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Abstract: Hypertension is one of the most common cardiovascular diseases, which will cause severe
complications if not treated in a timely way. Early and accurate identification of hypertension is
essential to prevent the condition from deteriorating further. As a kind of complex physiological state,
hypertension is hard to characterize accurately. However, most existing hypertension identification
methods usually extract features only from limited aspects such as the time-frequency domain or
non-linear domain. It is difficult for them to characterize hypertension patterns comprehensively,
which results in limited identification performance. Furthermore, existing methods can only
determine whether the subjects suffer from hypertension, but they cannot give additional useful
information about the patients’ condition. For example, their classification results cannot explain
why the subjects are hypertensive, which is not conducive to further analyzing the patient’s
condition. To this end, this paper proposes a novel hypertension identification method by integrating
classification and association rule mining. Its core idea is to exploit the association relationship
among multi-dimension features to distinguish hypertensive patients from normotensive subjects.
In particular, the proposed method can not only identify hypertension accurately, but also generate
a set of class association rules (CARs). The CARs are proved to be able to reflect the subject’s
physiological status. Experimental results based on a real dataset indicate that the proposed method
outperforms two state-of-the-art methods and three common classifiers, and achieves 84.4%, 82.5%
and 85.3% in terms of accuracy, precision and recall, respectively.

Keywords: hypertension identification; class association rule (CAR); classification; association rule
mining; heart rate variability (HRV); ballistocardiogram (BCG)

1. Introduction

Hypertension is a common and risky cardiovascular disease in modern society, which manifests
as continuously elevated arterial blood pressure. According to a report from the World Health
Organization, hypertension affects more than 40% of adults aged 25 and over, which signifies that
globally over one billion people suffer from hypertension [1]. Without timely treatment, it can lead
to serious complications, such as strokes, heart attacks, kidney failure, and so on [1]. As a result it is
reported that hypertension causes over 9.4 million deaths per year [1]. Problematically, hypertension
may not show any symptoms for many years or even decades. Indeed, many people do not realize
that they already suffer from hypertension. In the US, nearly 13 million patients are unaware of
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their condition, while in China, such patients account for about 59% of the population [1]. Therefore,
identifying hypertension as early as possible is crucial to alleviate the problem and avoid more damage
to the human body [2].

The cuff-based mercury sphygmomanometer is the traditional clinical method to measure
blood pressure. However, it requires specialists to operate and is uncomfortable to use, which is
not suitable for daily use in the home environment. More importantly, hypertension is a quite
complex physiological status where blood pressure always fluctuates unpredictably. However,
sphygmomanometers can only give discrete measurement results, which is not conducive to accurately
analyzing the disease status. Hence, novel hypertension identification methods that can solve the
above problems are needed.

Existing clinical studies showed that blood pressure is simultaneously controlled by the
sympathetic nerve and parasympathetic nerve, and that heart rate is as an effective clinical metric
to reflect the function of autonomic nerve system (sympathetic nerve and parasympathetic nerve
are collectively called the autonomic nerve system) [3,4]. Therefore, quantitatively investigating
cardiac autonomic deregulations by analyzing heart rate variability (HRV) has become a mainstream
method in the field of cardiovascular research, including hypertension identification [5]. For example,
Poddar et al. [6] proposed a HRV-based machine learning method to classify normal and hypertensive
cases. It first extracted RR intervals sequence (a RR interval is the time interval between two successive
heartbeats) from five-minute electrocardiogram (ECG) collected by using a commercial device. Then,
it extracted lots of linear-nonlinear features to characterize the fluctuation pattern of HRV. Finally,
a support vector machine (SVM) was trained to distinguish hypertensive patients and normotensive
subjects. Ghosh et al. [7] extracted not only HRV-related features from photoplethysmograph (PPG)
data, but also many other features from galvanic skin response and skin temperature to model the
hypertension patterns. Afterwards, classifiers including K-Nearest Neighbors, Naïve Bayes, Decision
Trees and SVM were employed to identify hypertension patients. Due to the poor quality of the signals
collected by utilizing a smart watch, only an F-measure of 0.62 was obtained. Melillo et al. [8] proposed
a processing pipeline for 24-h ECG Holter recordings to identify high-risk hypertensive patients.
The pipeline designed plenty of HRV features, from which the most powerful ones were selected
by using unpaired t-tests and chi-square tests. Finally, the performance of different combinations of
features and machine learning algorithms were compared. Although these studies have made great
progress, there are still two problems that need to be addressed. First, existing methods usually extract
limited features from only one or two aspects (i.e., time-frequency domain and the non-linear domain)
to model the hypertension pattern. However, as a complex physiological status, hypertension pattern
is hard to accurately characterize by utilizing features extracted from limited aspects [5]. Second,
existing studies usually utilize classifiers such as SVM, artificial neural network and logistic regression
to identify hypertension. Although commonly used classifiers can determine whether a subject suffers
from hypertension, their classification results are not interpretable. In other words, their classification
results cannot give more detailed information about why subjects are hypertensive or normotensive.
Consequently, these classifiers cannot assist doctors to analyze patient’s condition in depth.

Ballistocardiogram (BCG) [9] is a kind of non-intrusive physiological signal that can accurately
reflect the micro body vibrations caused by the mechanical activities of heart. To be specific, BCG
is defined as the reaction (displacement, velocity or acceleration) of the whole body resulting from
cardiac ejection of blood. Consequently, BCG signal is a combination of multiple forces related to the
movements of the heart itself, and the blood inside the heart and arteries [10,11]. Since BCG signal
contains information about the heartbeats, it has been widely employed in diagnosing varieties of
cardiovascular diseases, having achieved great successes [12,13]. For example, Liu et al. [12,14] put
forward a novel obstructive sleep apnea detection method based on the segmentation of BCG signals.
To solve the two problems of existing hypertension identification methods mentioned above, this
paper proposes a novel BCG-based hypertension identification method, whose key idea is to integrate
association rule mining and classification together, aiming to use the association relationship among



Sensors 2019, 19, 1489 3 of 25

features to model and identify hypertension pattern. Concretely, the proposed method first extracts
multiple features from BCG to characterize the hypertension pattern comprehensively. Afterwards,
it mines and selects a set of representative class association rules (CARs) from the extracted features
to represent the association relationship among different features. Finally, based on the extracted
CARS, a classifier called CAR-Classifier is constructed to discriminate hypertensive patients from
normotensive subjects. In particular, the proposed method not only can obtain high hypertension
classification performance, but also can generate interpretable classification results (i.e., the extracted
CARs), which is conducive to analyzing patients’ condition in depth. The contributions of this work
are three-fold:

• First, to characterize the hypertension pattern more comprehensively, we extract lots of features
from various aspects based on BCG. To be specific, on the one hand we extract HRV-related
features from time domain, frequency domain and non-linear domain to model the function of
sympathetic nerve and parasympathetic nerve. On the other hand, we also design a set of four
features to characterize the fluctuation pattern of BCG signal itself, so as to investigate whether
the fluctuation pattern of BCG signal also has a relationship to hypertension status. Experimental
results indicate that the features extracted from multiple aspects can accurately characterize the
pattern of hypertension. In addition, it also shows that the BCG signal of hypertensive patients
usually fluctuates more wildly than that of normotensive subjects, which shows the usefulness of
the BCG fluctuation features.

• Second, in order to distinguish hypertensive patients and normotensive subjects more accurately,
we construct a CAR-Classifier by integrating association rule mining and classification together.
With the help of the CAR-Classifier, the association relationship among extracted features can
be fully investigated and exploited, which significantly increases the classification performance.
Furthermore, the CAR-Classifier can also generate a set of CARs. These CARs contain plenty of
meaningful information about the patients’ physiological status, which is proved to be useful for
analyzing the patients’ condition in-depth.

• Third, we conduct extensive experiments to evaluate the proposed method based on a real BCG
dataset of 128 subjects. Experimental results show that the performance of the proposed method
is better than two state-of-the-art methods as well as three common classifiers, obtaining 84.4%,
82.5% and 85.3% in terms of accuracy, precision and recall, respectively. In addition, we also
evaluate the effectiveness of the generated CARs by carrying out a small-scale user study, and the
experimental results show high utility of these CARs in diagnosing hypertension.

The rest of this paper is organized as follows: We review the related work in Section 2. Then,
the materials and the methods are described in Section 3, followed by the experimental results in
Section 4. Next, we discuss the proposed method in Section 5. Finally, the paper is concluded in
Section 6. An early conference presentation of this work was described in [15].

2. Related Work

In this section, we will briefly review the related work, which can be grouped into two categories
as follows:

The first category focuses on the feature extraction for hypertension identification. It has
been verified that HRV has a strong relationship with hypertension [3]. Hence, HRV is usually
utilized for identifying hypertension. At present, there are three commonly used HRV analysis
methods, mainly including time domain analysis, frequency domain analysis and non-linear domain
analysis [16]. The time domain analysis is to compute several statistics, so as to characterize the
pattern of hypertension. These statistics contain plentiful information of heart, blood vessels and
nervous-humoral regulation. Yue et al. [17] found that the commonly used time domain features
of masked hypertensive patients are significantly decreased compared with those of healthy people,
which indicated that time domain analysis could be used to discriminate between healthy people and
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hypertensive patients. Frequency domain analysis is usually used to investigate the power distribution
of the RR intervals sequence. Aldemir et al. [18] analyzed the power in different frequency bands and
found that there was a statistically significant difference between the features (for example, the ratio of
the power in low frequency band to the power in high frequency band) extracted from hypertensive
patients and normotensive subjects respectively. Linear HRV analysis methods assume that the RR
interval sequence is stationary or that variations are harmonic or sinusoidal in nature. However, the
heart rate actually is continuously modulated by non-linear functions. Therefore, non-linear analysis
is necessary for HRV analysis. By analyzing the RR interval sequences of pregnant women, the work
in [19] found that there was an obvious relationship between the complexity of HRV and the blood
pressure. It is notable that the aforementioned works analyzed HRV from only one or two domains,
which resulted in limited classification performance. In contrast, this paper extracts features from
time-frequency domain and non-linear domain simultaneously. In addition, this paper also designs
a set of features to model the fluctuation pattern of BCG, which are experimentally proved to be useful
for identifying hypertension.

The second line of studies aim to construct machine learning-based hypertension classification
models. Ni et al. [5] proposed a temporal pyramid representation and feature pooling technique-based
HRV analysis approach, by which the ECG signal was subdivided into several temporal resolution
levels and the HRV features extracted from different levels were then aggregated into a single feature
vector. Finally, L1-regularized logistic regression and SVM were utilized to distinguish hypertensive
patients and normotensive subjects. Poddar et al. [20] extracted a lot of HRV-related features from
RR interval sequences and then directly fed them into a SVM to identify hypertensive subjects.
In order to characterize hypertension pattern more comprehensively, Ghosh et al. [7] extracted features
from multiple physiological signals and then modeled them by separately employing five common
classifiers. Finally, the Adaboost model achieved the highest identification performance with all
the extracted features utilized. Particularly, Rundo et al. [21] proposed a PPG based non-invasive
cuff-less blood pressure estimation method. It collected the PPG signal of patients by employing
a silicon photomultiplier sensor (SiPM), and then extracted three groups of features to characterize the
correlation between the acquired PPG signal and blood pressure. The features were further modeled by
two artificial neural networks separately. Eventually, an average error of two mmHg for systolic blood
pressure estimation and diastolic blood pressure estimation was obtained. Although these methods
achieved good performance, they can only judge whether the subjects are hypertensive, but they
cannot explain why the subjects suffer from hypertension, which is unhelpful for doctors to analyze
the patient’s condition in-depth. To solve this problem, Melillo et al. [8] applied a decision tree-based
classifier to model the HRV-related features extracted from ECG signal, and thus obtained a set of
dendroid decision rules. If a subject matched a rule’s antecedent, he or she would be classified into
the corresponding class, i.e., the rule’s consequent. The obtained dendroid decision rules to a certain
degree facilitate the explanation of why subjects suffer from hypertension. However, it only considered
just one feature at each node when constructing the decision tree, which might lose the correlation
relationship among features and hence lead to limited classification performance. To this end, this
paper puts forward a CAR-Classifier to identify hypertension. It considers all the extracted features
simultaneously when extracting CARs, which significantly improves the identification performance.
In addition, it can also generate a set of informative CARs that can accurately reflect the subjects’
physiological state.

3. Materials and Methods

In this section, we first describe the process of collecting experimental BCG dataset, and then
elaborate the details of the proposed method. To facilitate the reproducibility of the research, the
software code and BCG dataset are published online at https://doi.org/10.6084/m9.figshare.7594433
(Supplementary Materials).

https://doi.org/10.6084/m9.figshare.7594433
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3.1. Collection of Real BCG Dataset

To non-intrusively and conveniently collect BCG signal, an unobtrusive BCG signal acquisition
system (named RS-611) is employed in this study [22]. The RS-611 is a certificated medical device
developed by Institute of Air-force Aviation Medicine (Beijing, China). As shown in Figure 1, the
RS-611 is comprised of a micro-movement sensitive mattress (MSM), an analog-digital (AD) converter
and a terminal PC. The MSM is the main function part of this system, in which two hydraulic pressure
sensors (oil tubes) in the shape of strips are embedded. Particularly, one is located at the upper part
of the mattress (i.e., chest area) and the other one is placed at the leg region. Both of them are long
enough and placed in parallel, which guarantees that proper BCG signal can be captured regardless of
the size of the subject. When a subject lies on the MSM, the changes of original pressure caused by
cardiac activities (i.e., heartbeats) are recorded, amplified, and converted to digital signal by utilizing
the 16-bit-resolution AD converter with a sample rate of 100 Hz, forming a time series of composite
pressure data. Afterwards, BCG signal is separated from the original composite pressure signal by
performing drift compensation and digital filtering based on the built-in software, and eventually
displayed on the PC. In [23], a real-time comparison between BCG signal collected by RS-611 and
ECG signal collected by a commercial ECG collector (Prince 180D, http://www.healforce.com/en/)
was made, whose experimental results indicated that each wave trough of the collected BCG signal
corresponded to a local minimum point of the collected ECG signal, which demonstrated the suitability
of the collected BCG signal for analyzing and diagnosing cardiovascular diseases. In comparison with
other wearable signal acquisition devices like ECG Holter [24], smart watch [25], smart chair [26], PPG
based non-invasive blood pressure estimator [27] and cuff-based mercury sphygmomanometer, the
MSM-based RS-611 is completely unobtrusive and the users do not need to attach any electrodes or
devices on their body. Furthermore, the RS-611 does not require complex configurations, which is
especially suitable for the elderly.
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Figure 1. The micro-movement sensitive mattress based BCG signal acquisition system (RS-611).

In this study, 175 staff from our university were recruited as subjects. All of them gave their
informed consent for inclusion before they participated in the study. The study was conducted
in accordance with the Declaration of Helsinki, and the protocol was approved by the Medical
Experimental Ethical Inspection Institute of Northwestern Polytechnical University (No.20170078).
First, we conducted routine examinations to obtain basic physiological index. In particular, the
blood pressure was measured by a trained nurse by using a standard mercury sphygmomanometer.
At each examination, blood pressure was measured in the left arm twice after five minutes of rest.
According to the guidelines of the American Society of Hypertension [28], the subjects were asked
to be in seated position when measured. For each subject, blood pressure was recorded in four
separate sessions within 3 weeks, and the averaged values were then used to represent the final
systolic and diastolic blood pressure values. Subjects with blood pressure values greater than 140/90
mmHg were viewed as hypertensive patients, while the rest were regarded as normotensive subjects.

http://www.healforce.com/en/
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In particular, subjects were excluded if they met any of the following criteria [29]: (1) use of any
anti-hypertensive drugs when measuring blood pressures, (2) Body Mass Index (BMI) >30, (3) history
or clinical evidence of congestive heart failure or myocardial infarction, (4) atrial fibrillation, (5) diabetes
mellitus, (6) alcoholics or smokers. After applying these exclusions, 68 hypertensive patients and
76 normotensive subjects were eligible for our experiments.

Before collecting BCG signal, we instructed each subject about how to use the RS-611 properly.
In addition, the day before the experiment they were asked to sleep on the bed for about one hour
for the sake of gathering feedbacks. We adjusted the indoor temperature, indoor light intensity, noise
level and other factors that may affect their normal sleep according to their feedbacks, aiming to make
sure that can sleep well through the whole night. Finally, for each subject one night of BCG signal was
collected when they were sleeping, since the physiological indexes are relatively stable and not affected
by other factors during sleep. The next morning, subjects were asked some questions, for example,
when did they fall asleep, when did they get up, and how did they sleep. If the subjects did not sleep
well or the sleep time was less than seven hours, the corresponding BCG recordings were considered
inappropriate for research and were therefore discarded. Furthermore, a manual visual inspection
was conducted on each BCG recording. BCG recordings that contained too many drastic fluctuations
were also excluded from this research. After the inspection process, the final BCG dataset left 128 BCG
recordings in total, including 61 hypertensive patients and 67 normotensive subjects. The statistical
results of the BCG dataset are summarized in Table 1.

Table 1. Statistics of the experimental BCG dataset (mean ± standard deviation).

Subject Information Hypertensive Normotensive

Number 61 67
Sex (Male/Female) 33/38 35/32

Age (years) 55.6 ± 7.9 53.2 ± 9.2
Heart Rate (bpm) 77.1 ± 9.2 73.6 ± 8.3

Body Mass Index (kg/m2) 24.3 ± 3.6 23.7 ± 3.3
Systolic blood pressure (mmHg) 155.6 ± 11.2 112.1 ± 15.7

Diastolic Blood Pressure (mmHg) 103.6 ± 8.2 74.4 ± 6.3

3.2. Hypertension Identification Method Framework

In this paper, we aim to exploit the association relationship among multi-dimensional features
to automatically distinguish hypertensive patients and normotensive subjects. As shown in Figure 2,
the proposed hypertension identification method mainly consists of three stages, i.e., RR intervals
extraction, feature extraction and selection, hypertension classification.
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During the RR intervals extraction stage, we first normalize the BCG in order to eliminate
signal amplitude differences caused by different body weights, then we utilize the multi-resolution
wavelet analysis to extract the approximate layer signal that can clearly reflect the cardiac activities
of heart. Finally, we compute the RR intervals sequence by using an overlapping sliding window
algorithm. In the feature extraction and selection stage, we not only extract HRV-related features from
time-frequency domain and non-linear domain, but also extract four BCG fluctuation-related features
to characterize the fluctuation pattern of BCG. Moreover, we compute significant difference level for
each feature, and select features with excellent discrimination ability for baseline methods. In the third
stage, we first mine and select a set of informative CARs from the obtained features, based on which we
then construct the CAR-Classifier and finally classify the subjects into hypertensive and normotensive.

3.3. RR intervals Sequence Extraction

A segment of collected BCG signal is shown in Figure 3 (top subplot), from which we will extract
accurate RR intervals sequence for further extraction of HRV-related features.
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Figure 3. The original BCG and the approximation layers of the BCG. (a) The original BCG signal;
(b) The 4th approximation layer; (c) The 5th approximation layer; (d) The 6th approximation layer.

The extraction of RR intervals sequence mainly consists of three steps as follows:
Signal normalization: Since the amplitude value of BCG signal is influenced by body weight to

a certain extent, we first eliminate BCG signal amplitude difference caused by different body weight
by normalizing the BCG signal using Z-score method [13], which is written as:

Xnor_i =
Xi − µ

σ
, (1)

where Xi is the ith value of BCG signal, µ and σ represent the mean value and the standard deviation
of the BCG signal respectively, and Xnor_i is the normalization form of Xi. Afterwards, we design
an elliptic bandpass filter to filter the noise component that is irrelative to the heart beats. Based on
extensive experiments, the passband corner frequency and the stopband corner frequency are set to
5/6 Hz and 13/6 Hz respectively and the passband ripple and the stopband attenuation are set to 0.2
and 8 respectively.

Wavelet decomposition: Discrete wavelet transform (DWT) is a signal processing technique that is
often employed to extract useful information from non-stationary time series, including physiological
signals [14,15]. The utilization of DWT usually has a wonderful advantage that it can decompose the
time series into multiple time-frequency resolutions, by which the details of the signal in time and
frequency domains can be clearly displayed. Therefore, in this paper we utilize DWT to decompose
BCG signal and further select the most appropriate approximation layer that can clearly reflect the
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heartbeats. Concretely, the BCG signal is first decomposed into detail component and approximation
component at the first level, which is implemented by passing it through a pair of high-pass and
low-pass filters as follows:

Detail(n) = ∑∞
k=−∞ x(k)ϕh(2n− k) (2)

Approximation(n) = ∑∞
k=−∞ x(k)ϕg(2n− k) (3)

where x(k) represent the kth sample of BCG signal, and ϕh and ϕl are high-pass filter and low-pass
filter respectively. The detail and approximation components are comprised of detailed coefficients
and approximant coefficients, respectively. Afterwards, the above process is iteratively applied to the
approximation component at each level until a specified level is reached. Finally, the approximation
coefficients at each level are separately utilized to reconstruct an approximation layer of the original
BCG signal. The approximation layers derived from BCG signal is shown in Figure 3, with the ‘db6’
function used as the wavelet basis. Obviously, compared with the 5th approximation layer, the parts
in red boxes mean that the 6th approximation layer may miss some heartbeats, while the parts in
black boxes indicate that the 4th approximation layer is prone to generate some fake wave peaks,
which will lead to inaccurate RR intervals. Moreover, the waveform of the 5th approximation layer
is more regular and smoother than that of the 4th and 5th approximation layers. Therefore, the 5th
approximation layer is finally selected to extract RR intervals.

RR intervals extraction: To locate the heartbeats accurately, we design an overlapping sliding
window to detect BCG wave peaks automatically. Concretely, the window size and the overlapping
size are set to 100 samples and 60 samples respectively (the sample frequency of the BCG signal is
100 Hz), considering that the normal heart rate range is 60–100 per minute. The detected heartbeats are
shown in Figure 4, which shows very high heartbeat detection performance. In particular, it achieves
an accuracy of 98.4% in detecting the heartbeats compared with ECG monitor.
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Figure 4. The detected heartbeats based on the 5th approximation layer of the BCG signal.

3.4. Feature Extraction and Selection

HRV can reflect the function of sympathetic nerve and parasympathetic nerve, and has being
usually used for identifying hypertension [30]. On the other hand, we also notice that the fluctuation
of BCG is directly caused by cardiac mechanical activities. In other words, analyzing the fluctuation
pattern of BCG may be also helpful for identifying hypertension [12]. Therefore, in this section we not
only extract HRV-related features from RR intervals sequence, but also extract a set of four features to
model the fluctuation pattern of BCG. All the extracted features are displayed in Table 2, which can be
categorized into two groups as follows.

Table 2. List of the extracted features.

Type Features Description

TD 1

Mean The mean value of RR intervals
SDNN The standard of successive RR intervals
RMSSD The root mean square of successive RR intervals
PNN50 The percentage of RR intervals longer than 50ms
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Table 2. Cont.

Type Features Description

FD 2

vLF The power in 0.0033Hz–0.04Hz band
LF The power in 0.04 Hz–0.15 Hz band
HF The power in 0.15 Hz–0.4 Hz band

LF/HF The ratio of power in LF and HF band

ND 3 SampEn The sample value with r = 0.15 * STD
DFA The short-term coefficient of detrended fluctuation analysis

BF 4

ZCR The zero crossing rate of BCG signal
ACAC The average cumulative amplitude change in unit length
ANEP The average number of extreme points in unit time
ASTC The average signal turn counts in unit time

1 Time domain features. 2 Frequency domain features. 3 Non-linear domain features. 4 BCG fluctuation features.

3.4.1. Heart Rate Variation (HRV) Analysis

To characterize hypertension patterns more comprehensively, we extract HRV-related features
from the time domain, frequency domain and non-linear domain simultaneously. Time domain
analysis can obtain rich information about blood vessels, heart and nervous-humoral regulation [4,31].
In particular, the MEAN, SDNN, RMSSD and PNN50 are extracted as time domain features, which
represent the mean, the standard deviation, the root mean square of RR intervals, and the percentage
of RR intervals that are longer than 50 ms, respectively. The first three features are utilized to depict
the entire distribution of RR intervals, while the last feature is used to model the degree of fluctuation
of the RR intervals.

Frequency domain analysis has been proved to be effective for assessing the variation of the
autonomic nervous system [4]. It can effectively characterize the balance of the sympathetic nerve
and parasympathetic nerve [32]. In this study, the power values in different frequency bands are
extracted as frequency features by utilizing Fast Fourier Transform (FFT) technique. The extracted
frequency features include vLF, LF, HF, and LF/HF. Specifically, vLF represents the power in very
low frequency band ranging from 0.0033–0.04 Hz, which reflects vascular mechanisms caused by
negative emotions. LF denotes the power in low frequency ranging from 0.04–0.15 Hz, which reflects
sympathetic modulation of heart rate. HF means the power in high frequency band ranging from
0.15–0.4 Hz, which reflects the parasympathetic nervous system activity. LF/HF is the ratio of the
power in LF and HF, which measures the balance of the sympatho-vagal balance [5]. It is notable that
the RR intervals sequence is resampled by using cubic spline interpolation with a sampling rate of
4 Hz before extracting these features [33].

The extracted non-linear features include Sample Entropy (SampEn) and Detrended Fluctuation
Analysis (DFA), which are two of the most useful features for studying the variability, irregularity and
complexity of RR intervals sequence in existing cardiovascular diseases-related researches [5,12,19,34–36].
Particularly, SampEn is an effective metric for measuring the complexity and regularity of short time
series [34,37]. Higher SampEn usually means that the signal is of higher complexity. Given a signal
sequence, there are two important parameters when calculating the SampEn value, i.e., the detail level
of vector m and the threshold r used to filter out the noise. According to the widely accepted empirical
guidelines, we set the parameters as m = 2 and r = 0.15 * STD (STD is the standard deviation), respectively.
On the other hand, DFA is good at mining the long term inner correlation of time series [38]. Since
BCG signal is also influenced by respiration which presents a certain periodicity and may distort the RR
intervals sequence, we use DFA to eliminate the trends caused by respiration and hence focus on the
inner correlation of heart beats. In DFA analysis, we introduce a parameter denoted as s, which represents
the length of signal segments. To avoid the influence of respiration on heart rate (there are about 3–6 heart
beats during one breath), the segment length is set to 40 ≤ s ≤ 240.
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3.4.2. BCG Fluctuation Analysis

Since the fluctuation of BCG signal is modulated by cardiac mechanical activities, it might be
feasible to study cardiovascular diseases such as hypertension by analyzing the fluctuation pattern
of BCG. However, the BCG signal usually contains noise caused by body movements and signal
acquisition device itself, the features we will extract should be insensitive to noise. To this end, four
anti-noise features that can characterize the fluctuation pattern of BCG signal from different aspects
are designed as follows:

Zero Crossing Rate (ZCR): ZCR is an efficient feature for characterizing the signal complexity and
is usually employed to detect percussive sound signal which is similar to BCG signal. Using sgn() to
denote the sign function that returns -1 for a negative argument, 0 for 0, and 1 for a positive argument,
then the ZCR of is defined as:

ZCR =
∑N

i=2|sgn(Si)− sgn(Si−1)|
2(N − 1)

(4)

where Si denotes the amplitude value of the ith sample point, and N represents the total number of
sample points of BCG signal. Intuitively, ZCR measures how many times two successive samples
go through zero in a unit of length. Thus, recordings with higher ZCR values usually fluctuate
more violently.

Average Cumulative Amplitude Change (ACAC): Intuitively, given a time series signal with fixed
sample frequency, the more intensive the signal fluctuations, the larger the difference between two
adjacent sample values. Therefore, we design ACAC to measure the degree of changes in amplitude,
so as to model the fluctuation pattern of BCG signal. The ACAC is defined as follows:

ACAC =
∑N

i=2|Si − Si−1|
T

(5)

where Si denotes the amplitude value of the ith sample point, and T represents the corresponding time
duration. Particularly, the utilization of T is to eliminate the effect caused by different length of signal.

Average Number of Extreme Points (ANEP): As a typical cardiovascular disease, hypertension can
affects the normal heart activities to a certain degree, which can be reflected in the degree of chaos of
the BCG signal. Through careful observation of the experimental dataset, we find that the BCG signals
collected from hypertensive patients usually show more signal thorns compared with that collected
from normotensive subjects. Moreover, we notice that the more serious the condition of hypertension
is, the more signal thorns the BCG signal presents. Since signal thorns can be viewed as signal extreme
points, we characterize the aforementioned phenomenon by counting the average number of extreme
points, which is defined as:

ANEP =
len( f ind(di f f (sgn(di f f (S))) == ±2) + 1)

T
(6)

where len() represents the size of the array, find() returns elements that meet the defined condition, diff()
denotes the derivatives of the array, and sgn() is basic symbol function. Intuitively, higher ANEP value
usually represents more chaotic BCG signal. In order to facilitate the understanding, we explain the
above function step by step as follows: diff(S) is the first-order derivative of the BCG signal, which is
comprised of positives, negatives and zero. It is notable that the samples corresponding zero in diff(S)
are not necessarily extreme points. Actually, only three-element arrays in the shape of (positive, 0,
negative) or (negative, 0, positive) in diff(S) can denote extreme points. To find out these three-element
arrays, we further convert diff(S) into sgn(diff(S)), which consists of number 1, number −1, and zero.
Then, we compute the second-order derivative as diff(sgn(diff(S))), where the three-element arrays
mentioned above have been transformed into forms of (0, 2, 0) or (0, −2, 0). Next, we locate the
these extreme points by using find(diff(sgn(diff(S)))==±2). Finally, the extreme points in BCG signal is
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counted and further normalized as ANEP=len(find(diff(sgn(diff(s)))==±2)+1)/T. In particular, because
the two derivation operations will shorten the length of BCG signal by two sample points, and thus
the previous operations cannot identify the extreme point at the penultimate sample point, we utilize
the number 1 in the numerator as a compensation, so as to obtain accurate number of extreme points.

Average Signal Turns Count (ASTC): Every systole of the heart will generate a shock wave in the
blood vessels, and finally form a wave peak in the BCG signal. Likewise, every diastole will lead to
a valley. Abnormal heart activities can directly affect the shape of the peaks and valleys. To model the
morphological characteristics of the signal peaks and valleys, we introduce a metric named signal turns
counts (STC) which has been applied in different research fields and produced impressive results [7].
The main idea of STC is to pick out the signal points that meet certain conditions. Specifically, to adjust
to our problem, we define ASTC based on STC as follows:

ASTC =
len( f ind(Si meet condition 6))

T
(7)


[Si − Si−1]× [Si+1 − Si] < 0
|Si+1 − Si| ≥ Th, |Si − Si−1| ≥ Th
2 ≤ i ≤ N − 1

(8)

where Th is a threshold which is empirically set as 0.01 based on experimental results. In other words,
ASTC counts the sample points that is not only a signal turn in itself, but also has a gap larger than the
given threshold Th with its two adjacent sample points in terms of amplitude.

3.4.3. Feature Selection

In total, 14 features including 10 HRV-related features and four BCG fluctuation-related features
are extracted. Since the proposed hypertension identification method is based on the exploitation
of the association relationship among features, one strength of the proposed method is that it is not
sensitive to the number of features [28,39]. In other words, it can automatically ignore features that
are not helpful for improving classification performance with no requirement for additional feature
selection procedure. However, we do need to conduct feature selection for baseline methods, for the
sake of fair comparison. In this study, two-sample t-test is utilized to select the most useful features.
It is a well-known statistical method that is usually employed to test whether there is a significant
difference between two sample groups [40]. If the result of the t-test, i.e., the p-value, is smaller than
a specified threshold, we then have reasons to believe that the two groups of samples come from
different distributions, in other words, the corresponding feature has excellent discrimination ability.
The details of the feature selection process are elaborated in Section 4.2.1.

3.5. Hypertension Classification

In this study, we discriminate hypertensive patients and normotensive subjects by designing
a CAR-Classifier, which integrates association rules mining and classification together. By this
method, the association relationship among multi-dimensional features can be fully investigated.
Furthermore, it also generates a set of CARs, which are helpful for doctors to analyze patients’
condition in-depth [41–46].

Before elaborating the proposed CAR-Classifier [47,48], we formulize some definitions that are
relevant to the CAR-Classifier. In CAR-based classification problems, the dataset is usually viewed as
a relational table. Let D = {d1, d2, . . . , dN} represent the dataset, which contains N instances described
by k− 1 distinct attributes. Let Y = {y1, y2, . . . , yM} denote a finite set of class labels that has M known
classes. Each instance belongs to one of the M classes. To simplify the narrative and make it easier to
understand, we treat the class label as a special attribute, thus, each instance has k distinct attributes.
Attributes in D can be discrete or continuous, while all of them should be preprocessed uniformly
before mining CARs. Concretely, for any discrete attribute, all the possible values are mapped to a set
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of consecutive positive integers. Similarly, for any continuous attribute, its value range is discretized
into several intervals which are further mapped to consecutive positive integers. For example, assume
that an instance is described by three attributes (i.e., attribute A, attribute B and class label C) which
are discretized into three intervals, four intervals and five categories, respectively. In this case, the
intervals of A, B and C are mapped with numbers 1 through 3, numbers 1 through 4, and numbers 1
through 5, respectively. Based on this mappings, an instance can be represented as a set of <attribute,
value> pairs, and each pair is referred as an item. Let I = {item1, item2, . . . , itemL} denote the set of items
in D, which contains L items. Afterwards, we define itemSet as a subset of I. Accordingly, an itemSet
consisting of k items is called k-itemSet. Particularly, an itemSet that contains only one item is called
1-itemSet. Moreover, if a k-itemSet (k ≥ 2) contains just one item derived from the class attribute, we
refer this k-itemSet as a candidate class association rule (CCAR), which can be represented as a form
of follows:

ruleItems→ y (9)

where y denotes the item derived from the class attribute, while ruleItems represents the rest items of the
k-itemSet. A CCAR is with support (sup) s signifies that s% of the instances in D contain the ruleItems
and are labeled with y. Meanwhile, a CCAR has confidence (conf ) c means that c% of instances in D
that contain the ruleItems are labeled with y. Let RuleitemsCount and CandidateCount represent the
number of instances in D that contain the ruleItems, and the number of instances in D that contain the
ruleItems and are labeled with y, respectively. Thus, the sup and conf of a given CCAR can be computed
as follows:

sup =

(
CandidateCount

|D|

)
∗ 100% (10)

con f =

(
CandidateCount
RuleitemsCount

)
∗ 100% (11)

where |D| is the number of the instances in D. Particularly, a CCAR whose sup is greater than
a user-specified minimum support (minSup) is called frequent candidate class association rule (FCCAR),
otherwise called infrequent candidate class association rule (ICCAR). Furthermore, if the conf of
a FCCAR is greater than a user-specified minimum confidence (minConf), we call this FCCAR a class
association rule (CAR).

Next, we give a simple example to illustrate the relationship among the CCAR, FCCAR and CAR.
Given a CCAR with form of:

{〈A, 1〉, 〈B, 3〉} → 〈C, 5〉 (12)

where A and B are attributes, and C is the class label. Actually, the {〈A, 1〉, 〈B, 3〉} and 〈C, 5〉 are the
ruleItems and y in Equation 7, respectively. Assume that the RuleitemsCount and the CandidateCount
of the {〈A, 1〉, 〈B, 3〉} are 3 and 2 respectively, and the number of instances in D is 10. Thus, the sup
of the CCAR is 2/10 = 20%, and the confidence is 2/3 = 66.7%. If the minSup is specified as 10%, we
say that this CCAR is a FCCAR since its sup is greater than the minSup. Furthermore, if the minConf
is set less than 66.7%, this CCAR is actually a CAR, and hence can be utilized when constructing the
CAR-Classifier.

Based on the concepts defined above, the construction of the CAR-Classifier is elaborated as
follows. Concretely, building a CAR-Classifier mainly consists of two stages [34,39,49], i.e., the rule
generation stage (RG-Stage) and the classifier build stage (CB-Stage). The former aims to mine all
CARs, i.e., CCARs that satisfy specific minSup and minConf requirements, while the latter is to build
the CAR-Classifier based on the extracted CARs.

RG-Stage: Since the features extracted in Section 3.4 are continuous values, and cannot be directly
used to mine CARs [50], we adopt the equal-width strategy to discretize the feature values into some
equal-width intervals. Based on the advice given by doctors, each feature is divided into five equal
intervals which represent very low, low, medium, high, very high, respectively. Accordingly, we use
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numbers 1 through 5 to represent these five intervals. In addition, the class attribute consists of two
categories, i.e., hypertensive and normotensive, which corresponds to numbers 1 and 2 respectively.

In order to mine CARs, we design a rule generation algorithm based on the well-known Apriori
algorithm [46]. It extracts all the CARs by making multiple traversals over the dataset. Concretely,
in the 1th traversal, it picks out all the frequent 1− itemSets. In the k + 1th traversal, it first generate
frequent (k + 1)− itemSets based on the set of frequent k− itemSets obtained in the kth pass. Then it
singles out all CCARs from the obtained frequent (k + 1)− itemSets. Afterwards, the sup and conf of
these CCARs are computed. At the end of the current traversal, CARs are picked out from the obtained
CCARs based on the computed sup and conf, and the user-specified minSup and minConf. Eventually,
the CARs extracted from each traversals conjointly make up the final CAR set. The details of the
proposed rule generation algorithm is described in Algorithm 1, where the function candidateGen()
represents the linkage of two (k− 1)− itemSets into one k-itemSets.

Algorithm 1: The Rule Generation Algorithm

Definition:

• Let k-itemSet denote an itemSet that contains k items.
• Let Pk denote the set of k-itemSet that may be frequent.
• Let Ck denote the set of k-itemSet that has a class label-derived item, whose sup and conf are denoted as

supCount and confValue respectively.
• Let Fk denote the set of frequent candidate rules.
• Let CARk denote the set of CARs that have k items.

Input:

• The user-specified support threshold (minSup) and confidence threshold (minConf ).
• All the frequent 1-items.

Output:

• The set of the extracted CARs, which is denoted as RuleSet.

1, F1={frequent 1-items}
2, for(k=2; Fk-1 6=Ø; k++) do
3, Pk=link(Fk-1);
4, Ck={p∈ Pk|p has a class label-derived item};
5, Fk={c∈Ck|c.supCount ≥ minConf }
6, CARk={f∈Fk | f.confValue ≥ minConf }
7, end
8, RuleSet=∪kCARk

CB-Stage: For the sake of narrative, the set of CARs is thereafter referred to as RuleSet. To
improve the classification performance, the most powerful CARs should be employed to construct
the CAR-Classifier. To this end, we first sort the RuleSet in descending order, where the CARs at the
front are of higher classification ability than the CARs at the back. When building the CAR-Classifier,
the CARs at the front have the priority to be included into the CAR-classifier. Particularly, the sorting
method employed in this paper is as follows:

Given two CARs named ri and rj, ri >rj (also called ri precedes rj or ri has a higher precedence
relative to rj) if:

(1) the conf of ri is larger than that of rj, or

(2) their conf are the same, but the sup of ri is larger than that of rj, or

(3) both the conf and sup of ri and rj are the same, but ri has more items than rj.

Afterwards, we build the CAR-Classifier based on the sorted RuleSet. Concretely, for each CAR r
in sorted RuleSet, we first traverse the dataset D to figure out whether r can match at least one instance
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(i.e., the discretized items derived from the instance can completely cover the antecedent of rule r). If so,
we mark the rule r, and remove the instances that can be classified by r from D. Until no more instances
can be correctly classified, the majority class of the rest instances in D is chosen as a default class.
Eventually, all the marked CARs and the default class conjointly make up the CAR-Classifier. The
construction of CAR-Classifier is described in Algorithm 2. Particularly, when using the CAR-Classifier
to classify an unknown instance, the class label of the CAR that firstly matches the instance is viewed as
the classification result. If there is no matched CAR, the instance will be labeled with the default class.

Algorithm 2: The Classifier Build Algorithm

Definition:

• Let RuleSet denote the set of extracted CARs, and the ith CAR in RuleSet is denoted as ri.
• Let D denote the dataset, and the ith case in D is denoted as di.

Input:

• The RuleSet
• The dataset D.

Output:

• The CAR-Classifier, which is denoted as C.
• The default class, which is denoted as DClass.

1, RuleSet=sort(RuleSet)
2, for(i=1; i<RuleSet.size(); i++) do
3, temp = Ø;
4, for(j=1; j<D.size(), j++) do
5, if dj is correctly classified by ri then
6, store dj in temp and mark ri;
7, end
8, if ri is marked then
9, insert ri at the end of C;
10, delete all the cases in temp form D.
11, end
12, if D 6= ∅ then
13, DClass = the majority class label of the rest instances in D;
14, C=C∪DClass;

4. Results

4.1. Experimental Setup

Since there are no parameters that need to be trained when building the CAR-Classifier, we
randomly divide the dataset, i.e., 128 BCG recordings, into training set and test set by a ratio of 2:1,
where the stratified sampling technique is employed to avoid possible bias that may influence the
experimental results. The training set is comprised of 85 subjects (including 41 hypertensive patients
and 44 normotensive subjects), which is utilized to mine the CARs and build the CAR-Classifier. The
test set consists of 43 subjects (including 20 hypertensive patients and 23 normotensive subjects), which
is utilized to evaluate the classification performance of the CAR-Classifier. The partition of the dataset
is shown in Table 3. To get robust evaluation results, ten-fold-cross-validation is employed. Concretely,
the partition of dataset is randomly performed ten times and the average result of the ten folds is
regarded as the final classification result.
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Table 3. The division of the experimental BCG dataset.

Group Sex Number Training Set Test Set Ratio 1

Hypertensive Male 33 22 11 66.7%
Female 28 19 9 67.9%

Normotensive
Male 35 23 12 65.7%

Female 32 21 11 65.6%
Total - 128 85 43 66.4%

1 The ratio of the training set to the test set.

To evaluate the performance of our method, the methods proposed in [5,6], as well as three other
commonly used classifiers, i.e., LibSVM, Decision Tree, and Naive Bayes, are used as the baseline
methods. Particularly, the method proposed in [6] extracts HRV-related features from linear domain
and nonlinear domain based on ECG, and then directly feeds the extracted features into a LibSVM. The
method proposed in [5] first extracts HRV-related feature from multiple temporal resolutions based on
ECG signal, and then aggregates them into different feature vectors by using different feature pooling
techniques, and the feature vectors are finally fed into L1-regularized logistic regression. For fair
comparison, these two baselines are redone based on the dataset collected in this study, with the
optimal parameter configurations adopted. On the other hand, the other three baselines utilize the
features extracted in this study to identify hypertension, aiming to evaluate the effectiveness of our
feature extraction method.

Accuracy (ACC), precision (PRE) and recall (REC) are used as evaluation metrics, which are
defined as follows:

ACC =
TP + TN

TP + FN + TN + FP
, (13)

PRE =
TP

TP + FP
, (14)

REC =
TP

TP + FN
, (15)

where TP, TP, FP and FN represent true positive, true negative, false positive and false negative,
respectively. Specifically, ACC is the fraction of subjects that are correctly classified by the
CAR-Classifier. PRE assess how well our classifier is at correctly identifying hypertensive patients,
while REC measures the capability of our classifier of not missing hypertensive patients. Higher PRE
indicates that fewer hypertensive patients are misdiagnosed, and higher REC signifies that fewer
hypertensive patients are missed. Apparently, a good hypertension identification model should achieve
high ACC, PRE and REC simultaneously. The experiments are conducted in Matlab 2014a and Eclipse
Neon on an Intel Core i5-4590 PC with 8 GB RAM running the Windows 7 operating system.

4.2. Evaluation Results

4.2.1. Feature Comparison and Selection

All the 14 features extracted in this study are summarized in Table 4. For each of them, the mean
value, standard deviation and significant difference level (i.e., p-value) are computed. From Table 4 we
can obtain the following two observations:

First, all the features extracted from non-linear domain and BCG fluctuation analysis are with a
significance level of p-value < 0.05, but only two features extracted from time domain and frequency
domain are with a p-value < 0.05, which indicates that analyzing HRV from non-linear domain and the
fluctuation pattern of BCG can provide more useful information for identifying hypertension. Second,
the p-values of SDNN, RMSSD, PNN50, LF, HF, LF/HF are larger than 0.05, which means that these
features have poor distinguishing capability. Furthermore, we also visualize the extracted features by
using box diagrams in Figure 5. It shows that most of the feature distributions of hypertensive patients
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and normotensive subjects are quite different from each other except for SDNN, RMSS, PNN50, LF, HF,
LF/HF, which corroborates the observations obtained from the Table 4. Based on the above analysis,
we discard the six features whose p-value are larger than 0.05 and utilize the rest features as the final
feature set for the baseline methods.

Table 4. A summary of the extracted features (mean ± standard deviation).

Type Features Hypertensive Normotensive p-Value

TD 1

Mean 1.01 ± 0.10 1.04 ± 0.10 0.0082
SDNN 0.11 ± 0.06 0.12 ± 0.06 0.2653
RMSSD 0.15 ± 0.10 0.15 ± 0.09 0.6766
PNN50 0.25 ± 0.14 0.25 ± 0.14 0.4171

FD 2

vLF 0.002-0.002 0.006 ± 0.004 0.0178
LF 0.01-0.013 0.013 ± 0.01 0.7804
HF 0.05 ± 0.01 0.04 ± 0.01 0.5354

LF/HF 591.6 ± 1445 762.1 ± 1477 0.1803

ND 3 SampEn 0.68 ± 0.15 0.63 ± 0.14 0.0027
DFA 0.65 ± 0.23 0.70 ± 0.20 0.0438

BF 4

ZCR 0.05 ± 0.01 0.05 ± 0.01 0.0001
ACAC 0.11 ± 0.03 0.14 ± 0.06 0.0247
ANEP 8.74 ± 1.76 6.97 ± 1.31 1.7× 10−7

ASTC 6.68 ± 2.71 4.88 ± 1.20 1.2× 10−6

1 Time domain features. 2 Frequency domain features. 3 Non-linear domain features. 4 BCG fluctuation features.

Sensors 2019, 19, x 16 of 24 

 

SDNN, RMSS, PNN50, LF, HF, LF/HF, which corroborates the observations obtained from the Table 
4. Based on the above analysis, we discard the six features whose p-value are larger than 0.05 and 
utilize the rest features as the final feature set for the baseline methods. 

 
Figure 5. The box diagrams of the extracted features. “H” and “N” represent hypertensive patients 
and normotensive subjects, respectively. 

4.2.2. The Construction of the CAR-Classifier 

The sup and conf are two crucial parameters for the rule generation algorithm (i.e., the proposed 
Algorithm 1). For example, if the sup is too small, the search space will be dramatically expanded and 
results in numerous unrepresentative CARs, which not only reduces the classification performance 
but also increases the computational burden. On the other hand, too small or too big conf will lead to 
under-fitting or over-fitting, respectively. The details of the construction of the CAR-Classifier under 
different combinations of sup and conf are shown in Table 5, from which we obtain two findings. 

Table 5. The construction of the CAR-Classifier using different support and confidence. 

Sup 1 Conf 2 Time Overhead 
(s) 

Number of 
Extracted CARs 

Number of CARs Used 
in CAR-Classifier 

ACC 
(%) 

0.3 
0.80 251.8 7016 38 84.4 
0.75 249.2 8580 38 84.4 
0.70 255.7 8616 38 84.4 

0.25 
0.80 1914.9 37848 44 84.7 
0.75 1909.8 55780 44 84.7 
0.70 1912.3 55852 44 84.7 

0.2 
0.80 6710.1 74460 48 83.2 
0.75 6663.4 104136 48 83.2 
0.70 6599.5 104244 48 83.2 

1 The support threshold. 2 The confidence threshold. 
 
First, the time consumption and the number of extracted CARs mainly depend on the sup rather 

than the conf. The time consumption significantly upsurges when the sup decreases. It is notable that 
although the CARs need to be extracted only once, too much time overhead is adverse to upgrading 
the CAR-Classifier in the future. Moreover, too many CARs also make the construction of the CAR-
classifier more complicated. To this end, the time consumption and the number of CARs should be 
controlled in a reasonable range. Second, the ACC and the number of CARs used to build CAR-
Classifier remain unchanged under the same sup, which indicates that the CAR-Classifier can pick 
out the most powerful CARs and is not affected by the conf. In addition, the number of CARs 
contained in the CAR-Classifier is less than 50, which is quite practical for doctors and can be utilized 
as a query manual. Besides, the ACC remains relatively stable when sup and conf vary. Based on the 
above analysis, the sup and conf are set 0.3 and 0.8, respectively. 

H N

0.8

0.9

1

1.1

1.2

1.3
Mean

H N

0.1

0.2

0.3

SDNN

H N
0

0.1

0.2

0.3

0.4

0.5
RMSSD

H N
0

0.1

0.2

0.3

0.4

0.5
PNN50

H N
0

5

10

x 10-3
vLF

H N
0

0.02

0.04

0.06

0.08

LF

H N
0

1

2

3
x 10-3

HF

H  N
0

5000

10000

LF/HF

H N
0.2

0.4

0.6

0.8

1

SampEn

H N

0.4

0.6

0.8

1

1.2

1.4
DFA

H N

0.04

0.06

0.08

ZCR

H N

0.02

0.04

0.06

0.08

0.1

ACAC

H N
4

6

8

10

12

ANEP

H N

2

4

6

8

10

ASTC

Figure 5. The box diagrams of the extracted features. “H” and “N” represent hypertensive patients
and normotensive subjects, respectively.

4.2.2. The Construction of the CAR-Classifier

The sup and conf are two crucial parameters for the rule generation algorithm (i.e., the proposed
Algorithm 1). For example, if the sup is too small, the search space will be dramatically expanded and
results in numerous unrepresentative CARs, which not only reduces the classification performance
but also increases the computational burden. On the other hand, too small or too big conf will lead to
under-fitting or over-fitting, respectively. The details of the construction of the CAR-Classifier under
different combinations of sup and conf are shown in Table 5, from which we obtain two findings.

First, the time consumption and the number of extracted CARs mainly depend on the sup
rather than the conf. The time consumption significantly upsurges when the sup decreases. It is
notable that although the CARs need to be extracted only once, too much time overhead is adverse to
upgrading the CAR-Classifier in the future. Moreover, too many CARs also make the construction
of the CAR-classifier more complicated. To this end, the time consumption and the number of CARs
should be controlled in a reasonable range. Second, the ACC and the number of CARs used to build
CAR-Classifier remain unchanged under the same sup, which indicates that the CAR-Classifier can
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pick out the most powerful CARs and is not affected by the conf. In addition, the number of CARs
contained in the CAR-Classifier is less than 50, which is quite practical for doctors and can be utilized
as a query manual. Besides, the ACC remains relatively stable when sup and conf vary. Based on the
above analysis, the sup and conf are set 0.3 and 0.8, respectively.

Table 5. The construction of the CAR-Classifier using different support and confidence.

Sup 1 Conf 2 Time
Overhead(s)

Number of
Extracted CARs

Number of CARs Used in
CAR-Classifier ACC (%)

0.3
0.80 251.8 7016 38 84.4
0.75 249.2 8580 38 84.4
0.70 255.7 8616 38 84.4

0.25
0.80 1914.9 37,848 44 84.7
0.75 1909.8 55,780 44 84.7
0.70 1912.3 55,852 44 84.7

0.2
0.80 6710.1 74,460 48 83.2
0.75 6663.4 104,136 48 83.2
0.70 6599.5 104,244 48 83.2

1 The support threshold. 2 The confidence threshold.

4.2.3. Classification Performance Comparison

To evaluate the classification ability of features extracted from different aspects, different feature
combinations are used as the feature vector and the results are shown in Table 6. It obvious that the
performance is the lowest when only the features extracted from time domain are used. In addition,
when combining time domain features and frequency domain features together, the performance
barely grow, with only an improvement with 0.8% of ACC, 0.4% of PRE, and 1.6% of REC obtained.
By contrast, when introducing non-linear domain features and BCG fluctuation features successively,
the classification performance increases much more. Concretely, the inclusion of non-linear features
brings 3.9% 3.6% and 4.9% improvement in terms of ACC, PRE and REC, respectively. While the
utilization of the BCG fluctuation features contributes 4.7%, 4.7% and 5.0% improvement in terms of
ACC, PRE and REC, respectively. These experimental results indicate that extracting features that
can reflect the non-linearity of HRV and the fluctuation pattern of BCG is conducive to characterizing
hypertension pattern much more comprehensively. Particularly, when combining all the features
extracted from different aspects together, the classification performance reaches 84.4% of ACC, 82.5%
of PRE and 85.3% of REC respectively, which demonstrates the effectiveness of our CAR-Classifier.

Table 6. The most powerful CARs in hypertensive group and normal group.

Feature Combination ACC (%) PRE (%) REC (%)

TD 1 75.0 73.8 73.8
TD+FD 2 75.8 74.2 75.4

TD+FD+ND 3 79.7 77.8 80.3
TD+FD+ND+BF 4 84.4 82.5 85.3

1 Time domain features. 2 Frequency domain features. 3 Non-linear domain features. 4 BCG fluctuation features.

The comparison between our method and baselines is shown in Figure 6, which shows that our
method achieves the highest performance. Particularly, our method greatly outperforms the method
proposed in [6] by 9.4% of ACC, 9.5% of PRE and 9.9% of REC. Compared to the method proposed
in [5], our method also improves the performance by 4.4%, 2.5% and 3.9% in terms of ACC, PRE
and REC, respectively. In addition, the three common classifiers, i.e., LibSVM, Decision Tree and
Naïve Bayes, also obtain acceptable performance with ACC ≥ 72.7%, PRE ≥ 71% and REC ≥ 72.1%.
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In particular, the LibSVM is the best one among these three classifiers, and achieves 77.3% of ACC,
74.2% of PRE and 80.3% of REC.
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Figure 6. The performance comparison between the proposed method and baseline methods.

Since the features used in these three classifiers are exactly the features used in CAR-Classifier,
therefore, the obtained performance improvement compared to these three classifiers can be attributed
to the utilization of CAR-Classifier, which indicates that extracting association relationship among
features is conducive to modeling the hypertension pattern more accurately.

4.2.4. The Utility of the CARs

In this section, we evaluate the utility of the extracted CARs in practice. To this end, the first five
precedent CARs respectively in hypertensive group and normotensive group are shown in Table 7,
from which we can find that the CARs in two groups are significantly different from each other.
Specifically, the time domain features and frequency domain features in hypertensive group usually
have smaller values compared with that in normotensive group, excepting for the PNN50. By contrast,
the non-linear features and BCG fluctuation features in hypertensive group are generally greater than
that in normotensive group. These experimental results indicate that the function of the autonomic
nervous system degrades and the cardiac activities becomes chaotic for hypertensive patients, which
is consistent with existing medical research results [29,32,51]. That is, the extracted CARs do reflect the
nature of hypertension and can be used for clinical guidance. In order to understand the extracted
CARs more intuitively, we also visualize them in Figure 7, where the null values in Table 6 are replaced
with the average value of current group. Obviously, the overall trends of these two sets of CARs are
quite different. Particularly, the overall trend of the CARs in hypertensive group remains relatively
low at first, but it gradually increases till the end, excepting for the fluctuations at PNN50, SampEn,
and DFA. As for the CARs in normotensive group, the overall trend is just the opposite. It almost
constantly goes down from beginning to end. Based on the above results, we claim that doctors can
analyze patient’s condition more accurately with the help of these CARs. For example, if a subject’s
feature values converge towards to or are similar with the CARs in hypertensive group, the doctors
have reasons to believe that this subject is likely to suffer from hypertension in the future, and hence
effective health interventions should be applied on him or her at once. In this way, the occurrence of
high blood pressure or the deterioration of the condition can be prevented effectively.

We also conduct a small-scale user study to evaluate the practical value of the extracted
CARs in clinical diagnosis by designing a scoring system. Particularly, this user study focuses on
evaluating the CARs form the following aspects: (1) Consistency, the level of consistency between the
CAR-based classification results and the clinical diagnosis results (0: Not consistent, 5: Very consistent);
(2) Correctness, the extent that these CARs can correctly reflect the physiological status of hypertensive
patients and normotensive subjects (0: Completely wrong, 5: Completely correct); (3) Helpfulness, the
amount of information these CARs can provide for doctors to analyze the patients’ condition (0: None,
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5:Very much); (4) Usability, the degree of difficulty for doctors to master these CARs (0:Very hard,
5: Very easy). Specifically, “not consistent” means that the CAR-based classification results have no
relevance to the clinical diagnosis results; “completely wrong” indicates that these CARs completely
unable to reflect the subjects’ real physiological status; “none” signifies that doctors can’t obtain any
useful information for diagnosing hypertension; and “Very hard” means that the doctors cannot master
this technique in a certain period of time. Note that the minimum scoring interval is set to 0.5, aiming
to get a tradeoff between accuracy and ease of use.

Table 7. The most powerful CARs in hypertensive group and normotensive group.

Type Features

Hypertensive Group 5 Normotensive Group

CAR
1

CAR
2

CAR
3

CAR
4

CAR
5

CAR
1

CAR
2

CAR
3

CAR
4

CAR
5

TD 1

Mean - 1 - 2 1 - 4 - 4 3
SDNN - 2 2 - 2 3 3 - - 3
RMSSD 2 1 2 2 2 4 - 4 4 -
PNN50 5 - 5 4 - - - 2 2 2

FD 2

vLF - 2 - 1 1 3 - 3 - 4
LF 2 - - 2 2 - 4 - 4 3
HF - - 2 - 3 3 2 - - -

LF/HF 2 - 2 - 1 - - 4 4 3

ND 3 SampEn 2 3 - 3 - 3 - - 3 -
DFA - - 5 5 5 - 2 - 2 1

BF 4

ZCR 4 4 - - - 2 - 2 - -
ACAC - 4 4 4 3 - 1 - 2 2
MNEP 3 - 3 - 3 1 2 1 1 -
ASTC 4 5 - - 4 2 - 2 - 1

1 Time domain features. 2 Frequency domain features. 3 Non-linear domain features. 4 BCG fluctuation features.
5 1 to 5 and symbol “-” represent “very low”, “low”, “medium”, “high” “very high”, and “null”, respectively.Sensors 2019, 19, x 19 of 24 
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Figure 7. The visualization of the five most powerful CARs in hypertensive group and normotensive
group. The null value in CARs are replaced by the average value of current group, and the CARs
for hypertensive group and normotensive group are plotted by using red solid line and blue dotted
line respectively.

In this study, a total of five cardio-vascular doctors are recruited, with each of them has at least
ten years of clinical experience. The scores given by each doctor are shown in Figure 8, from which we
obtain two observations. First, all five doctors give high scores for these four criteria. Particularly, all
the scores are higher than 3.5, and most of them are higher than or equal to 4.0, which means that five
doctors unanimously endorse these CARs. In addition, the average scores of these four criteria are 4.0,
3.8, 4, and 4.2, which demonstrates the validity of the extracted CARs. Second, the variance of the four
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criteria are 0.125, 0.075, 0.125 and 0.075, respectively, which indicates that five doctors have similar
views on these CARs.
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Figure 8. The user study results. The score range is 1 to 5, and the minimum scoring interval is 0.5.

In other words, the extracted CARs show relatively stable performance for different people. The
results of this user study show that the proposed CAR-based hypertension identification method
can assist doctors to diagnose hypertension in clinical to some extent, and hence has a certain
promotion value.

5. Discussion

Hypertension is an important cause of chronic health problems globally. Early and accurate
identification of hypertension is important for better prognosis and preventing the progression of the
disease [1]. In this paper, we propose a CAR-based hypertension identification method based on the
utilization of the association relationship among multi-dimension features. Particularly, it integrates
classification and association rule mining together, and hence makes it possible to obtain the CARs
that can reflect the subjects’ physiological state. The proposed method is proved to be able to improve
the diagnosis accuracy.

The mining of CARs relies on the association relationship among features, thus the process of
feature extraction plays an important role in improving the hypertension identification performance.
In this paper, we not only extract HRV-related features from time domain, frequency domain, and
non-linear domain, but also extract features to model the fluctuation pattern of BCG. Experimental
results show that extracting features from multiple aspects characterizes hypertension pattern more
comprehensively, and hence generates more informative CARs for classification. On the other hand, the
construction of the CAR-Classifier is insensitive to the number of features. Features that are irrelevant
to the final model will be automatically ignored without requirement for an additional feature selection
procedure. However, it doesn’t imply that we can extract features as much as possible, since too much
features will significantly increase the time overhead and computational burden. Moreover, extracting
too many features also results in numerous CARs, which complicates the process of the construction
of the CAR-Classifier. In addition, the common feature selection methods like Information Gain (IG)
treat each feature as independent individuals [52], which tends to destroy the association relationship
among features and hence results in useless CARs. Therefore, specialized feature selection techniques
should be considered if the number of features is too large.

Most classifiers such as SVM only report the classification results. However, these results are
usually unexplainable, making it difficult to take full advantage of these results. Some other classifiers
such as C4.5, can generate a set of IF-THEN rules along with the classification results. However, these
rules can only explain why such classification results are produced to some extent. Moreover, the
C4.5 considers each feature individually when constructing the decision tree, instead of considering
them simultaneously, which may leave out some valuable association relationship among features.
Furthermore, the rules generated by C4.5 rely heavily on the values of the continuous attributes. Even
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if the dataset changes slightly, the structure of the decision tree, especially the nodes representing
continuous attributes, is likely to change, and hence leads to the change of the generated rules. On the
other hand, the CAR-Classifier deems the extracted features non-independent, which is more in line
with the actual situation. Therefore, it can reflect hypertension pattern more accurately. Additionally,
since the continuous attributes have been binned into several intervals, the mining of the CARs does
not depend on the attribute values too much. Slight changes of the dataset will not influence the
extracted CARs, which shows the robustness of our method. Precisely because of this, the proposed
method is suitable for scenarios where the data quality is poor, for example, wearable or non-intrusive
devices based health monitoring tasks [53].

An important advantage of the proposed method is that it can generate a set of useful CARs.
Experimental results show that these CARs are capable of reflecting the subjects’ physiological status.
In particular, hypertensive patients tend to have smaller time-frequency domain features but larger
non-linear features and more fluctuant BCG signal, which is just the opposite of the normotensive
subjects. In addition, we can easily obtain more meaningful information from the visualized CARs.
For instance, if someone’s feature curve does not coincide with hypertensive pattern or normotensive
pattern but tends to one of them, we can believe that the subject’s physiological state is closed to the
pattern represented by the closer curve. Particularly, the results of the user study indicate that the
extracted CARs have the potential to be used as assistive tool for doctors in diagnosing hypertension.
Furthermore, the extracted CARs can also be applied to daily health monitoring services. For example,
once it is detected that the user’s physiological state is changing from normotensive to hypertensive,
the user should be alarmed and takes effective medical interventions immediately, which is because
that the user may be at risk of suffering from hypertension and even have serious sub-clinical effects
of hypertension already [54].

The limitation of the proposed method is that the smart mattress-based BCG collection process
limits user’s active boundary and is hard to obtain high-quality signals. In other words, users must
be on the bed when collecting BCG signals, which cannot investigate their physiological state when
they perform daily activities. To tackle this problem, other forms of equipment should be included.
For example, the smart watch [25], wearable devices [55] and smart chair [26] are good ways to
collect physiological signals in daytime. Particularly, the PPG based non-invasive blood pressure
estimator [21] is a promising technique since it can estimate blood pressure continuously and accurately.
In addition, other signal preprocessing methods should be employed [56–59]. By combining the smart
mattress proposed in this study and other emerging devices and signal preprocessing methods, the
pattern of hypertension can be characterized more comprehensively.

6. Conclusions

In this paper, we present a novel hypertension identification method based on the integration of
classification and association rule mining, which is able to transform the association relationship
among features into useful CARs, and hence to identify hypertension accurately. In particular,
we extract features from multiple aspects, including time domain, frequency domain, non-linear
domain and especially the BCG fluctuation features, to characterize hypertension pattern more
accurately. In addition, we select the most powerful CARs to build the CAR-Classifier. These two
points are the key to improving the hypertension identification performance. Experimental results
based on a real dataset consisting of 128 subjects show that the proposed method achieves 84.4%, 82.5%
and 85.3% in terms of ACC, PRE, and REC respectively, which significantly outperforms the baseline
methods. Moreover, the byproducts of our approach, i.e., the extracted CARs, are proved to be able to
reflect the subjects’ philological status, which indicates that it can be used as assistive tools for doctors
to analyze the subject’s condition. More than that, the results of the user study based on five clinicians
demonstrate the high utility of these CARs, which shows the promotion value of our method. In the
future, we will focus on building a classifier that needs fewer CARs but achieves higher identification
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performance. In addition, we will also include other physiological signals especially the PPG [21], the
ECG [60–63], and the EEG [64], in order to get a better understanding of the patient’s condition.

Supplementary Materials: The developed software code and the collected BCG dataset are available online at
https://doi.org/10.6084/m9.figshare.7594433.
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