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Abstract: Autonomous robots for smart homes and smart cities mostly require depth perception in
order to interact with their environments. However, depth maps are usually captured in a lower
resolution as compared to RGB color images due to the inherent limitations of the sensors. Naively
increasing its resolution often leads to loss of sharpness and incorrect estimates, especially in the
regions with depth discontinuities or depth boundaries. In this paper, we propose a novel Generative
Adversarial Network (GAN)-based framework for depth map super-resolution that is able to preserve
the smooth areas, as well as the sharp edges at the boundaries of the depth map. Our proposed
model is trained on two different modalities, namely color images and depth maps. However, at
test time, our model only requires the depth map in order to produce a higher resolution version.
We evaluated our model both quantitatively and qualitatively, and our experiments show that our
method performs better than existing state-of-the-art models.

Keywords: depth upsampling; encoder-decoder networks; generative adversarial networks

1. Introduction

The standard digital camera tries to capture three-dimensional scenes and projects them onto
a two-dimensional image plane. This process inevitably loses much information, particularly the
depths or the distances between objects and the camera: small objects close to the camera will appear
much larger, and big objects that are far away will appear much smaller than they actually are. This is
why depth information is crucial in many tasks that rely on visual perception such as robot grasping,
obstacle avoidance, and navigation, which are necessary tasks for smart homes and smart cities.

With the availability of affordable depth cameras such as Microsoft Kinect sensors, many systems
are now being supplemented with depth range information to solve various computer vision tasks.
However, the depth maps produced by these sensors have significantly lower resolution than the
color images due to the intrinsic physical constraints of the sensors [1,2]. We desire accurate and
high-resolution depth maps in order to perform many robotic tasks effectively, especially those
involving higher risks, such as autonomous robots and self-driving cars, where small errors could lead
to large costs.

A simple way of increasing the resolution of the depth map is to use the high-resolution color
image. First, the depth map and its corresponding color image need to be aligned and registered since
there would be a small offset coming from the side-by-side placements of the range and image sensors
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that needs to be corrected. Homographic warping and multi-view camera calibrations are sufficient to
perform this task. Next, we can up-sample the depth maps and use the edges of the corresponding
color image in order to refine the depth maps at the discontinuities where the values are likely to be
uncertain. In many cases, this naive approach would work well. However, for objects with rich color
textures, the edges of the textures will be treated as an object boundary, which would lead to unwanted
texture-copying artifacts [3,4]. Another issue is when the object boundaries in the color image are not
clear, which happens when the the object and its background have similar colors or low contrast.

In this paper, we propose a Generative Adversarial Network (GAN)-based framework that
accepts multi-modal inputs, more specifically RGB color images and low-resolution depth maps, to
generate higher resolution depth maps. GANs have been shown to model high frequency components
well [5,6]. Since these high frequency components would correspond to the edges or object boundaries,
it would be highly beneficial to incorporate them into the model. Moreover, as the discriminator in the
GAN framework tries to separate real images from fake images, it would discourage the model from
producing unrealistic values at the depth discontinuities as they would be considered as fake. While
our model is trained on color images and depth maps, it only requires a single depth map input to
perform super-resolution at test time. This is a highly desirable property since there are tasks, such
as gesture recognition, action recognition, and event recognition, where the depth maps alone may
be sufficient. This allows for faster models with a lesser memory footprint since we do not need to
process the RGB image. There may also be applications with privacy restrictions, which would make it
difficult to work with RGB images, as they are highly identifiable, unlike depth maps.

2. Related Work

Common approaches for depth map super-resolution can be grouped into two categories. One
uses a single depth map as the input, and the other uses RGB images together with the depth maps as
input. Single depth map up-sampling is desirable for applications where privacy is necessary or for
applications where it is sufficient to use only depth maps. Aodha et al. [7] collected a set of training
images containing large numbers of low-resolution patches and high-resolution patches. They then
performed patch matching in order to synthesize the super-resolved depth map. Hornacek et al. [8]
further extended this patch-based matching strategy by exploiting patch-wise self-similarity structures
across depth resolutions. Li et al. [9], on the other hand, proposed to consider semantic object
composition as an auxiliary regularization for assembling the high-resolution depth outputs. For these
types of approaches, the collected training data have a high influence on the model’s performance.

Methods that use only single depth map inputs usually perform poorer than methods that
use both RGB images and the depth maps as inputs. This is to be expected because of the added
high-resolution information that they get from the RGB images. Algorithms with RGB-D inputs can
be further divided into filtering-based methods and learning-based ones. Filtering-based methods
are based on performing a weighted average of the neighboring pixels. The most common is the
Bilateral Filter (BF) [10], which is an edge-preserving filter for image upsampling. Kopf et al. [11]
proposed a Joint Bilateral Upsampling (JBU) framework that operates on both the high-resolution
color image and the low-resolution depth map. They leveraged the color image to preserve the
edges of the depth map. Chan et al. [12] and Li et al. [13] proposed an extended JBU method by
providing a noise-aware characteristic, which can determine the effects of color information on the
upsampled depth map. Yang et al. [14] proposed a Joint Bilateral Filtering (JBF) method, which is
similar to JBU. Kim et al. [15] developed a JBF framework by integrating the numerical analysis of
the local distribution in color images and depth maps. Liu et al. [16] also proposed an improved
JBF method using geodesic distance for better-preserved depth edges. The above methods present
some promising results, but color or lighting variations may produce incorrect discontinuity regions
in the process of integrating color information into the upsampled depth map. Jung [17] proposed a
filtering method that applies matching patterns between local color and depth patches to the filtering
kernels. However, some ambiguous pattern assignments caused prediction errors in their results.
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Choi et al. [18] proposed another filtering method that suppresses texture-transfer and depth-bleeding
artifacts. They first applied region classification to split the color image into different regions and
processed each region differently. They used the Weighted Mode Filter (WMF) [19] as their main filter
kernel. A problem with this approach is that depth edges at some regions are ambiguous due to color
similarities. Lo et al. proposed a series of methods to improve this filtering method [4,20,21] and
reported promising results.

Learning-based methods, on the other hand, rely on extracting information from a training dataset
that can be generalized to different examples. Diebel and Thrun et al. [22] proposed a multi-labeling
optimization problem based on Markov Random Fields (MRF), which defines a consistency term,
which encourages consistency between depth values across resolutions, and a smoothness term, which
encourages neighboring pixels with similar colors to have similar depth values. Revised MRF methods
focusing on depth discontinuities were proposed in [3,23-25] to improve depth map super-resolution.
Park et al. [26] improved the smoothness term by incorporating semi-local neighborhood information
extracted from Non-Local Means (NLM) regularization and an edge weighting scheme, which enhances
color details. Other learning-based methods like [27] phrased the depth map up-sampling task as a
convex optimization problem with higher order regularization guided by anisotropic diffusion tensors
extracted from high-resolution intensity images.

In this paper, we present a novel multi-modal GAN framework to perform the depth map
up-sampling task. Our method combines the best of both worlds where we train on both the RGB
color image and the depth maps, but only require a single depth map at testing time. We show in our
experiments that this approach outperforms several state-of-the-art baselines.

3. Proposed Framework

Figure 1 shows an overview of our GAN-based depth map super-resolution framework. Our
generator takes inputs from two modalities: low-resolution depth maps and low-resolution scene
images. Since the scene images and depth maps are structurally very similar to each other, as shown
in Figure 2, we can leverage the information from the scene images to preserve the discontinuity
regions of the depth maps. In order to ensure that the generator outputs valid depth maps, we train
it adversarially using a discriminator that tries to distinguish whether the output of the generator is
similar to real depth maps sampled from the dataset or fake depth maps synthesized by the generator.

We first formally define the problem of depth map super-resolutions in Section 3.1. Next, we
discuss the details of our model starting with generative adversarial networks in Section 3.2 followed
by our loss functions (Section 3.3) and network architecture (Section 3.4). Lastly, we discuss our
multi-modal mini-batch scheme in Section 3.5.
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Figure 1. Overview of our proposed framework for depth map super-resolution.

e

Figure 2. Observation of the similarities of discontinuity regions between a depth image and the
corresponding scene image.

3.1. Problem Formulation

AR and a

A standard camera and a range sensor can capture a high-resolution color image x;
low-resolution depth map xX. Suppose that we have a dataset with the correspondmg ground truth
high-resolution depth maps x}X; our goal is to learn a function G : xR — xHR that can generate
a high-resolution version of the low-resolution depth map. This is more commonly referred to as
super-resolution. The function G is modeled as a convolutional neural network, which we refer to as

the generator.

3.2. Generative Adversarial Network

The framework of Generative Adversarial Networks (GANSs) introduces a discriminator D, which
is a separate classifier, to guide the learning process of the generator G. This transforms the learning
problem into a two-player minimax game, where the optimal solution is a Nash equilibrium.

The role of the discriminator is to learn how to tell apart real images from fake images. The
generator G, on the other hand, is our super-resolution model, which generates high-resolution depth
maps from its low-resolution input and tries to make it as realistic looking as possible in order to
trick the discriminator D into classifying the generated depth map as real. This is represented as a
min-max optimization in the form shown in Equation (1), where p(x) represents the distributions of
the data and xR and xR are the high-resolution and low-resolution inputs, respectively. The first
term accounts for the objective where we want the discriminator to classify the high-resolution inputs
xHR coming from the dataset as real, while the second term accounts for the objective where we want
to classify the super-resolved outputs of the generator (G (x'R)) from low-resolution inputs xR as fake.
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In the formulation of these networks, the generator G has access to the gradients of the discriminator
D and therefore has some form of instruction as to how to improve itself. This enables the generator to
learn how to produce realistic-looking depth maps that are indistinguishable from the ground truth
depth maps.

~ _ HR
min max LGaN = Eyir.p(y) [log D(x77)]

R )
+ ]ExLpr(x) [log (1 B D(G(X )))]

In the beginning of the training process, the fake images generated by G are extremely poor and
are rejected by D with high confidence. Therefore, when performing the optimization, it is better for
G to optimize for log(D(G(xLR))) instead of log(1 — D(G(x"R))). Both objectives result in the same
fixed point, but log(D(G(x!R))) provides stronger gradients in the early stages of learning.

3.3. Loss Function

Our loss function is a combination of two components. The first component is a content loss or a
reconstruction error, which measures how different the generated depth maps are from the ground
truth depth map. It is implemented as the mean absolute error or L; distance between the generated
and the ground truth depth map, as shown in Equation (2). As shown in previous works [5,6], this
term alone will produce blurry images as the solution would turn towards the mean. However, this
shows that it can capture the low frequency components well.

EContent = EXHR,XLRNp(x) {HXHR - G(xLR) ”1} (2)

The second component is an adversarial loss that we have defined in the previous Section 3.2.
This term encourages the outputs of G to reside on the manifold of the ground truth depth maps. It is
also able to model the high frequency components as shown by [5,6], which makes it suitable for our
problem. The final objective function is shown in Equation (3), where A is a hyper-parameter that
controls the relative importance of the two components.

l'l’gn mDaX L= EContent + )\EGAN (3)

3.4. Network Architecture

Figure 3 details the network architecture of our generator. Inspired by Ledig et al. [28] and
Lim et al. [29], we use a single convolutional layer followed by a series of sixteen residual blocks.
A skip-connection is then performed, where the output of the residual blocks is combined with the
output of the initial convolutional layer using an element-wise sum. The idea behind this design is that
the low-resolution depth map already contains many of the pixel values for the output, and adding
the skip-connection allows the network to have easier passing of information from the lower layers,
which are closer to the original input, to the upper layers, which are closer to the output. We then
use a two sub-pixel convolutional layer as proposed by [30], which up-samples the depth maps to
four times their input resolution. We use the ReLU activation function after every convolutional layer
without any batch normalization layers. We remove the batch normalization layers since it has been
shown in [29] that it is detrimental to super-resolution tasks since it reduces the range flexibility by
normalizing the features.

As shown in Figure 4, the discriminator D is composed of a series of six convolutional layers
where every other layer has a stride of two that downsamples the image representations by half. This
is then followed by two fully-connected layers and a sigmoid activation function that outputs the
probability of being real. All the layers use LeakyReLU activations, and batch normalization layers are
inserted after every convolutional layer except for the first layer.
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Figure 3. Generator network of the proposed generative adversarial network framework for depth

map super-resolution with f: the number of feature maps, k: the kernel size, and s: the stride indicated
for each convolutional layer.
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Figure 4. Discriminator network of the proposed generative adversarial network framework for depth
map super-resolution with f: the number of feature maps, k: the kernel size, and s: the stride indicated
for each convolutional layer.

3.5. Multi-Modal Mini-Batch

We would like to incorporate the scene image during the learning process; however, adding an
explicit branch with convolutional layers to encode and extract features from RGB scene image would
require us to use the RGB image during test time. This is undesirable since our goal is to enable our
super-resolution model to handle depth maps independent from the scene image at test time.

Inspired by multi-task learning and domain adaptation frameworks, we mix scene images with
the depth images and perform super-resolution on both modalities during training. More specifically,
we down-sample the scene image to have the same resolution as the depth map and convert it to
gray scale. Now that they both have the same dimensions, we can combine them in a mini-batch and
perform the training. This way, the network will be able to share what it learned from one domain
(super-resolving scene images) and apply it to the other (super-resolving depth maps).

4. Experiments
4.1. Dataset

A standard dataset used widely in depth-related tasks is the NYU Depth dataset Version 2 [31].
The images and its corresponding depth maps were captured from 464 different locations coming from
a variety of indoor scenes such as bathrooms, bedrooms, offices, and kitchens. We followed the same
train-test experiment setup as previous studies [3,4,21]. We downsampled the ground truth depth
maps from 640 x 480 to 160 x 120 (by a factor of four) in order to obtain the low-resolution depth maps
to be used as the input by our model.

We also experimented on the Middlebury stereo dataset [32]. The ground truth depth maps were
estimated using state-of-the-art stereo depth estimation methods that are able to handle high-resolution
images. Similarly, we downsampled the depth maps by a factor of four to get our training inputs.

4.2. Implementation Details

We trained our model on a single NVIDIA GTX 1080 GPU with a mini-batch size of 16. During
training, we randomly cropped 96 x 96 patches from the low-resolution depth maps, and our model
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up-sampled it by a factor of four producing a patch size of 384 x 384. Note that since our model
is composed of fully-convolutional layers, it can handle arbitrary sizes at test time. We usd Adam
optimizer [33] with 81 = 0.9 and B, = 0.999 to train our model. Our network was trained with an
initial learning rate of 1le~*. We set A = 1e~2 in our loss function. We implemented our models using
the TensorLayer and TensorFlow framework.

4.3. Performance Evaluations

Following previous works [3,4,21,32], we quantitatively evaluated our model using the percentage
of Bad matching Pixels (BP%). Bad matching Pixels (BP) is defined as the percentage of pixels that
have a difference larger than a pre-defined threshold from the ground truth values. This can be
expressed mathematically as shown in Equation (4), where Q) refers to the set of all pixels in the depth
map. To compute the percentage of bad pixels (BP%), the output depth maps have to be scaled to the
same range. We used the same threshold (6; = 1) from previous works [3,4,21,32] to maintain a fair
comparison. In addition to the whole image statistics (referenced as “all”), we also computed local
statistics at non-occluded regions (“nonocc.”) and at depth discontinuity regions (“disc.”), as defined
in [32,34].

BP% = Ilﬁl %]l(chR — G(xH)| > 64) x 100% (4)

We evaluated our model’s super-resolved depth maps at an upsampling factor of four. We
compared against several state-of-the-art baselines: (1) Diebel et al. [22]; (2) JBU [11]; (3) Chan et al. [12];
(4) Luetal. [23]; (5) Kim et al. [24]; (6) Jung [17]; (7) Park et al. [26]; (8) Ferstl et al. [27]; (9) Choi et al. [18];
(10) Loetal. [3]; (11) Lo et al. [4]; and (12) Lo et al. [21]. We used the outputs from the respective authors’
publicly available code for the comparisons. However, there is no information on the parameter settings
used in [12,22]; hence, we performed a simple grid search and reported the best performing results.
Table 1 lists the performance of the various methods in terms of BP%. It can be observed that our
method consistently performed better in terms of percentage of bad matching pixels.

We also evaluated our model using the Mean Squared Error (MSE) with respect to the ground truth
depth maps. Our method was able to achieve state-of-the-art results, as shown in Table 2. MSE weights
large differences more than small differences. We can observe that these large differences usually
occurred at the depth discontinuity regions (“disc.”) since the local MSE values were significantly
higher than the global MSE (“all”). By visually inspecting the super-resolved depth maps, we
can further evaluate the performances of the various models. Figures 5-14 show comparisons of
super-resolved depth maps on several examples of patches at regions with depth discontinuity. We
can see that most methods failed to capture the geometry at the edges properly. This is more noticeable
when we zoom in to the patches where the straight lines were no longer straight for other methods,
while our method successfully preserved these structures.
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Table 1. Comparisons of Bad Pixel percentages (BP%) with upsampling factors of 4. For each image, the ranking of our approach is shown in parenthesis, and the best
performance is shown in bold. nonocc., non-occluded; disc., discontinuity.

Venus Teddy Cones Dolls  Midd2 Moebius Reindeer Kitchenl Kitchen2  Storel
BP% of 4x SR . . .
nonocc. all disc.  nonocc. all disc.  nonocc. all disc. all

Diebel et al. [22] 0.85 1.16 3.93 7.46 8.17 18.02 6.98 8.10 19.82 6.64 2.96 9.58 3.95 3.45 6.04 3.09
JBU [11] 0.40 0.72 5.62 5.75 6.61 20.08 6.43 7.54 19.18 5.55 1.95 6.48 3.36 2.30 3.21 3.60
Chan et al. [12] 0.41 0.69 5.74 5.64 6.48 19.75 6.24 7.31 18.78 4.96 1.87 5.53 3.30 1.96 2.51 2.84
Luetal. [23] 0.24 0.31 3.27 5.14 5.60 14.47 3.73 451 10.07 6.69 3.00 6.36 3.48 2.32 3.01 2.56
Kim et al. [24] 0.17 0.30 2.31 5.33 6.20 16.86 4.86 5.33 14.62 4.37 2.92 5.46 2.14 2.24 3.23 2.46
Jung [17] 0.27 0.59 3.76 4.77 5.65 15.99 4.83 593 14.58 5.04 2.10 6.03 291 2.00 271 2.86
Loetal. [3] 0.12 0.16 1.67 3.35 3.69 9.59 3.15 3.82 9.43 3.45 1.80 4.33 1.97 1.45 2.96 2.39
Lo etal. [4] 0.09 0.13 1.24 3.93 4.32 12.81 3.54 3.92 10.62 212 0.75 3.03 1.81 1.32 1.82 217
Park et al. [26] 0.38 0.66 5.15 4.29 524 13.88 4.07 5.73 12.27 5.07 1.68 6.49 3.86 221 3.64 3.59
Ferstl et al. [27] 0.27 0.41 3.77 3.75 4.32 10.03 2.47 3.44 8.17 2.80 1.40 3.53 1.93 1.76 2.78 224
Choi et al. [18] 0.28 0.49 3.89 3.23 3.88 11.41 4.83 5.52 14.65 3.17 1.75 4.97 242 1.86 2.86 2.78
Lo etal. [21] 0.08 0.16 1.10 2.73 3.20 8.52 2.67 3.19 8.09 1.78 0.72 3.04 1.42 1.16 1.73 2.15

Our method 0.04(1) 0.07(1) 057(1) 213(1) 276(1) 654(1) 216(1) 258(1) 6.54(1) 1.74(1) 052(1) 1.53(1) 0.74 (1) 0.48 (1) 0.74(1)  0.58 (1)

Table 2. Comparisons of MSE with upsampling factors of 4. For each image, the ranking of our approach is shown in the parenthesis, and the best performance is
shown in bold.

Venus Teddy Cones Dolls  Midd2 Moebius Reindeer Kitchenl Kitchen2  Storel
MSE of 4 SR nonocc. all disc. nonocc. all disc. nonocc. all disc. all
Diebel et al. [22] 9.55 12.69 49.98 40.63 51.95 135.42 60.88 66.38 180.37 14.70 42.19 27.72 40.95 23.37 44.39 28.46
JBU [11] 2.90 5.04 36.27 61.03 72.47 224.36 80.12 84.11 241.50 17.18 25.31 23.99 51.36 7.89 20.38 10.39
Chan et al. [12] 2.77 4.79 36.41 60.78 7217 223.87 79.79 83.71 241.06 16.35 24.32 22.58 50.62 7.35 18.61 9.37
Luetal. [23] 6.34 25.43 39.54 16.97 20.98 44.56 56.16 60.36 161.66 14.02 35.73 21.88 54.25 13.76 36.51 15.59
Kim et al. [24] 2.83 3.59 19.24 40.22 51.04 141.75 61.30 63.01 182.77 13.27 31.08 14.84 29.94 11.51 38.45 15.06
Jung [17] 242 4.72 30.08 49.74 60.84 179.52 69.15 75.27 208.78 14.76 27.62 21.92 51.18 7.53 20.06 8.03
Lo etal. [3] 2.16 2.54 18.67 26.07 32.40 80.02 67.81 70.98 198.39 11.52 24.49 17.46 39.58 8.67 31.84 11.69
Lo et al. [4] 1.40 1.74 17.44 18.11 22.57 63.82 59.16 59.54 178.97 7.34 15.03 10.86 80.08 10.24 17.80 19.01
Park et al. [26] 2.89 4.96 35.08 49.46 57.58 111.65 49.12 83.94 141.60 11.32 20.83 16.03 64.97 9.88 17.88 14.21
Ferstl et al. [27] 2.01 3.21 29.49 39.88 50.98 109.60 42.62 58.15 97.52 9.02 19.67 10.34 44.87 5.95 18.18 12.94
Choi et al. [18] 2.38 3.44 30.65 17.34 22.56 63.24 39.17 41.94 118.48 8.72 18.06 14.03 43.75 5.55 8.42 6.64
Loetal. [21] 1.33 213 16.53 15.19 19.16 51.56 41.24 42.84 124.63 5.84 14.00 11.25 24.01 6.57 17.72 8.95

Our method 030(1) 043(1) 2.82(1) 17.03(3) 2247(3) 62.75(3) 21.30(1) 24.98(1) 6419(1) 797(3) 9.66(1) 893(1) 11.50 (1) 1.27 (1) 1.60 (1)  1.40 (1)
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Figure 5. Example depth map SR results of Venus with two Regions Of (nterest (ROI). (a) Ground truth
depth map, (b) color regions, and SR results of (c) Diebel et al. [22] (BP% = 1.16), (d) JBU [11] (0.72),
(e) Lu et al. [23] (0.31), (f) Kim et al. [24] (0.30), (g) Jung [17] (0.59), (h) Lo et al. [3] (0.16), (i) Park et al. [26]
(0.66), (j) Ferstl et al. [27] (0.41), (k) Choi et al. [18] (0.49), (1) Lo et al. [21] (0.16), (m) Our method (0.04),
and (n) the associated ground truth.
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Figure 6. Example depth map SR results of Dolls with two ROI. (a) Ground truth depth map, (b) color
regions, and SR results of (c) Diebel et al. [22] (BP% = 6.64), (d) JBU [11] (5.55), (e) Lu et al. [23] (6.69),
(f) Kim et al. [24] (4.37), (g) Jung [17] (5.04), (h) Lo et al. [3] (3.45), (i) Park et al. [26] (5.07), (j) Ferstl et al. [27]
(2.80), (k) Choi et al. [18] (3.17), (1) Lo et al. [21] (1.78), (m) Our method (1.74), and (n) the associated
ground truth.
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Figure 7. Example depth map SR results of Moebius with two ROL (a) Ground truth depth map, (b) color
regions, and SR results of (c) Diebel et al. [22] (BP% = 9.58), (d) JBU [11] (6.48), (e) Lu et al. [23] (6.36),
(f) Kim et al. [24] (5.46), (g) Jung [17] (6.03), (h) Lo et al. [3] (4.33), (i) Park et al. [26] (6.49), (j) Ferstl et al. [27]
(3.53), (k) Choi et al. [18] (4.97), (1) Lo et al. [21] (3.04), (m) Our method (1.53), and (n) the associated
ground truth.
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Figure 8. Example depth map SR results of Reindeer with two ROL. (a) Ground truth depth map, (b) color
regions, and SR results of (c) Diebel et al. [22] (BP% = 3.95), (d) JBU [11] (3.36), (e) Lu et al. [23] (3.48),
(f) Kim et al. [24] (2.14), (g) Jung [17] (2.91), (h) Lo et al. [3] (1.97), (i) Park et al. [26] (3.86), (j) Ferstl et al. [27]
(1.93), (k) Choi et al. [18] (2.42), (1) Lo et al. [21] (1.42), (m) Our method (0.74), and (n) the associated
ground truth.
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Figure 9. Example depth map SR results of Teddy with two ROL (a) Ground truth depth map, (b) color
regions, and SR results of (c) Diebel et al. [22] (BP% = 8.17), (d) JBU [11] (6.61), (e) Lu et al. [23] (5.60),
(f) Kim et al. [24] (6.20), (g) Jung [17] (5.65), (h) Lo et al. [3] (3.69), (i) Park et al. [26] (5.24), (j) Ferstl et al. [27]
(4.32), (k) Choi et al. [18] (3.88), (1) Lo et al. [21] (3.20), (m) Our method (2.76), and (n) the associated
ground truth.
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Figure 10. Example depth map SR results of Cones with two ROL (a) Ground truth depth map, (b) color
regions, and SR results of (c) Diebel et al. [22] (BP% = 8.10), (d) JBU [11] (7.54), (e) Lu et al. [23] (4.51),
(f) Kim et al. [24] (5.33), (g) Jung [17] (5.93), (h) Lo et al. [3] (3.82), (i) Park et al. [26] (5.73), (j) Ferstl et al. [27]
(344), (k) Choi et al. [18] (5.52), (1) Lo et al. [21] (3.19), (m) Our method (2.58), and (n) the associated
ground truth.
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Figure 11. Example depth map SR results of Midd with two ROL (a) Ground truth depth map, (b) color
regions, and SR results of (c) Diebel et al. [22] (BP% = 2.96), (d) JBU [11] (1.95), (e) Lu et al. [23] (3.00),
(f) Kim et al. [24] (2.92), (g) Jung [17] (2.10), (h) Lo et al. [3] (1.80), (i) Park et al. [26] (1.68), (j) Ferstl et al. [27]
(1.40), (k) Choi et al. [18] (1.75), (1) Lo et al. [21] (0.72), (m) Our method (0.52), and (n) the associated
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Figure 12. Example depth map SR results of Kitchenl with two ROL (a) Ground truth depth map,
(b) color regions, and SR results of (c) Diebel et al. [22] (BP% = 3.45), (d) JBU [11] (2.30), (e) Lu et al. [23]
(2.32), (f) Kim et al. [24] (2.24), (g) Jung [17] (2.00), (h) Lo et al. [3] (1.45), (i) Park et al. [26] (2.21),
(j) Ferstl et al. [27] (1.76), (k) Choi et al. [18] (1.86), (1) Lo et al. [21] (1.16), (m) Our method (0.48),
and (n) the associated ground truth.
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Figure 13. Example depth map SR results of Kitchen2 with two ROI. (a) Ground truth depth map,
(b) color regions, and SR results of (c) Diebel et al. [22] (BP% = 6.04), (d) JBU [11] (3.21), (e) Lu et al. [23]
(3.01), (f) Kim et al. [24] (3.23), (g) Jung [17] (2.71), (h) Lo et al. [3] (2.96), (i) Park et al. [26] (3.64),
(j) Ferstl et al. [27] (2.78), (k) Choi et al. [18] (2.86), (1) Lo et al. [21] (1.73), (m) Our method (0.74),
and (n) the associated ground truth.
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Figure 14. Example depth map SR results of Storel with two ROL. (a) Ground truth depth map, (b) color
regions, and SR results of (c) Diebel et al. [22] (BP% = 3.09), (d) JBU [11] (3.60), (e) Lu et al. [23] (2.56),
(f) Kim et al. [24] (2.46), (g) Jung [17] (2.86), (h) Lo et al. [3] (2.39), (i) Park et al. [26] (3.59), (j) Ferstl et al. [27]
(2.24), (k) Choi et al. [18] (2.78), (1) Lo et al. [21] (2.15), (m) Our method (0.58), and (n) the associated
ground truth.

@

5. Conclusions

We proposed a multi-modal model based on the generative adversarial network for depth map
super-resolution. Our method was able to preserve detailed discontinuity regions such as sharp
edges, as well as respect the geometric structure of the objects. Moreover, our model only required a
single depth map as an input during test time, even though it was trained with both RGB and depth
maps. The results of our quantitative and qualitative experiment show that our method outperforms
state-of-the-art depth map super-resolution methods, which confirms the effectiveness of our method.
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Abbreviations

The following abbreviations are used in this manuscript:

RGB Red, Green, and Blue

GAN  Generative Adversarial Network
LR Low-Resolution

HR High-Resolution

SR Super-Resolution

BF Bilateral Filter

JBU  Joint Bilateral Upsampling
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JBF Joint Bilateral Filtering

WMF  Weighted Mode Filter

MRF  Markov Random Field

NLM  Non-Local Means

BP Bad Pixel

MSE  Mean Squared Error
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