.
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