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Abstract: With the continuous improvement of Internet of Things (IoT) technologies, various IoT
platforms are under development. However, each IoT platform is developed based on its own
device identification system. That is, it is challenging to identify each sensor device between
heterogeneous IoT platforms owing to the resource request format (e.g., device identifier) varying
between platforms. Moreover, despite the considerable research focusing on resource interoperability
between heterogeneous IoT platforms, little attention is given to sensor device identification systems
in diverse IoT platforms. In order to overcome this problem, the current work proposes an IoT device
name system (DNS) architecture based on the comparative analysis of heterogeneous IoT platforms
(i.e., oneM2M, GS1 ‘Oliot’, IBM ‘Watson IoT’, OCF ‘IoTivity’, FIWARE). The proposed IoT DNS
analyzes and translates the identification system of the device and resource request format. In this
process, resource requests between heterogeneous IoT platforms can be reconfigured appropriately
for the resources and services requested by the user, and as a result, users can use heterogeneous
IoT services. Furthermore, in order to illustrate the aim of the proposed architecture, the proposed
IoT DNS is implemented and tested on a microcomputer. The experimental results show that
a oneM2M-based device successfully performs a resource request to a Watson IoT and FIWARE
sensor devices.
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1. Introduction

Recently, the Internet of Things (IoT) has attracted significant social attention globally.
Consequently, the research focusing on combining IoT technologies is ongoing in various fields
such as smart home, smart car, smart grid, and healthcare. With the continuous improvement of
IoT technologies, various IoT platforms are under development including oneM2M, OCF ‘IoTivity’,
Apple ‘HomeKit’, Samsung ‘ARTIK’, Google ‘Brillo/Weave’, AllSeen Alliance ‘AllJoyn’, IBM ‘Watson
IoT’, GS1 ‘Oliot’, and FIWARE. IoT Platforms are software that connect various devices, including
a variety of sensors, access points, and data networks. Therefore, it is indispensable to provide
interoperable services relevant to a diverse set of IoT platforms. However, most of the current IoT
platforms share common limitations. Each IoT platform is developed with its own device identification
(ID) system. That is, each IoT platform has a different request format for using services or resources
provided by the device. Moreover, the device identifiers used in these request formats that also differ
in format. Therefore, interworking between heterogeneous IoT platforms is challenging and deserve
consideration. For example, in smart home environments, IoT devices are connected through a smart
home hub. Consequently, these IoT devices must use the same ID system for interworking. Using
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only devices based on the same standard is a considerable limitation for the users as it cannot fulfill
the goal of creating an IoT that connects every object. Moreover, despite the considerable research
related to resource interoperability between heterogeneous IoT platforms, little attention has been
given to sensor device ID systems in diverse IoT platforms. However, most of the IoT platforms use
resource request statements that include the device identifier. In this study, we analyze resource and
device ID systems of the representative IoT platforms (i.e., oneM2M; global standard 1 (GS1) ‘Oliot’;
IBM ‘Watson IoT’; open connectivity foundation (OCF) ‘IoTivity’; and future internet ware (FIWARE)).
Furthermore, we propose and implement an IoT device name system (DNS) architecture that converts
resource requests into the respective format of each IoT platform. In order to implement this IoT DNS,
we create a scenario in which a oneM2M device requests resources and services from a Watson IoT
sensor device. The IoT DNS checks the request to identify the platform of the selected resource sent by
the oneM2M client. Based on this result, the IoT DNS generates the request statement for the other
platforms using the value stored when the device was registered. Our results show that the oneM2M
client can transmit its request to the Watson IoT and FIWARE sensor device via Root DNS and control
the latter’s LED sensor.

This paper is organized as follows. Section 2 analyzes the related work found in the literature
dealing with the interworking between heterogeneous IoT platforms and provides a background on
resource request formats of the four considered IoT platforms. Section 3 proposes the architecture
and the algorithm of the IoT DNS. In Section 4, we implement a proof of concept of the IoT DNS and
demonstrate its working principle on an example scenario. Section 5 concludes our work.

2. Background

This study selected five IoT platforms (i.e., oneM2M, GS1 ‘Oliot’, IBM ‘Watson IoT’, OCF ‘IoTivity’,
and FIWARE) because these five platforms are well-known and make an important contribution to
the IoT industrial environment. For example, these organizations provide relevant standards and
solutions. Also, Watson IoT is being developed based on cloud computing and other selected platforms
are being developed as open source projects.

oneM2M is an international organization working on machine-to-machine (M2M) standards and
provides object communication requirements for IoT systems, architectures, application programming
interface (API) specifications, and security solutions. GS1 is a private international organization aiming
for standardization. It focuses on the standardization of product ID barcodes, electronic documents,
electronic catalogs, etc., used in all industries including distribution and logistics. IBM Corporation
is a global leader in information technology services and consulting, accounting for nearly 50% of
the global computer market. The OCF is an organization that provides interoperability guidelines,
standards development, and certification programs for the IoT industry. FIWARE is a smart city service
platform developed and distributed by FI-PPP (public–private partnership) of European Union (EU)
with 23 countries. FIWARE provides OpenStack-based cloud environments, open APIs, easy IoT
connectivity, big data analysis, real-time media processing, and advanced features for user interaction.
FIWARE also adopts the use of next generation services interface (NGSI) that unifies the representation
of information. NGSI is a protocol developed by open mobile alliance (OMA) to manage context
information. It is a simple RESTful API enabling to perform updates, queries, or subscribe to changes
on context information.

2.1. Device Identification System of Various IoT Platforms

While the interworking between heterogeneous IoT platforms is an important issue, currently
no solution is being clearly addressed. To solve this interworking problem, we analyzed the device
ID systems used in each IoT platform [1] in our previous work. The device ID systems of the four
considered IoT platforms are summarized in Table 1. It represents the feature and ID system format of
selected IoT platforms.
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Table 1. Comparison of four Internet of Things (IoT) platforms’ identification systems.

Platform Feature Identification Format

oneM2M OID-based OID (Higher Arc)
ManufacturerID.DeviceTypeID.DeviceSerialNo

GS1 Oliot OID-based GS1 OID({2.51}).ID Keys(1).[ID Key Type], Value
IBM Watson IoT Client ID d:orgID:deviceType:deviceID

OCF IoTivity Resource Type, Device ID [di], rt:oic.wk.d,oic.d.[*]
FIWARE Entity Type, Entity ID No specific restriction except some characters (e.g., <, >, etc.)

The oneM2M uses object identifiers (OID) to identify devices. The OID are object identifiers
organized into tree structures specified by the abstract syntax notation (ANS.1) and jointly developed
by ITU-T and ISO/IEC, as shown in Figure 1. The international OID tree is referred to as the higher arc
and is used as a prefix for the device ID system of oneM2M. As depicted in Figure 2, the higher arc is
followed by ‘x’, ‘y’, ‘z’, where ‘x’ is the device manufacturer, ‘y’ is the device type, and ‘z’ is the device
serial number [2].
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The GS1 ‘Oliot’ also uses an OID-based ID key (namely the GS1) to identify devices and events.
The OID assigned to GS1 is {2.51}. The first arc (2) contains the organization/institution code that
represents the joint with ITU-T and ISO. The second arc (51) represents the GS1. {2.51} is followed by
GS1 ID keys (1), GS1 supplementary data (2), GS1 business data (3), and GS1 technical data (4) as child
nodes. GS1 ID keys (1) are used as device identifiers in the GS1, where the OID is {2.51.1}. The child
nodes of {2.51.1} can have 10 key types, which are shown in Table 2.

GS1 ID keys have various types depending on their usages, such as the global trade item number
(GTIN) and serial shipping container code (SSCC). The GS1 ID key types can be identified by the field
or application of the device. Individual devices can be identified through additional values. These GS1
ID key values include the company prefix, serial number, etc., as shown in Figure 3 [3–6].
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Table 2. GS1 identification key type.

OID ID Key Type Name

2.51.1.1 GTIN Global Trade Item Number
2.51.1.2 SSCC Serial Shipping Container Code
2.51.1.3 GLN Global Location Number
2.51.1.4 GRAI Global Returnable Asset Identifier
2.51.1.5 GIAI Global Individual Asset Identifier
2.51.1.6 GDTI Global Document Type Identifier
2.51.1.7 GSRN Global Service Relation Number
2.51.1.8 GSIN Global Shipment Identification Number
2.51.1.9 GINC Global Identification Number for Consignment

2.51.1.10 GCN Global Coupon Number
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The ID system of the IBM ‘Watson IoT’ identifies individual devices with unique client IDs.
The client IDs are formatted by the client type. The client type is divided into application, expandable
application, device, and gateway. The format of each client ID is shown in Table 3. The client ID
used to identify each device has the following format: d:orgID:deviceType:deviceID. In this format,
orgID is the user’s own organization ID. In order to register the device on the IBM Watson IoT platform,
the user needs his own organization. IBM provides the orgID when the user registers his own account.
Generally, IBM assigns a random six-digits-long string to every user. The deviceType is the type or
model of the device. The deviceID is the serial number of the device [7].

Table 3. Type of Watson IoT client ID.

Client Type ID Format

Application a:orgID:appID
Expanded Application A:orgID:appID

Device d:orgID:deviceType:deviceID
Gateway g:orgID:typeID:deviceID

The OCF ‘IoTivity’ identifies all resources, including the device, resource, etc., with the value of
the resource type (‘rt’). Among them, the device is identified by using the ‘rt’ and an additional value
referred to as the device identifier (‘di’). The ‘rt’ value can have an ‘oic.wk.d’ or ‘oic.d.[*]’. The ‘oic.d.[*]’
represents the specified device attribute. Currently, the ‘rt’ value is assigned the device type of the
field for smart home applications and health care applications [8–12].

The device ID system of FIWARE is based on NGSI standard. FIWARE uses ‘entity id’ and ‘entity
type’ to identify a specific entity. These entities also include each device connected to FIWARE, and the
device ID and device type that identify each device can be set to ‘entity id’ and ‘entity type’. ‘Entity id’
and ‘entity type’ can be set freely by the user at the time of creation. There is no specific restriction on
the format, but ‘entity id’ should be unique within the API and some elements (i.e., <, >, “, ‘, =, ;, (, ))
are forbidden [13].

As shown in Table 4, we analyzed the four platforms and created a mapping table to compare
them. The attribution in this table is based on the oneM2M OID structure because our study focuses
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on the oneM2M platform. All elements in the device ID of the GS1 Oliot are mapped to the oneM2M
OID. However, the device IDs of the IBM Watson IoT, OCF IoTivity, and FIWARE do not use the device
manufacturer and an expanded ID. Consequently, these values are mapped to n/a values.

Table 4. Mapping table for the device IDs of various IoT platforms.

Platform X Y Z a

oneM2M Manufacturer ID Model ID Serial No ID Expanded ID
GS1 Oliot Company Prefix Reference No Serial No Extension No

IBM Watson IoT n/a Device Type Device ID n/a
OCF IoTivity n/a rt: oic.d.[*] di n/a

FIWARE n/a Entity Type Entity ID n/a

2.2. Resource Identification System of the Various IoT Platforms

Most IoT platforms use the device ID in the request statement. The subsection analyzes the
resource request format of each heterogeneous IoT platform.

2.2.1. oneM2M

The resource architecture of oneM2M is shown in Figure 4. This architecture consists of an
infrastructure node (IN), middle node (MN), application service node (ASN), and an application
dedicated node (ADN). Except for the ADN, every other node has a common service entity (CSE).
The CSE has a resource structure with a tree format. In the oneM2M infrastructure, each resource has a
resource ID and resource name. The latter two are used to request resources. For example, in order to
request the ASN-AE with a specific resource ID (i.e., 006) and resource name (i.e., dev02), the path
format is ‘server01/gateway01/asn01/dev02’. Currently, the oneM2M standard does not use the
device ID when it requests resources and services [2].
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2.2.2. GS1 ‘Oliot’

GS1 Oliot uses the electronic product code information services (EPCIS) to store and manage
devices and resources in an event format. In order to identify and request these devices and resources,
the following ID formats are used: ‘urn:epc:id:sgtin:[GS1 ID key]’. This format contains the type and
value of the GS1 ID key.
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2.2.3. IBM ‘Watson IoT’

IBM Watson IoT uses the request format as shown in Table 5. It supports the appropriate format
according to the type of the protocol, e.g., hyper-text transfer protocol (HTTP) or message queuing
telemetry transport (MQTT). In both formats, {typeID}, {deviceID}, and {logicalInterfaceId} are used as
identifiers. The latter three have the expressions shown in Table 6 [7].

Table 5. Watson IoT resource request format.

Protocol Format

MQTT iot-2/type/${typeId}/id/${deviceId}/intf/${logicalInterfaceId}/evt/state
HTTP GET/device/types/{typeId}/devices/{deviceId}/state/{logicalInterfaceId}

Table 6. Request identifier parameter.

Parameter Description

typeID The device type identifier.
deviceID The device identifier.

logicalInterfacedID or alias The identifier created for the logical interface or the user-specified alias name.

2.2.4. OCF ‘IoTivity’

The resource request format used by the OCF IoTivity is ‘ocf://<authority>/<path>?<Query>‘.
In this format, the ‘di’ value is used for the authority. The ‘di’ value uses the universally unique
identifier (UUID) and has 36 characters. For example, if the request of the OCF IoTivity is
‘GET ocf://<di> /a/room/1?if=oic.if.ll’, the resource path is ‘/a/room/1’ and follows the query
statement [11].

2.2.5. FIWARE

The resource request format of FIWARE is different from each IoT agent. The IoT agent is a
component that mediates between a set of devices using their own native protocols and an NGSI
compliant context provider. In FIWARE, the intelligence data advanced solution (IDAS) generic
enabler (GE) offers a wide range of IoT agents making it easier to interface with devices using the most
widely used IoT protocols (e.g., lightweight M2M (LWM2M) over constrained application protocol
(CoAP), javascript object notation (JSON), UltraLight over HTTP/MQTT, or OPC unified architecture
(OPC-UA)) as shown in Figure 5.
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In this research, we use the NGSI-based HTTP resource request format and implement it in the
testbed. The HTTP request format of FIWARE is {ip address}: 1026 / v2 / entities / {id}. {Ip address}
is the IP of the device receiving the request, and FIWARE Orion uses port number 1026. {Id} is the
identifier of the entity, and the attribution value is added to the format when users get or update the
specific state information of the entity. The format for getting or updating specific status information is
{ip address}: 1026 / v2 / entities / {id} / attrs / {attrsName} [13].

2.3. Related Work

oneM2M is an under-development interworking proxy entity (IPE) focusing on interworking
with OCF. IPE converts the resources of OCF IoTivity into the oneM2M resource format and generates
the resources in the gateway. The OCF IoTivity-based device connected to the oneM2M gateway gives
the resource discovery results to the gateway at regular intervals. The gateway converts the results to
the oneM2M resource tree structure and stores it in the gateway. A oneM2M device can request the
OCF IoTivity resources that were converted to the oneM2M resource tree structure in the oneM2M
gateway [14].

Wu et al. [15] presented an example for OCF IoTivity resource mapping to the oneM2M resource
structure, as shown in Figure 6. In this example, ‘di’ is mapped to AE and ‘oic’ is mapped to the
container under the MN-CSE tree. However, IPE converts resources in heterogeneous platforms to
the oneM2M resource structures and, in addition, creates resources in the gateways. Hence, it is not
efficient memory-wise at the gateways owing to the resources being newly created by only changing
the structure. If large amounts of resources are created in the gateway, IPE requires a large amount of
memory. Memory capacity is limited in the gateway and re-registering all resources is not efficient.
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Kang et al. [16] proposed an ontology-based IoT framework that is based on the oneM2M standard
to ensure the interoperability of heterogeneous IoT platforms. When a device is connected to the
network, the IoT server registers the device as a oneM2M resource. For managing devices dynamically,
the IoT server performs a health-check mechanism of the device. The data generated by the device
registered is integrated into the oneM2M resource through monitoring. Moreover, the event about the
data generated by the middleware is reported. However, the ontology-based IoT environment should
be changed and rebuilt when the service requirements are changed or out of the set domain. It is also
difficult to extract context information based on state information.

Tao et al. [17,18] built and managed a public cloud of private cloud-based platforms for each
organization into a centralized cloud environment. These also aim to satisfy interoperability between
heterogeneous platforms by applying ontology-based representation in public cloud. However,
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currently not all IoT platforms use the cloud and getting the information they need from a cloud-based
platform is challenge. Further, additional research is required because there are many limitations in
building cloud-based IoT environments.

Currently, interoperability between heterogeneous IoT platforms is under development by
various research groups. However, most interoperability studies do not focus on device identifiers.
As described previously, many related studies propose a solution by applying the IPE method specified
by the oneM2M standard organization. The IPE, which is under development and is implemented on
the oneM2M platform, creates and uses the resources of the heterogeneous platform by converting
the format to the oneM2M resource format in the gateway. If large amounts of resources are created
in the gateway, IPE requires a large amount of memory. Memory capacity is limited in the gateway
and re-registering all resources is not efficient. In this study, we proposed a solution to these problems.
We analyzed the resource request formats and device ID systems used in heterogeneous IoT platforms
and selected several IoT platforms, such as the oneM2M, GS1 ‘Oliot’, IBM ‘Watson IoT’, OCF ‘IoTivity’,
and FIWARE for analysis. Each IoT platform uses a different ID system, including both device
identifier and resource request format. However, the IoT DNS proposed in this work does not
re-register resources of the heterogeneous platforms in the oneM2M format. It stores and manages
the request format aimed at the database in the gateway. Therefore, the gateway is less dependent on
device capabilities and the memory usage of the IoT DNS is far less significant than that of the IPE.

3. IoT Device Name System Architecture

Currently, the five IoT platforms selected in this paper use different standards. Consequently,
identifying devices and resources belonging to the various platforms is challenging. Therefore,
this study proposes an IoT DNS architecture to solve these challenges. In Section 3, an algorithm and
corresponding pseudo code of the proposed IoT DNS is presented.

The IoT platform is divided into two types: One that provides cloud services, and one that builds
its own servers. We suppose that the local DNS 1 is part of an Oliot platform, the local DNS 2 is
part of a oneM2M platform, the local DNS 3 is part of an IoTivity platform, and the local DNS 4 is
part of an FIWARE. Each Local DNS performs resource discovery in regular intervals and sends the
resource discovery results to the root DNS. The root DNS integrates, stores, and manages the resource
discovery results received from each local DNS in a single database. In addition, the integrated
resource discovery results are transmitted to each local DNS at regular intervals. The integrated
resource discovery results are provided to the client with only limited information. An example of a
database managed by the root DNS and an example of the interface provided by local DNS to the client
is as follows. The interface provided by the local DNS to the client includes three columns such as
‘Number’, ‘Resource’, and ‘IP’. ‘Number’ is the resource number in the database managed by the root
DNS. It is used whenever a user selects that specific resource. ‘Resource’ is the resource or service name.
‘IP’ is the IP address or physical location of the device. It helps the user to identify the resource in more
detail. The database managed by the root DNS includes seven columns: ‘Resource Number’, ‘Platform
Number’, ‘Resource Name’, ‘Device ID’, ‘Resource Path’, ‘Use-Token-Auth’, and ‘IP’. The ‘Resource
Number’, ‘Resource Name’, and ‘IP’ values are the same as the ones of the interface provided by the
local DNS. The ‘Platform Number’ is the type of the IoT platform. In this study, we suppose that
the platform number 1 refers to oneM2M, 2 refers to GS1, 3 refers to Watson IoT, 4 refers to IoTivity,
and 5 refers to FIWARE. ‘Device ID’ is the identifier of the resource’s device. ‘Resource Path’ is the
logical location of the resource. It is used whenever the IoT DNS generates a new request statement.
‘Use-Token-Auth’ is the token value used by the Watson IoT platform. If the IoT DNS generates
a request statement for the Watson IoT platform, it uses the ‘Token-Auth’ value for authentication.
Local DNS processes make requests for devices of the same platform. The root DNS generates the
appropriate request statements for devices from heterogeneous platforms.

Figure 7 shows the algorithms of the IoT DNS. A local DNS receives a user request from a client.
If this request is compatible with the local system, the local DNS processes the request on the same
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platform. Otherwise, i.e., if the request is not compatible with the local system, the local DNS sends the
request to the root DNS. The root DNS checks the platform and generates the request statements for
the heterogeneous platform. A pseudo code of the root DNS and a local DNS for the above-described
algorithm is shown in Figure 8.
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4. Proof of Concept

In this section, in order to illustrate the aim of the proposed IoT DNS architecture, the proposed
IoT DNS is implemented and tested on a microcomputer. Furthermore, we show two scenarios (i.e.,
in scenario 1, the oneM2M device requests a service to the Watson IoT and, in scenario 2, the oneM2M
device requests a service to the FIWARE) which show how the proposed architecture works between
diverse IoT platforms. A more detailed description will be explained in the following subsections.

4.1. Implementation Environments

This subsection describes the implementation environment of the IoT DNS, which is specified in
Table 7. The scenario presented in this study consists of the root DNS, a oneM2M server, a oneM2M
client, a sensor device based on the Watson IoT platform, a FIWARE broker, and a sensor device based
on the FIWARE platform.
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Table 7. Specifications of the implementation environment.

Root DNS oneM2M Server
(Local DNS)

oneM2M
Client

Watson IoT
Sensor

FIWARE
Broker

FIWARE
Sensor

Source Language Python Python Javascript Python
Javascript n/a Python

C++
Python

C++

Used Module &
Tool

Python request module: Python requests version: 2.12.4
MySQL connector module: PyMySQL version: 0.9.3

Node-RED Node.js Mobius Node.js &
Cube Node-RED

Orion
Context
Broker

Orion-Client

Device

Name Raspberry Pi 3 Model B+

CPU 1.4 GHz ARM Cortex-A53 MP4

OS Raspbian Stretch with desktop version: Nov. 2018 Ubuntu MATE 16.04.2

Additional
Device n/a n/a n/a LED sensor n/a LED

sensor

The root DNS, the oneM2M server, and the oneM2M client use python. In addition, javascript is
used for the oneM2M environment implementation. This javascript source is used to build the Mobius
server named ‘yellow turtle’ and the oneM2M client named ‘&Cube’. Mobius was developed by Korea
Electronics Technology Institute (KETI). It is a platform based on oneM2M.&Cube is developed by
KETI and it is a oneM2M-based client software. The present work uses Mobius following the example
documentation published by KETI. A python requests module is used, which sends the requests in
python. It uses a MySQL connector module named PyMySQL, which connects MySQL and python.

In order to use the Watson IoT services, we registered a user account with IBM and were assigned
a cloud. The Watson IoT-based sensor device receives requests through the IBM cloud. We have
done the node configuration using Node-RED in a Watson IoT sensor device, as shown in Figure 9.
Node-RED is a flow-based development tool for vision programming developed by IBM to wire
hardware devices, APIs, and online services as parts of the IoT. As shown in Figure 9, the device
receives the request with a satisfactory device ID and event named as blink. When setting up the node,
the user is authenticated using the API key registered by the IBM cloud.
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Figure 9. Node-RED configuration of the Watson sensor device.

In order to build the FIWARE environment, we use the Orion context broker that the user can
register and manage the context elements through queries. As shown in Figure 10, we created the LED
entity that ‘id’ status is FI_LED_1. This LED entity information is synchronized to FIWARE broker at
regular intervals.



Sensors 2019, 19, 1433 11 of 16

Sensors 2019, 19, x FOR PEER REVIEW 11 of 16 

 

 
Figure 10. Implementation testbed. 

Some elements in this implementation (i.e., the root DNS, oneM2M server, oneM2M client, 
Watson IoT sensor) are constructed using a raspberry Pi 3 Model b+, running the Raspbian stretch 
operating system, desktop version Nov. 2018. Other elements (i.e., FIWARE broker and FIWARE 
sensor) are running the Ubuntu MATE 16.04.2. The implementation testbed is shown in Figure 11. 

 
Figure 11. Implementation testbed. 

4.2. Scenario 

This subsection describes the implemented scenario of the IoT DNS. The scenario supposes 
interworking between heterogeneous IoT platforms. As a case study, it is supposed that the user of 
the oneM2M client requests and controls the sensor (i.e., Watson IoT and FIWARE LED service). In 
advance, the oneM2M server (i.e., the local DNS) receives a list of all resources from the root DNS. 
When the oneM2M server and the client start communicating, the oneM2M server provides the user 
with a list of every resource. Scenario 1 (oneM2M device requests a service to Watson IoT sensor 
device) is shown in Figure 12 and scenario 2 (oneM2M device requests a service to FIWARE sensor 
device) is shown in Figure 13. The detailed description of the scenario is as follows: 

1. The user of the oneM2M client selects the required resource named ‘LED:on’ from the resource 
list.  

2. The oneM2M server checks the resource selected by the user in the database. The oneM2M server 
confirms that it is not a request to a oneM2M-based device and sends the request to the root DNS. 

3. The root DNS checks the request received from the oneM2M server. 
4. The root DNS identifies whether the request is for Watson IoT-based device or a FIWARE-based 

device. 
5. The root DNS creates and sends a new request statement using the values in the database. 
 

Figure 10. Implementation testbed.

Some elements in this implementation (i.e., the root DNS, oneM2M server, oneM2M client, Watson
IoT sensor) are constructed using a raspberry Pi 3 Model b+, running the Raspbian stretch operating
system, desktop version Nov. 2018. Other elements (i.e., FIWARE broker and FIWARE sensor) are
running the Ubuntu MATE 16.04.2. The implementation testbed is shown in Figure 11.
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4.2. Scenario

This subsection describes the implemented scenario of the IoT DNS. The scenario supposes
interworking between heterogeneous IoT platforms. As a case study, it is supposed that the user
of the oneM2M client requests and controls the sensor (i.e., Watson IoT and FIWARE LED service).
In advance, the oneM2M server (i.e., the local DNS) receives a list of all resources from the root DNS.
When the oneM2M server and the client start communicating, the oneM2M server provides the user
with a list of every resource. Scenario 1 (oneM2M device requests a service to Watson IoT sensor
device) is shown in Figure 12 and scenario 2 (oneM2M device requests a service to FIWARE sensor
device) is shown in Figure 13. The detailed description of the scenario is as follows:

1. The user of the oneM2M client selects the required resource named ‘LED:on’ from the resource list.
2. The oneM2M server checks the resource selected by the user in the database. The oneM2M server

confirms that it is not a request to a oneM2M-based device and sends the request to the root DNS.
3. The root DNS checks the request received from the oneM2M server.
4. The root DNS identifies whether the request is for Watson IoT-based device or a FIWARE-based

device.
5. The root DNS creates and sends a new request statement using the values in the database.
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4.3. Implementation

This subsection shows the IoT DNS testing based on the scenario described above. When the
oneM2M client is connected to the oneM2M server, the user is provided with a list of resources available
to the user. Figure 14 shows an example of a client interface. The example provides the resource
number, resource name, and IP address. When the user selects the required service, the oneM2M client
transmits the request to the connected oneM2M server.
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The oneM2M server compares the received resource number with the database and checks if it is
a request to a oneM2M device. The first column in the database table, as shown in Figure 15, represents
the resource number. The present study uses a configuration in which platform number 1 refers to the
oneM2M platform, number 3 refers to the Watson IoT platform, and number 5 refers to the FIWARE
platform. Since all services registered in the example table belong to number 3 and number 5 without
number 1, the oneM2M server sends a request to the root DNS.
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The root DNS identifies the request from the oneM2M server. In scenario 1, since it is a
request to a Watson IoT device, the root DNS generates a request statement used by the Watson
IoT platform. Figure 16 shows the code that generates the request statement using the Watson IoT
resource request format.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 16 

 

The oneM2M server compares the received resource number with the database and checks if it 
is a request to a oneM2M device. The first column in the database table, as shown in Figure 15, 
represents the resource number. The present study uses a configuration in which platform number 1 
refers to the oneM2M platform, number 3 refers to the Watson IoT platform, and number 5 refers to 
the FIWARE platform. Since all services registered in the example table belong to number 3 and 
number 5 without number 1, the oneM2M server sends a request to the root DNS. 

 
Figure 15. IoT DNS database example. 

The root DNS identifies the request from the oneM2M server. In scenario 1, since it is a request 
to a Watson IoT device, the root DNS generates a request statement used by the Watson IoT platform. 
Figure 16 shows the code that generates the request statement using the Watson IoT resource request 
format. 

 
Figure 16. Requests code for LED on/off. 

If the root DNS successfully generates and sends the request to the Watson IoT, the user can 
control the LED sensor. As shown in Figure 17, if a request is successfully generated, it is presented 
through the Node-RED console window of the sensor device. As shown in Figure 18a, the user can 
check if the requests were successfully authenticated and received using the dashboard provided by 
the IBM cloud. If the root DNS uses an invalid value (e.g., device ID, path, token value), the user is 
presented with an ‘invalid value’ message, as shown in Figure 18b. 

In scenario 2, if the root DNS identifies the request from the oneM2M server, since it is a request 
to a FIWARE device, the root DNS generates a request statement used by the FIWARE platform. If 
the root DNS successfully generates and sends the request to the FIWARE, the user can get and update 
the status of LED sensor. Then, if the user selects the LED:on, the root DNS gets the status of LED sensor 
and sends the update request that LED status is ‘on’ to FIWARE. Next, as shown in Figure 19, if a 
request is successfully generated, the result is presented through the console window of the sensor 
oneM2M client. The user also can check the current status and changed status. 

 
Figure 17. Success message of the LED request in Node-RED. 

Figure 16. Requests code for LED on/off.

If the root DNS successfully generates and sends the request to the Watson IoT, the user can
control the LED sensor. As shown in Figure 17, if a request is successfully generated, it is presented
through the Node-RED console window of the sensor device. As shown in Figure 18a, the user can
check if the requests were successfully authenticated and received using the dashboard provided by
the IBM cloud. If the root DNS uses an invalid value (e.g., device ID, path, token value), the user is
presented with an ‘invalid value’ message, as shown in Figure 18b.

In scenario 2, if the root DNS identifies the request from the oneM2M server, since it is a request
to a FIWARE device, the root DNS generates a request statement used by the FIWARE platform. If the
root DNS successfully generates and sends the request to the FIWARE, the user can get and update
the status of LED sensor. Then, if the user selects the LED:on, the root DNS gets the status of LED
sensor and sends the update request that LED status is ‘on’ to FIWARE. Next, as shown in Figure 19,
if a request is successfully generated, the result is presented through the console window of the sensor
oneM2M client. The user also can check the current status and changed status.
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5. Conclusion and Future Works

Currently, there is no clear solution for the interworking of devices belonging to heterogeneous
IoT platforms. In this work, we proposed a solution to these problems, named IoT DNS, which
converts requests from a oneM2M device to the appropriate request format for interworking between
heterogeneous IoT platforms. We analyzed the resource request formats and device ID systems used
in heterogeneous IoT platforms and selected several IoT platforms (i.e., oneM2M, Oliot, Watson IoT,
IoTivity, and FIWARE). Furthermore, we created scenarios of implementation and carried out testing
based on these scenarios. The scenarios included a user with a oneM2M device using a Watson IoT
and FIWARE service. The testing results show that a oneM2M-based device successfully performed a
resource requests to a Watson IoT and FIWARE sensor devices.

Most related studies propose a solution based on the IPE method specified by the oneM2M
standard organization. IPE converts resources in heterogeneous platforms to the oneM2M resource
structures and, in addition, creates resources in the gateways. Hence, it is not efficient memory-wise
at the gateways owing to the resources being newly created by only changing the structure. On the
contrary, the IoT DNS stores only the logical location of the resources, not the entire resource,
and directly requests the resource using this value when needed. Therefore, the memory usage
of the IoT DNS is far less significant than that of the IPE.

In this work, we analyzed five platforms and presented a demonstration scenario involving
the oneM2M, Watson IoT, and FIWARE platforms. However, in order to add a new IoT platform,
we should manually register its ID system in IoT DNS. Moreover, cloud-based IoT platform (i.e.,
IBM Watson IoT) have limited functionality in the proposed IoT DNS because we are not able to
directly modify it. Furthermore, security issues should be considered in the IoT DNS. For example,
devices or users that want to use services in other platforms should be identified, authenticated,
and authorized in advance. That is, security policies for secure access to resources in heterogeneous
IoT platforms should be defined. Therefore, in our future work, we will expand the IoT DNS to
automatically store the request format of worldwide IoT platforms and use the function provided by
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the cloud-based platform. In addition, our work will be extended by adding device authentication and
authorization to the supported resource request processes. Consequently, these security policies will
be properly applied to the IoT DNS to limit unauthorized access.
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