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Abstract: Low-cost microelectro mechanical systems (MEMS)-based inertial measurement unit (IMU)
measurements are usually affected by inaccurate scale factors, axis misalignments, and g-sensitivity
errors. These errors may significantly influence the performance of visual-inertial methods. In this
paper, we propose an online IMU self-calibration method for visual-inertial systems equipped with
a low-cost inertial sensor. The goal of our method is to concurrently perform 3D pose estimation
and online IMU calibration based on optimization methods in unknown environments without any
external equipment. To achieve this goal, we firstly develop a novel preintegration method that can
handle the IMU intrinsic parameters error propagation. Then, we frame IMU calibration problem into
general factors so that we can easily integrate the factors into the current graph-based visual-inertial
frameworks and jointly optimize the IMU intrinsic parameters as well as the system states in a big
bundle. We evaluate the proposed method with a publicly available dataset. Experimental results
verify that the proposed approach is able to accurately calibrate all the considered parameters in
real time, leading to significant improvement of estimation precision of visual-inertial system (VINS)
compared with the estimation results with offline precalibrated IMU measurements.

Keywords: visual-inertial system; visual odometry; SLAM; IMU calibration; sensor fusion

1. Introduction

Vision-based motion estimation and 3D reconstruction is a very active field of research in robotics
and computer vision communities over the last decades due to its potential applications, such as robot
navigation, autonomous driving, augmented reality (AR) and virtual reality (VR). Different sensor
setups can be used for vision-based motion estimation: monocular [1,2], stereo [3,4], RGB-D [5,6] and
visual-inertial [7,8]. Among these, the combination of cameras and inertial sensors, also known as
visual-inertial system (VINS), has attracted more and more attention in recent years [7–21]. On the one
hand, camera and inertial measurements offer complementary nature, and the combination of these
two sensors can lead to significant improvements in accuracy of the estimation results and robustness
of the system. On the other hand, with the development of microelectro mechanical systems (MEMS)
inertial sensors, the cost of inertial measurement unit (IMU) steadily decline and an increasing number
of robot platforms, drones and consumer electronics, especially mobile devices, are equipped with
low-cost MEMS-based IMUs.

Due to the imperfections of the manufacturing and physical characteristics of the sensors, real IMU
measurements are usually affected by systematic errors as well as random noise [22,23]. The process
of identifying the intrinsic parameters of sensors for compensating these errors is known as IMU
calibration. Although VINS have seen tremendous improvements in accuracy, robustness and efficiency
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over recent years, most visual-inertial methods either treat these measurement errors as sensor
noise or assume the IMU that used is precalibrated offline. For high performance inertial sensors,
which generally are manufactured precisely or factory calibrated carefully with each sensor is sold
with its own calibration parameters stored into the firmware, providing accurate measurements off
the shelf [23], this assumption is reasonable. However, for low-cost MEMS-based inertial sensors,
which are usually used for consumer mobile robots, neglecting these errors may significantly influence
the performance of VINS or even breakdown the whole system. Moreover, offline IMU calibration have
certain shortcomings. Traditional high precision calibration process heavily rely on special external
equipment such as robot manipulator [24–26], high accuracy turntable [27], motion tracked system [28].
Such equipment is usually very expensive. As a result, the cost of one calibration process often
exceeds the cost of MEMS-based IMU. Secondly, the IMU measurement models used for calibration
are usually simplified linear models, the intrinsic parameters of which may vary with mechanical
shocks, temperature and other factors. Treating these parameters as constant would lead to unmodeled
errors and degenerate the performance of the VINS. Therefore, even high quality offline-calibration is
performed, this process still needs to be repeated periodically. Moreover, performing offline calibration
often needs special operators and is time consuming, which hinders the rapid deployment of VINS to
consumer devices.

To this end, we propose an online IMU self-calibration method for VINS. Specifically, we are
interested in concurrently performing 3D pose estimation and online IMU calibration in unknown
environment, using only camera and inertial measurements, and without any knowledge about the
structure of the scene or any external equipment.

We implement the method with the extension of an open source monocular VINS pipeline,
VINS-Mono [8], and demonstrate that, in this setting, it is possible to concurrently localize and perform
online calibration of all of the following quantities: the axis misalignments and scale factors of the
IMU sensors, the g-sensitivity (also called linear acceleration dependence) of the gyroscopes. What we
have to claim is that although our implementation is based on VINS-Mono, the proposed online
IMU self-calibration method can be easily integrated into other graph-based visual/visual-inertial
frameworks as well as the multi-camera cases. To the best of our knowledge, this is the first paper to
present a VINS pipeline with online IMU self-calibration based on optimization methods. We highlight
our main contributions as follows:

1. An online IMU self-calibration method for visual-inertial system that can perform in real time in
unknown environment without any external equipment.

2. We frame the IMU calibration problem into general factors so that the proposed method can be
easily integrated into other graph-based visual/visual-inertial frameworks.

3. An extensive evaluation on publicly available dataset showing that the online calibration can
obtain accurate IMU intrinsics estimation and significantly improve the estimation precision of the
VINS method compared with the estimation results with offline precalibrated IMU measurements.

The rest of this paper is organized as follows. In Section 2, we discuss the relevant literature.
The algorithm as well as the implementation details are introduced in Section 3. The experimental
results are shown in Section 4. Finally, the paper is concluded with the discussion and possible future
research directions in Section 5.

2. Related Work

Over the last decade, there has been tremendous progress in VINS. Existing approaches can be
classified into filtering-based methods [9–16] and graph-based methods [7,8,17–21]. Filtering-based
methods usually process the fusion with the extended Kalman filter (EKF) and its variants, in which,
the measurements from IMU are used for state propagation and observations from vision are used
for update. Filtering-based methods have the advantage of fast processing since it contentiously
marginalizes past states. However, their performance are usually sub-optimization due to early
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fix of linearization points. Compared to filter-based methods, graph-based methods have attracted
more attention in the recent years, as they obtain more accurate estimation results by maintaining
measurements of long term history and perform batch optimization to obtain the optimal estimate.
To achieve real time operation, graph-based methods usually apply keyframe-based techniques and
optimize over a bounded-size sliding window of recent states by marginalizing past states and
measurements. Nevertheless, all of these methods above either treat the IMU measurement errors
as sensor noise or assume the IMU that used is precalibrated offline except the work in [13], which,
to the best of our knowledge, is the only VINS method that implement IMU and camera online
self-calibration in a filter-based framework. However, only simulation results were shown in this
paper. Besides, their method cannot be applied for graph-based VINS methods.

For offline IMU calibration, numerous methods have been proposed over the last several decades,
with the development of strapdown inertial navigation system or AHRS [22]. As we are concerned with
online self-calibration, here we only give a brief review of these methods. Traditionally IMU calibration
methods are usually done by using special external equipment that could provide known reference
acceleration or rotational velocity of the inertial sensor. The measurements of the sensor are compared
directly with the known reference value to determine the intrinsic parameters. Apparently, the accuracy
of these methods strongly relies on the accuracy of the kinematic reference. To obtain highly accurate
results, expensive mechanical platforms, such as robot manipulator or high accuracy turntable [24–27]
are usually used, resulting in a calibration cost that often exceeds the cost of the IMU‘s hardware.
In [28] the authors exploited using a marker-based optical tracking system to provide the reference
value, while in [29], the GPS readings are used to calibrate initial biases and misalignments. In order to
achieve in-situ calibration, the multi-position method was firstly introduced in [30], using the fact that
the magnitude of the static acceleration must equal to the gravity‘s magnitude. However, this method
can only calibrate the bias and scale factors of the accelerometer. This technique has been further
extended by [31], in which, a method with two calibration schemes was presented. The accelerometer
is firstly calibrated by exploiting the high local stability of the gravity vector‘s magnitude, and then
the gyroscope is calibrated by comparing the gravity vector sensed by the calibrated accelerometer
with the gravity vector obtained by integrating the angular velocities. The main advantage of this
method is that it do not require any external mechanical equipment. A similarly approach also can be
found in [23]. A self-calibration method based on an iterative matrix factorization was proposed by
Hwangbo et al. [32]. this method use gravity as accelerometers reference, and a camera as gyroscopes
reference. A noteworthy work in the VINS domain is the kalibr toolbox by Rehder et al. [33], in which,
multiple camera-IMU extrinsic as well as the IMU intrinsics are jointly optimized in a single estimator
with the continues-time batch optimization framework [33,34]. Impressive results were demonstrated
in this work. However, their method cannot be integrated directly in the presented discrete-time
graph-based VINS methods.

Motivated by IMU preintegration theories developed by [8,35–38], we firstly develop a novel
preintegration method to handle the IMU intrinsic parameters error propagation. Then we frame the
IMU preintegration measurements and IMU intrinsic parameters into general factors. In such a way,
we can implement an optimization method to jointly estimate the IMU intrinsic parameters as well
as the system state in a big bundle, which makes our method totally distinguished from the method
in [13]. Compared to the the offline IMU calibration methods, our method integrates into the current
VINS method and performs online IMU self-calibration, without any special equipment.

3. Methodology

3.1. Visual-Inertial System

Consider a sensing system (e.g., a mobile robot or a hand-held device) equipped with a monocular
camera and a low-cost uncalibrated IMU. Our goal is to concurrently estimate the states of the
sensing system, as well as the IMU intrinsics in a tightly-coupled graph-based framework. A general
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visual-inertial system is illustrated in Figure 1, in which, several keyframes and IMU measurements
are maintained in a sliding window. When a new keyframe is inserted into the sliding window, a local
bundle adjustment (BA) would be implemented to jointly optimize the camera and IMU states, as well
as the feature location. After optimization, one of the old keyframe as well as its corresponding states
and measurements would be marginalized from the sliding windows, limiting the sliding windows
size and reducing computation complexity.

Camera:

IMU:

IMU and camera states

Visual measurements

IMU measurements

Features

�� ��

��

��

��

��
��

��

��

Figure 1. Illustration of visual-inertial system. Several keyframes and inertial measurement unit (IMU)
measurements are maintained in a sliding window. When a new keyframe is inserted into the sliding
window, a local bundle adjustment (BA) would be implemented to jointly optimize the camera and
IMU states, as well as the feature location.

The notations and frame definitions used in this paper are briefly described as follows. We denote
the world frame and the body frame (BF) as (·)w and (·)b, respectively. The z-axis of the world frame
is aligned with the direction of the gravity. The BF is defined to be the same as the accelerometer
orthogonal frame (AOF). We primarily use quaternions q with Hamilton convention to represent
rotation, but rotation matrices R are also used for the convenient representation of 3D vectors rotation.
qw

b represents the orientation of body frame with respect to the word frame. Rw
b is the corresponding

rotation matrix of qw
b . The parameter pw

b is the translation from the world frame to the body frame,
being expressed in word frame, bk is the body frame while taking the k-th image, gw and gb are the
gravity vectors in the world frame and body frame, respectively.

The full state vector in the sliding window is defined as

X = [x0, x1, · · · , xn, xI , f0, f1, · · · , fm]

xk = [pw
bk

, qw
bk

, vw
bk

, ba, bω ],
(1)

where xk is the IMU state at the k-th image. It contains position, orientation and velocity of the IMU
as well as the accelerometer bias ba and gyroscope bias bω. The parameter xI is the IMU intrinsic
parameters, fl is the feature location, which can be parameterized by either the 3D position or inverse
depth of the feature, n is the number of keyframes in the sliding window, m is the number of features
which have been observed at least by two frames in the sliding window.

After the VINS was successfully initialized with the method proposed in [8,39], we were able to
use a sliding window based framework to jointly optimize both the full system states as described in
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Equation (1). We minimize the sum of prior and the Mahalanobis norm of all measurement residuals
to obtain a maximum posteriori estimation as

min
X

∥∥rp − HpX
∥∥2

+ ∑
k∈B

∥∥∥rB
(

ẑbk
bk+1

,X
)∥∥∥2

P
bk
bk+1

+ ∑
(l,j)∈C

∥∥∥rC
(

ẑ
cj
l ,X

)∥∥∥2

P
cj
l

+ ‖rI (x)‖2
PI

 , (2)

where {rp, Hp} are the prior information from marginalization. rB(ẑ
bk
bk+1
X ) and rC(ẑ

cj
l ,X ) are residuals

for the IMU and visual measurements respectively, where B is the set of all IMU measurements and C
is the set of features. The parameter rI (x) is the residuals for IMU intrinsic parameters.

As our goal is to estimate the IMU intrinsic parameters online, in this paper, we assume the
translation and orientation between camera and IMU are fixed and known from prior calibration.
Furthermore, we assume there is a vision front-end for feature detection and tracking, providing the
pixel measurements of the features. Therefore, we will neglect the residuals of vision measurements
rC(ẑ

cj
l ,X ) in this paper and only detail the residuals of IMU measurements rB(ẑ

bk
bk+1
X ) as well as the

IMU intrinsics rI (x) in the following.

3.2. IMU Model

A six-degree-of-freedom IMU composes by a triple axis accelerometer and a triple axis gyroscope.
Ideally, the two triple-axis define a single, shared, orthogonal 3D frame. The accelerometer senses the
acceleration of the sensor along of each input axis, while gyroscope measures the angular velocity
around each input axis. The scale factors convert analog or digital output of the sensor to real physical
quantity measurements. Unfortunately, due to assembly imperfections, each axis of the accelerometer
and gyroscope deviates by a small angle from its designed mounting direction, as a result, introducing
axis misalignment and cross-axis sensitivity errors to the measurements. Also, real scale factor of
each axis is unique and different from the nominal value provided by the manufacturer. In additional,
the angular velocities measurements are affected by the accelerations that the sensor is subjected.
Moreover, all of the measurements are almost always affected by variable bias. In order to model and
compensate these errors, we employ the IMU measurement model as described in [33].

am = Sa Ma(ab
wb − gb) + ba + na (3)

ωm = Sω Mωωb
wb + Aω(ab

wb − gb) + bω + nω, (4)

where am and ωm are the measurement of accelerometer and gyroscope, respectively, Sa is a 3× 3
diagonal matrix constructed by the scale factors of the triple axis, Ma is a 3 × 3 lower triangular
matrix representing the axis misalignments and the cross-coupling terms, and Sω and Mω are defined
analogously to Sa and Ma. Each row of Ma and Mω is a unit vector. The parameter Aω is a full
populated matrix representing the g-sensitivity coefficients of gyroscope, ab

wb and ωb
wb are the body

frame acceleration and angular velocity with respect to the word frame, being expressed in the body
frame, ba and bω is the measurement bias of accelerometer and gyroscope respectively, na, nω is the
measurement noise. We assume that na, nω are Gaussian white noise, na ∼ N (0, σ2

a ), nω ∼ N (0, σ2
ω).

For the derivations of Equations (3) and (4), please refer to [33].
The accelerometer and gyroscope bias are modeled as random walks, the derivatives of which are

Gaussian white noise, nba ∼ N (0, σ2
ba
), nbω

∼ N (0, σ2
bω
).

ḃa = nba , ḃω = nbω
. (5)

It is inconvenient to optimize the Ma and Mω as each row of these two matrices is constrained to a unit
vector. Besides, when integrating the angular velocity and acceleration to obtain the motion of the system,
we need to compute the inverse matrix of Sa, Ma, Sω , Mω at every step to compensate the measurement
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errors, which is a waste of computing resources. If defining Ta = (Sa Ma)−1, Tω = (Sω Mω)−1, we could
get the compensated acceleration and angular velocity from the measurements more effectively:

ab
wb = Ta(am − ba − na) + gb (6)

ωb
wb = Tω

(
ωm − Aω(ab

wb − gb)− bω − nω

)
, (7)

where, Ta is still a lower triangular matrix, Tω is a full populated matrix without constraint.
For an uncalibrated IMU, Ta, Tω is roughly close to identify matrix with some uncertainty. Aω is close
to 0.

3.3. IMU Preintegration

The IMU preintegration method was firstly introduced in [35], which parameterize the rotation
error using Euler angles. This method was further improved in [8] with the continuous-time
quaternion-based derivation and including the handling of IMU biases. The intuitive concept of
IMU preintegration is illustrated in Figure 2. The proposed an IMU preintegration method that is
motivated by [8], but is different from the previous work as we introduce the IMU intrinsic parameters
in the measurement model. Therefore, we need to re-derive all of the equations from scratch.

Images

IMU

Preintegrated IMU

t

Δ��

i j

k k+1

Figure 2. Illustration of the concept of IMU preintegration. The IMU measures the acceleration
and angular velocity at discrete time. Generally, The IMU measurement frequency is much larger
than the frame rate of camera. Giving two time consecutive frames bk and bk+1, there exists several
measurements in time interval [tk, tk+1]. The IMU measurements between image frames k and k + 1
are pre-integrated into a single compound measurement. From an optimization perspective, it can be
seen as the observations or measurements with which we can construct the error terms and adjust the
corresponding state values to minimize the errors.

Theoretically, giving two time instants at images frames k and k + 1, we can compute the states at
tk+1 as a function of IMU measurements between two frames:

pw
bk+1

= pw
bk
+ vw

bk
∆tk +

1
2

gw∆t2
k +

∫∫
t∈[k,k+1]

Rw
bt

Ta(amt − bat − nat)dt2 (8)

vw
bk+1

= vw
bk
+ gw∆tk +

∫
t∈[k,k+1]

Rw
bt

Ta(amt − bat − nat)dt (9)

qw
bk+1

= qw
bk
⊗
∫

t∈[k,k+1]

1
2

qw
bt
⊗ Tω

(
ωmt − AωTa(amt − bat − nat)− bωt − nωt

)
dt, (10)

where ∆tk is the duration of time interval [tk, tk+1].
While Equations (8)–(10) provide an estimation of motion between time tk and tk+1, it can be

seen that the IMU state propagation requires the rotation, position and velocity of frame k as the
starting states. In the optimization-based algorithm, we adjust the full system states at every iteration
step, which means these starting states may change. In such cases, we need to re-integrate the IMU
measurements, which is computation consuming. To avoid this, we adopt the preintegration method.
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Premultiply qbk
w or Rbk

w to both sides of Equations (8)–(10) to change the reference frame for the
IMU propagation to the local frame bk:

Rbk
w pw

bk+1
= Rw

bk
(pw

bk
+ vw

bk
∆t +

1
2

gw∆t2) + α
bk
bk+1

(11)

Rbk
w vw

bk+1
= Rbk

w vw
bk
+ Rbk

w gw∆tk + β
bk
bk+1

(12)

qbk
w ⊗ qw

bk+1
= γ

bk
bk+1

, (13)

where

α
bk
bk+1

=
∫∫

t∈[k,k+1]
Rbk

bt
Ta(amt − bat − nat)dt2 (14)

β
bk
bk+1

=
∫

t∈[k,k+1]
Rbk

bt
Ta(amt − bat − nat)dt (15)

γ
bk
bk+1

=
∫

t∈[k,k+1]

1
2

γ
bk
bt
⊗ Tω

(
ωmt − AωTa(amt − bat − nat)− bωt − nωt

)
dt. (16)

The preintegration parts α
bk
bk+1

, β
bk
bk+1

, γ
bk
bk+1

can be obtained solely with IMU measurements and
its intrinsic parameters. These preintegrated measurements construct the constraints between the
states at time tk and the states at time tk+1. Therefore, we can construct the error terms with these
preintegrated IMU measurements, and adjust the corresponding state values to minimize the errors
base on optimization method.

It can be seen that the preintegration measurements in Equations (14)–(16) are also the function of
the IMU intrinsic parameters, Ta, Tω , Aω as well as the bias ba, bω . As a result, the imperfection of these
parameters would introduce errors into the measurements. This also means that we can concurrently
optimize the IMU intrinsic parameters to minimize the errors constrained by the preintegration
measurements. To achieve this goal, two problems need to be dealt with:

1. Compute the Jacobian matrix of α
bk
bk+1

, β
bk
bk+1

, γ
bk
bk+1

with respect to the IMU intrinsic parameters.
The Jacobian matrix will be used in two ways: (1) for the optimization method, the Jacobian
matrix would be used to evaluate the increment of the input arguments; (2) at the end of each
iteration step, we use Jacobian as well as the new adjusted states will be used to compute the
first-order approximation of preintegration measurement so that we can avoid re-integrating the
IMU measurements.

2. Estimate the uncertainty of the preintegration measurements. All of the IMU measurements
contain random noises. These noises, as well as the the inaccuracy of the IMU intrinsic parameters,
introduce the uncertainty to the preintegration results. In order to get more precise optimization
results, we need to estimate the uncertainty of the preintegration measurements in the form of
a covariance matrix or information matrix and use these uncertainty information to weight the
error terms during optimization.

These two problems will be tackled in the next section.

3.4. Jacobian and Noise Propagation

In order to compute the Jacobian matrix and estimate the uncertainty of preintegration results,
we divide the true state value of preintegration result x into two components, the nominal state x̂
and the error state δx. The nominal state is estimated by integrating the IMU measurements directly,
without taking into account the noise terms and imperfect intrinsic parameters or unmodeled error.
As a results, it will accumulate errors. These errors are collected into the error state. In this way, the true
state can be expressed as a composition of the nominal state and error state, that is,

x = x̂⊕ δx, (17)
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where ⊕ is the composition operator. Since the quaternion q is over-parameterized, we define its error
term with the minimal representation δθ. As a result, for quaternion, ⊕ is defined as

q = q̂⊕ δθ ≈ q̂⊗
[

1
1
2 δθ

]
⇒ δθ = 2[q̂−1 ⊗ q]xyz, (18)

where [·]xyz extracts the vector part of a quaternion q. For other states, x̂⊕ δx̂ , x̂ + δx.
The concept of nominal-state and error-state is similar to the error-state Kalman filter (ESKF) [40,41].

The main difference is that we need to tackle the imperfection of the IMU intrinsic parameters.
This is a nontrivial extension as it introduces 24 more parameters into the state space, which makes
the equations more complex compared to the general ESKF and preintegration methods showed
in [8,37,38].

The nominal-state is computed as follows:

α̂
bk
bk+1

=
∫∫

t∈[k,k+1]
R̂bk

bt
T̂a(amt − b̂at)dt2 (19)

β̂
bk
bk+1

=
∫

t∈[k,k+1]
R̂bk

bt
T̂a(amt − b̂at)dt (20)

γ̂
bk
bk+1

=
∫

t∈[k,k+1]

1
2

γ̂
bk
bt
⊗ T̂ω

(
ωmt − Âω T̂a(amt − b̂at)− b̂ωt

)
dt. (21)

As the real IMU measures the acceleration and angular velocity at discrete time, Equations (19)–(21)
can be computed by numberical integraion methods such as Euler, mid-point or Runge—Kutta
methods. The mid-point integration is used in our implementation code, which is detailed in the
Appendix A.2. At the beginning of integration, α

bk
bk

, β
bk
bk

is set to 0, and γ
bk
bk

is set to identity quaternion.
With the computation above, all the large-signal dynamics have been integrated in the

nominal-state. As a result, the error-state is always small. We can solve its kinematics and neglect all
second-order infinitesimals to get the continuous-time linearized dynamics.

δα̇
bk
bt
= δβ

bk
bt

(22)

δβ̇
bk
bt
= −R̂bk

bt
[T̂a â]×δθ

bk
bt
− R̂bk

bt
T̂aδb̂a + R̂bk

bt
δTa âB − R̂bk

bt
Tana (23)

δθ̇
bk
bt
= −[T̂ωω̂B]×δθ

bk
bt
+ T̂ω Âω T̂aδba − T̂ωδbω − T̂ω ÂωδTa âB

+ δTωω̂B − T̂ωδAωTa âB + T̂ω Âω T̂ana − T̂ωnω, (24)

where R̂bk
bt

is the corresponding rotation matrix of γ
bk
bt

, âB = (amt − b̂at), ω̂B = ωmt − Âω T̂a(amt −
b̂at)− b̂ωt , [·]× is the skew symmetry matrix operator,

[ω]× =

 0 −ωx ωy

ωx 0 −ωz

−ωy ωz 0

 . (25)

Details about how to get the error-state kinematic representation above is given in the Appendix A.1.
The error-state dynamics of the IMU intrinsic parameters are as follows

δḃa = nba , δḃω = nbω
(26)

δṪa = 0, δṪω = 0, δȦω = 0. (27)

In order to compute the the Jacobian matrix and covariance recursively, we need to convert
Equations (22)–(24), (26) and (27) to matrix representation. This takes a little trick.
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Define

Xpre = [α
bk
bt

, β
bk
bt

, γ
bk
bt

, ba, bω, ta, tω, aω ], (28)

where

ta = [Ta11 , Ta21 , Ta22 , Ta31 , Ta32 , Ta33 ]
T

tω = [Tω11 , Tω12 , Tω13 , Tω21 , Tω22 , Tω23 , Tω31 , Tω32 , Tω33 ]
T

aω = [Aω11 , Aω12 , Aω13 , Aω21 , Aω22 , Aω23 , Aω31 , Aω32 , Aω33 ]
T .

With Taij , Tωij , Aωij are the corresponding elements of the matrix Ta, Tω, Aω, respectively.
Assume r3×1 = [r1, r2, r3]

T . Now we define the [·]T operator as

[r3×1]T =

r1 0 0 0 0 0
0 r1 r2 0 0 0
0 0 0 r1 r2 r3


3×6

, such that Tar3×1 = [r3×1]Tta

and [r3×1]T =

rT 0 0
0 rT 0
0 0 rT


3×9

, such that Tωr3×1 = [r3×1]Ttω, Aωr3×1 = [r3×1]Taω.

With the definitions above, Equations (22)–(24), (26) and (27) can be converted to matrix
representation form

δẊpre = FtδXpre + Gtn (29)

where

Ft =


0 I 0 0 0 0 0 0
0 0 −R̂bk

bt
[T̂a â]× −R̂bk

bt
T̂a 0 R̂bk

bt
[ât]T 0 0

0 0 [T̂ωω̂t]× T̂ω Âω T̂a T̂ω −T̂ω Âω [ât]T [ω̂]T T̂ω [T̂a ât]T
030×39



Gt =



0 0 0 0
T̂ω Âω T̂a −R̂bk

bt
T̂a 0 0

0 −T̂ω 0 0
0 0 I 0
0 0 0 I

024×12


,

and n = [na, nω, nba , nbω
].

With the Equation (29), it is convenient to compute the the covariance matrix Pbk
bk+1

recursively by
the first order discrete-time covariance update

Pbk
bt+δt

= (I + Ftδt)Pbk
bt
(I + Ftδt)T + (Gtδt)Q(Gtδt)T , (30)

where δt is the time between two IMU measurements, and Q is the diagonal covariance matrix of
noise (σ2

a , σ2
g , σ2

ba
, σ2

bg
). The initial covariance value corresponding to α, β, γ, ba, bω is set to 0. For Ta,

Tω, Aω, the initial covariance can be set to 0 or a constant uncertainty, which will be discussed in
Section 3.6.
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Now we deal with the Jacobian matrix. Neglecting the noise term, Equation (29) can be converted
to a discrete-time representation as following:

δXpre(t + δt) = (1 + Ftδt)δXpre(t). (31)

As a result, the Jacobian of δXpre(t + δt) with respect to δXpre(t) can be obtained conveniently:

Jt+δt
t =

∂δ∂X pre(t + δt)
δXpre(t)

= 1 + Ftδt. (32)

We can compute Jk+1
k recursively:

Jk+1
k =

∂δXpre(j)
∂δXpre(j− 1)

∂δXpre(j− 1)
∂δXpre(j− 2)

· · · ∂δXpre(i + 1)
∂δXpre(i)

= (I + Ft,j−1δtj−1)(I + Ft,j−2δtj−2) · · · (I + Fiδti),
(33)

where i and j represent the i-th and j-th IMU measurement obtained at the time instant of frame k and
k + 1, respectively, as illustrated in Figure 2.

The first order approximation of αbk+1
, βbk+1

, γbk+1
with respect to the IMU intrinsic parameters

can be computed as:

α
bk
bk+1

= α̂
bk
bk+1

+ Jα
ba

δbak + Jα
bω

δbωk + Jα
ta δtak + Jα

tω
δtωk + Jα

aω
δaωk (34)

β
bk
bk+1

= β̂
bk
bk+1

+ Jβ
ba

δbak + Jβ
bω

δbωk + Jβ
ta

δtak + Jβ
tω

δtωk + Jβ
aω δaωk (35)

γ
bk
bk+1

= γ̂
bk
bk+1
⊗ (Jγ

ba
δbak + Jγ

bω
δbωk + Jγ

ta
δtak + Jγ

tω
δtωk + Jγ

aω δaωk ), (36)

where Jα
ba

is the sub-block matrix of Jbk+1
whose location is corresponding to

∂δα
bk
bk+1

bak
. The same meaning

is also used for other J in the above.
At each step of optimization, we can use Equations (34)–(36) to update the value of α, β, γ with

the new estimated IMU intrinsic parameters and recompute the corresponding residuals.

3.5. IMU Measurement Factor

Considering two consecutive frames k and k + 1 in the window, the residual of preintegrated IMU
measurement can be constructed from Equations (11)–(13):

rB(ẑ
bk
bk+1

,X ) =



δα̂
bk
bk+1

δβ̂
bk
bk+1

δγ̂
bk
bk+1

δba

δbω


=



Rbk
w (pw

bk+1
− pw

bk
+ 1

2 gw∆t2 − vw
bk

∆t)− α̂
bk
bk+1

Rbk
w (vw

bk+1
+ gw∆t− vw

bk
)− β̂

bk
bk+1

2[(γ̂bk
bk+1

)−1 ⊗ (qw
bk
)−1 ⊗ qw

bk+1
]xyz

ba,k+1 − ba,k
bω,k+1 − bω,k


. (37)

Please note that the accelerometer and gyroscope bias are also included in the residual terms for
online correction. Equation (37) seems the same as the IMU measurements residual in the paper [8].
However, as our preintegrated IMU measurements α, β, γ handle the imperfection of the IMU intrinsic
parameters, which made it different from the one of [8]. Besides, the Jacobian of rB(ẑ

bk
bk+1

,X ) with
respect to the input arguments is completely different, too.

3.6. IMU Intrinsic Factor

There are several possible but different strategies for defining the IMU intrinsic
parameters residual:
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1. The parameters Ta, Tω , Aω are modeled as random-walk processes, but are constant between two
frames in the sliding window, and are handled with the same strategy as the IMU bias.

2. The parameters Ta, Tω, Aω are assumed to be uncertain but constant between two frames in
the sliding window. With this strategy, we can set the covariance value of Pbk

bk
in Equation (30)

corresponding to Ta, Tω, Aω with a constant value and optimize them at every frame.
3. The parameters Ta, Tω, Aω are assumed to be uncertain, but constant in the timespan of the

sliding window.

From the perspective of optimization method, the strategies 1 and 2 are nearly same, except that
the covariance value is different, with strategy 1 computing the covariance during preintegration.
However, for every frame these two strategies would add additional 24 parameters to the estimator.
Assuming the size of sliding window is 10, this means that we will need to optimize an additional
240 parameters at each step, leading to a computational problem for realtime implementation.
Besides, compared to the accelerometer and gyroscope bias which vary with time and temperature,
the scale factor and misalignment parameters seem more stable, which means that we do not need
to optimize them at every frame. Moreover, the scale factors and axis misalignments may couple
with the measurement bias under degenerate motions such as rectilinear trajectory, motion with zero
acceleration or rotation. In such a case, it is impossible to distinguish all these parameters in one or
two frames. With these reasons, in our algorithm, we would choose the strategy 3.

The residual of Ta, Tω, Aω in our implementation is defined as follows:

rI (X ) =

 ta − t̂a,k
tω − t̂ω,k
aω − âω,k

 , (38)

where t̂a,k, t̂ω,k and âω,k are the current estimation of IMU intrinsic parameters. Please note that the
residual is weighted by a constant covariance matrix PI and add to the cost function, Equation (2).

3.7. Discussion and Implementation Details

The considered IMU intrinsic parameters in our method include axis misalignments, scale factors
and g-sensitivity. In practice, however, it should be noted that online g-sensitivity calibration is
a difficult task. This my be caused by various reasons. First, the errors caused by g-sensitivity are
generally smaller than other errors, especially in cases that the IMU suffers from motion with low
acceleration or constant speed, or remains static. Second, the g-sensitivity coefficients of a real IMU may
vary with the frequency of vibration. As a result, the errors caused by g-sensitivity are more prone to
couple with the gyroscope bias or manifest as random noise. In some worse cases, online g-sensitivity
calibration may lead to less accuracy of the motion estimation of VINS. Moreover, g-sensitivity
calibration would introduce an extra nine variables to the state space, which would consume more
computational resource. Therefore, in practice application, whether or not calibrating the g-sensitivity
online depends on the IMU used and the motion that the sensor system are subjected. Fortunately, it is
very easy to calibrate without g-sensitivity by setting the g-sensitivity coefficients to zeros and keep
them constant. The implementation details would be discussed in the following.

We implemented the proposed online IMU self-calibration method with the extension of
VINS-Mono [8], as depicted in Figure 3. The system started with measurement preprocessing.
For each new image, features were detected by the Shi–Tomasi corner detector [42] and tracked
by a KLT tracker [43]. Meanwhile, IMU measurements were locally pre-integrated. The initialization
procedure provided all necessary values for bootstrapping the subsequent nonlinear optimization.
After the system has been successfully initialized, the tightly-coupled nonlinear optimization
would be implemented when every frame is added to the sliding window. After that, keyframe
management module marginalized one of the frames from the sliding window in order to bound the
computation complexity. We add the IMU intrinsic parameters into the state vector and replace the
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IMU preintegration block with our method, which are detailed in Sections 3.3 and 3.4. The proposed
IMU measurement factor (Section 3.5) and IMU intrinsic factor (Section 3.6) were used in the
nonlinear optimization block. The optimization computation is based on the Ceres Solver [44].
In the implementation, we separate the Ta, Tω, Aω into individual parameter blocks so that we
can conveniently set any blocks to constant when optimization, depending the real application. In such
way, we can implement our method with and without g-sensitivity calibration, as discussed above.

Keyframe n
Current 
Frame

Keyframe 2 ⋯

Sliding Window

Keyframe 1

Camera

IMU

Feature Detection and 
Tracking

IMU Preintegration

Measurement Preprocessing

Nonlinear Optimization

Keyframe Selection

Marginalization

Keyframe Management

Map 
Management

Visual-Inertial 
Alignment

Initialization

Vision-only 
SFM

Sensors

Add to Sliding 
Window

Last Frame

Initialized?
Yes

No

Figure 3. Block diagram illustrating of a monocular visual-inertial system (VINS-Mono) [8], based on
which, we implement the proposed online IMU self-calibration method. We add the IMU intrinsic
parameters into the state vector and replace the IMU Preintegration block with our method, which are
detailed in Sections 3.3 and 3.4. The proposed IMU measurement factor (Section 3.5) and IMU intrinsic
factor (Section 3.6) are used in the nonlinear optimization block.

4. Experimental Results

We performed dataset experiments to evaluate the proposed online IMU self-calibration method.
At present there are several publicly available datasets for VINS evaluation, such as UMich NCLT [45],
EuRoc [46], PennCOSYVIO [47], Zurich Urban MAV [48], TUM VI [49], etc., in which, EuRoc is a very
popular dataset and used by many papers [8,20,38,39,50–52]. For a completely comparison of these
datasets, please refer to [49]. In this paper we adopt the TUM VI dataset [49] for two main reasons:
(1) the IMU used in EuRoc dataset is an ADIS16448, a high-end industrial grade IMU with precisely
factory calibrated. In contrast, the TUM VI uses a low-cost consumer grade IMU, Bosch BMI160,
which makes it more suitable for evaluating our algorithm; (2) The dataset provides both the raw IMU
measurements and the precalibrated IMU measurements that compensated for proper IMU scaling
and axis alignment. The value of scale factor and axis alignment parameters used for compensation
are also provided with the dataset. As a result, we can easily run our algorithm with the raw IMU
measurements and compare the estimated intrinsic parameters with the provided reference value.

The TUM VI dataset provides several categories of sequences for the evaluation of VINS
method, including three corridor sequences, six magistrale sequences, eight outdoor sequences,
six room sequences, and three slider sequence. The outdoor sequences are neglected in our
experiments as we focus on the IMU self-calibration but not long time drift evaluation in challenging
environments. To perform the comparison experiments, we firstly packed the the quarter resolution
images (512× 512 pixels) of the left camera, precalibred IMU measurements as well as the raw IMU
measurements with different topic names into one single ROS bag file for each sequence so that we can
easily evaluate the algorithm with different type of IMU measurements by just modifying the topic name.
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Please note that we deduct the large IMU bias, which is coarsely reproducible between sensor
restarts, from the raw measurements. This is reasonably explained in [49]. We also compensate the
timestamp of IMU data so that the timestamp is consistent for camera, IMU and ground truth pose.

4.1. IMU Intrinsics Estimation Results

As discussed in Section 3.7, it is difficult to calibrate the g-sensitivity online. In the experiments,
we ran the algorithm two times on each sequence of dataset, with and without Aω estimation,
respectively. Then we compared the IMU intrinsics estimation results with the the reference values.
In all experiments, the initial value of Ta and Tω were set to the identity matrix, with the covariance as
2.0× 10−4, and the initial value Aω was set as a zeros matrix with covariance as 5.0× 10−6.

4.1.1. IMU Intrinsics Estimation without G-Sensivity

Figures 4 and 5 show the estimation results on the first sequence of each categories, corridor 1,
magistrale 1, room 1, slides 1, respectively, in detail. We can see that all parameters converge to a certain
range close to the ref value, but slightly vary with time after that. For each sequence, the convergence
speed is different. Generally, the parameters of the gyroscope converge in about 15–20 s and the
estimation results is more stable. In contrast, it takes 50–100 s for the parameters of accelerometer
to converge. In Figures 4b and 5b, the estimation results of Ta21 and Ta32 show larger differences
compared with the results of Figures 4a and 5a.
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Figure 4. IMU intrinsics estimation in corridor 1 (a) and magistrale 1 (b). Solid lines are the estimation
results and the dotted lines with the same color are the corresponding reference value.
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Figure 5. IMU intrinsics estimation in room 1 (a) and slider 1 (b). Solid lines are the estimation results
and the dotted lines with the same color are the corresponding reference value.

It is not surprising for the results mentioned above, as many factors would affect the accuracy
of the estimation results. Firstly, the VINS problem has the characteristics of high nonlinearity and
local weak observability. To achieve full observability of the IMU intrinsic parameters as well as the
measurement bias, motion with sufficient excitation was required. It is certain that this condition
would not be always satisfied at any time in real applications. Therefore, the result shows fluctuation
under insufficient excitation motion. Besides, the convergence speeds were affected by different
motions, which shows a different convergence speed for each sequence. Secondly, as the accelerometer
measures the acceleration and the gyroscope can measure the angular velocity directly, this also
means that different conditions are required for the accelerometer intrinsics and gyroscope intrinsics
to achieve observability. For the accelerometer, sufficient acceleration on each axis is required, and for
the gyroscope, only sufficient rotation of the system is required. For a moving sensing system, keeping
sufficient acceleration all the time is infeasible in real applications. In contrast, keeping sufficient
rotation is a more easily satisfied condition. As a result, the convergence speed of gyroscope shows
faster and more stable than that of accelerometer. Thirdly, the measurements of vision sensor and
IMU are affected by random noise, which is coupled with the erros caused by inaccuracy intrinsics
and bias, and further affects the accuracy of the estimation results. Generally, the measurement noise
of gyroscopes is much smaller than that of accelerometers, which means the estimated results of
gyroscopes are more accurate than accelerometers.

From Figures 4 and 5, it seems that the estimation results of intrinsic parameters located at the
diagonal of matrix Ta and Tω are more stable and accurate than other parameters located at the lower
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or upper triangle. This is because parameters of the lower or upper triangle themselves are much
smaller than those of diagonal, and any small challenges would show large fluctuations in the figures.
To further evaluate the estimate results, we take the estimation values at the end of each sequence as
the final estimation results and calculate their mean value, standard deviation as well as the differences
compared with the corresponding reference values. The statistics are shown in the Tables 1 and 2.
We can see that: (1) the standard deviation of diagonal parameters and that of off-diagonal parameters
do not show obvious differences; (2) The standard deviation of gyroscope intrinsics is much smaller
than that of accelerometer intrinsics. In Table 1, the standard deviation of results was about 0.002.
In contrast, five of nine parameters’ standard deviations in Table 2 were less than 0.001. This means
that the results of the gyroscope were more accurate, which concludes the analysis above. Generally,
the axis misalignments of low-cost MEMS-based IMU was 0.5–1%, and the standard deviations of our
estimation results was in the order of magnitude 10−3. Therefore, we can conclude that the proposed
method can works well with the low-cost MEMS-based IMU.

Table 1. Statistics of the estimation results of accelerometer intrinsics.

Ta11 Ta21 Ta22 Ta31 Ta32 Ta33

Reference 1.0042 −0.0001 1.0014 −0.0098 −0.0010 0.9705
Mean 1.0060 −0.0019 1.0040 −0.0090 0.0006 0.9700

Standard deviations 0.0017 0.0024 0.0020 0.0010 0.0028 0.0021
|Mean-reference| 0.0018 0.0018 0.0026 0.0008 0.0016 0.0004

Table 2. Statistics of the estimation results of gyroscope intrinsics.

Tω11 Tω12 Tω13 Tω21 Tω22 tω23 tω31 tω32 tω33

Reference 0.9436 0.0015 0.0008 0.0004 1.0941 −0.0027 −0.0018 0.0083 1.0159
Mean 0.9416 0.0023 0.0009 −0.0005 1.0919 −0.0012 −0.0015 0.0064 1.0160

Standard deviations 0.0009 0.0009 0.0004 0.0006 0.0018 0.0022 0.0004 0.0030 0.0012
|Mean-reference| 0.0020 0.0008 0.0000 0.0009 0.0022 0.0015 0.0003 0.0019 0.0002

4.1.2. IMU Intrinsics Estimation with G-Ensitivity

As the g-sensitivity coefficients are unknown, here we only show the results of sequence of corridor
1 and magistrale 1 in detail, as in Figure 6a,b. Comparing these two figures with the estimation results
without g-sensitivity showed in Figure 4a,b, we can find that the reuslts of Ta and Tω are nearly same,
regardless of with or without g-sensivity estimation. The results of g-sensivity Aω do not show that
they are very stable. However, this does not mean that we obtained the wrong estimations, or that the
calibration of g-sensitivity is totally failed. We would further discuss this in the next section with the
quantitative results of VINS to indirectly evaluation to g-sensitivity estimation.

4.2. Quantitative Evaluation

The goal of the IMU calibration is to estimate the IMU intrinsics and compensate the measurements
of IMU, and to improve the performance of VINS. Therefore, the accuracy of the IMU intrinsics
calibration would directly affects the results of motion estimation. In this section, we quantify the
accuracy of the estimation result of system pose with absolute trajectory error (ATE) and relative pose
error (RPE) [53]. The RPE is only available for the sequences of rooms 1–6, as for other sequences
only accurate pose ground truth at the start and end are available. For comparison, we also ran
the VINS-Mono with the same camera image sequences and configuration (IMU noise, camera
intrinsics, etc.), but with the precalibrated IMU measurements provided by the dataset. We did
not run VINS-Mono directly with the raw IMU measurements as it fails after a few seconds on all
sequences. For each sequence, we run the proposed algorithm and the VINS-Mono five times. In each
run of the proposed algorithm, the IMU intrinsic parameters estimated online are saved after each
nonlinear optimization step and used as the initial values of the next run. The median values obtained
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by the five times running were used as the final result. The trajectory estimation results of sequence
rooms 3 and 5 are showed in Figure 7. To simplify the notation, in the following figures and tables,
we use VINS to denote the results of VINS-Mono, our results and our results with Aω to denote the
results of our proposed method without and with g-sensitivity estimation, respectively.
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Figure 6. IMU intrinsics estimation with g-sensitivity in corridor 1 (a) and magistrale1 (b). Solid lines are
the estimation results and the dot lines with the same color are the corresponding reference value.

The root-mean-square-error (RMSE) ATE of all sequences is shown in Table 3. Compared the
results of our method without g-sensitivity estimation (column 3) against those of VINS-Mono
(column 2), 13/20 of the our results method show improvement performance, with the rest of
results offering near performance to those of VINS-Mono except the sequence magistrales 3 and
6. What interested us is that, although the estimation results of Ta21 and Ta32 in sequence magistrale 1
and slider 1 show larger differences compared to the reference values, the ATE of these two sequences
show obvious improvement. This means there exist some errors in the precalibrated reference values
or the intrinsic parameter values vary with time, as we mentioned in Section 1. Therefore, our VINS
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implementaion with online IMU self-calibration shows superior performance compared against the
result of VINS-Mono with offline precalibrated IMU measurements.
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Figure 7. Trajectory of (a) rooms 3 and (b) room 5.

Now we further focus on the ATE results of our method with g-sensitivity estimation (column 4).
9/20 of the results show best performance between the three algorithms, most of which show more
than 50% improvements. However, some of the results show worse performance compared to the
estimation results without g-sensitivity calibration. This also concludes our discussion in Section 3.7
that online g-sensitivity calibration is a difficult task and we would not always get a better performance
with g-sensitivity estimation.

Table 3. Root-mean-square-error (RMSE) absolute trajectory error (ATE) comparison between
the proposed method with raw inertial measurement unit (IMU) measurements and monocular
visual-inertial system (VINS-Mono) with precalibrated IMU measurements in all of the sequences.
Downarrow means better performance compared to VINS-Mono. The bold values indicate the best
results.

Sequence VINS Ours Ours with Aω Length (m)

corridor1 0.618 0.453 ↓ 0.851 305
corridor2 1.174 1.157 ↓ 0.936 ↓ 322
corridor3 1.309 0.797 ↓ 0.447 ↓ 300
corridor4 0.309 0.195 ↓ 0.136 ↓ 114
corridor5 0.674 0.547 ↓ 0.647 ↓ 270

magistrale1 2.385 2.043 ↓ 1.072 ↓ 918
magistrale2 3.205 3.105 ↓ 3.132 ↓ 561
magistrale3 0.358 0.521 1.035 566
magistrale4 4.443 3.919 ↓ 4.223 ↓ 688
magistrale5 0.542 0.603 0.738 458
magistrale6 2.078 2.825 1.210 ↓ 771

room1 0.089 0.095 0.094 146
room2 0.048 0.051 0.049 142
room3 0.145 0.076 ↓ 0.084 ↓ 135
room4 0.042 0.048 0.052 68
room5 0.196 0.049 ↓ 0.043 ↓ 131
room6 0.059 0.057 ↓ 0.048 ↓ 67
slides1 0.517 0.273 ↓ 0.193 ↓ 289
slides2 1.007 1.047 1.209 299
slides3 1.005 0.781 ↓ 0.764 ↓ 383
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Figure 8 shows the overall relative pose error (RTE) in room1–room6, caculated by the toolbox [54].
In Figure 8a, we can find obvious improvements compared to VINS-Mono. In contrast, nearly same
relative orientation errors are showed in Figure 8b.
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Figure 8. Overall relative pose error in rooms 1–6. (a) Relative translation error; (b) Relative
orientation error

4.3. Runtime Evaluation

The proposed online IMU self-calibration method adds additional states to the system state
vector, and estimates the optimal value of these states based on optimization method. As a result,
online calibration would consume more computation resource. Figure 9 shows the average processing
time per frame on each sequence. All experiments were performed using a computer equipped with
an Intel Core(TM) i7-7700 CPU at 3.60 GHz and 8 GB RAM.

It is obvious that the proposed method consumes an additional 3–5 ms to estimate the IMU
intrinsics. We further compute the average processing time for all sequences and the results are 27.7 ms,
31.8 ms, 33.5 ms, respectively. The processing time of our method without and with g-sensitivity
estimation increase 14.9% and 20.9%, respectively, compared with VINS-Mono. Nevertheless, we can
conclude that our method can run in real time.

Calibration process with g-sensitivity would introduce extra nine variables to the state space and
consumes about additional 2 ms times the cost. Therefore, in practice applications, it is necessary to
decide whether or not calibrating the g-sensitivity online, according to the IMU used and the trade-off
between estimation accuracy and real time performance. Beside, the motion of the sensing system that
are subjected should be considered, too. For example, if the general motion of the system is in low
acceleration most of the time, g-sensitivity calibration may not significantly improve the performance
of VINS.
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5. Conclusions

In this paper, we propose an online IMU self-calibration method for visual-inertial system
with low-cost inertial sensors. The main advantage of our method is that it performs online IMU
self-calibration based on optimization method in unknown environment, using only camera and
inertial measurements, and without any knowledge about the structure of scene or any external
equipment. Specifically, the estimated parameters include the axis misalignments and scale factors
of the IMU, as well as the g-sensitivity of the gyroscope. We perform extensive evaluation on public
TUM VI dataset, with and without g-sensitivity estimation, respectively. Experimental results verify
that the proposed method is able to accurately calibrate all the considered parameters in real time,
and show superior performance compared with the results of VINS with offline precalibrated IMU
measurements. It should be noted that the calibration process with g-sensitivity would introduce extra
nine variables to the state space and consume more computation resource. Therefore, in practical
application, it is necessary to decide whether or not calibrating the g-sensitivity online, according to
the IMU used and the trade-off between estimation accuracy and real time performance.

The proposed method is dedicated to low-cost IMUs. As a result, it is very suitable for the
consumer grade mobile robots, drones and cellphones which are broadly equipped with low-cost
MEMS-based IMUs. Moreover, our method would promote the rapid deployment of VINS in various
applications base on these platforms, such as robot navigation, autonomous driving, AR and VR.

In this paper we adopt quaternion as global parameterization for rotations. In the future we will
extend our method to work with the special orthogonal group SO(3), which would make it more easily
be employed in existing SO(3)-based visual/visual-inertial frameworks.
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Appendix A. Quaternion-Based IMU Preintegration

Appendix A.1. The Error-State Kinematics

This section details how to obtain the the error-state kinematic in Section 3.4. Our goal is to
determine δα̇, δβ̇, δγ̇. For readable and simplicity purpose, we will drop the coordinate frame
subscripts in the following equations, which would not cause ambiguous.

From Equations (14)–(16), we can get the true state kinematics of preintegration:

α̇ = β (A1)

β̇ = RTa(am − ba − na) (A2)

γ̇ =
1
2

γ⊗ Tω

(
ωm − AωTa(am − ba − na)− bω − nω

)
. (A3)
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From Equations (19)–(21), the nominal-states kinematic is obtained as follows:

˙̂α = β̂ (A4)
˙̂β = R̂T̂a(am − b̂a) (A5)

˙̂γ =
1
2

γ̂⊗ T̂ω

(
ωm − Âω T̂a(am − b̂a)− b̂ω

)
. (A6)

A. The Translation Error

With Equations (A3) and (A6), it is easy to obtain:

δα̇ = β− β̂ = δβ (A7)

B. The Linear Velocity Error

We start with the following relations:

R = R̂(I + [δθ]×) +O(‖δθ‖2) (A8)

a = Ta(am − ba − na)

= T̂a âB + T̂aδaB + δT̂a âB + δT̂aδaB,
(A9)

where âB = am − ba, δaB = −δba − na.
Substituting Equations (A8) and (A9) into Equations (A2) and (A5) yields:

β̇ ≈ R̂(I + [δθ]×)(T̂a âB + T̂aδaB + δT̂a âB + δT̂aδaB)

= R̂T̂a âB + R̂T̂aδaB + R̂δT̂a âB + R̂δT̂aδaB + R̂[δθ]×T̂a âB

˙̂β = R̂T̂a âB

⇒ δβ̇ = β̇− ˙̂β

≈ R̂T̂aδaB + R̂δT̂a âB + R̂[δθ]×T̂a âB

= −R̂[T̂a âB]×δθ− R̂T̂aδb̂a + R̂δTa âB − R̂Tana.

(A10)

C. The Orientation Error

We start with the following relations

ω = Tω

(
ωm − AωTa(am − ba − na)− bω − nω

)
= T̂ωω̂B + T̂ωδωB + δT̂ωω̂B + δT̂ωδωB,

(A11)

where, ω̂B = ωm − Âω T̂a âB − b̂ω, δωB = −δAω T̂a âB + Âω T̂aδba + (Âω + δAω)T̂ana − AωδT̂a(âB −
δba − na)− δbω − nω .
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Substituting Equation (A11) in Equations (A3) and (A6) yields:

γ̇ =
1
2

γ⊗ω, ˙̂γ =
1
2

γ̂⊗ T̂ωω̂B

⇒ γ̇ = ˙(γ̂⊗ δγ) =
1
2
(γ̂⊗ δγ)⊗ω

⇒ ˙̂γ⊗ δγ + γ̂⊗ δγ̇ =
1
2
(γ̂⊗ δγ)⊗ω

⇒ 1
2

γ̂⊗ T̂ωω̂B ⊗ δγ + γ̂⊗ δγ̇ =
1
2
(γ̂⊗ δγ)⊗ω

⇒ (γ̂)−1(
1
2

γ̂⊗ T̂ωω̂B ⊗ δγ + γ̂⊗ δγ̇) = (γ̂)−1(
1
2
(γ̂⊗ δγ)⊗ω)

⇒ 1
2

T̂ωω̂B ⊗ δγ + δγ̇ =
1
2

δγ⊗ω

⇒ δγ̇ =
1
2

δγ⊗ω− 1
2

T̂ωω̂B ⊗ δγ.

Remember that δγ =

[
1

1
2 δθ

]
. Substitute it to the last equation above:

[
1
δθ̇

]
= 2δγ̇ = δγ⊗ω− T̂ωω̂B ⊗ δγ

= ΩR(ω)δγ−ΩL(T̂ωω̂B)δγ

=

[
0 −(ω− T̂ωω̂B)

(ω− T̂ωω̂B) −[ω + T̂ωω̂B]×

] [
1

1
2 δθ

]
+O(‖δθ‖2)

=

[
0 −(T̂ωδωB + δT̂ωω̂B)

(T̂ωδωB + δT̂ωω̂B) −[2T̂ωω̂B + T̂ωδωB + δT̂ωω̂B]×

] [
1

1
2 δθ

]
+O(‖δθ‖2),

where, ΩL(ω) =

[
0 −ωT

ω [ω]×

]
, ΩR(ω) =

[
0 ωT

−ω −[ω]×

]
.

Now we obtain δθ̇ as:

δθ̇ = (T̂ωδωB + δT̂ωω̂B)− [2T̂ωω̂B + T̂ωδωB + δT̂ωω̂B]×
δθ

2
+O(‖δθ‖2)

≈ T̂ωδωB + δT̂ωω̂B − [T̂ωω̂B]×δθ

= −[T̂ωω̂B]×δθ+ δT̂ωω̂B + T̂ω

(
− δAω T̂a âB + Âω T̂aδba

+ (Âω + δAω)T̂ana − AωδT̂a(âB − δba − na)− δbω − nω

)
≈ −[T̂ωω̂B]×δθ+ T̂ω Âω T̂aδba − T̂ωδbω − T̂ω ÂωδTa âB

+ δTωω̂B − T̂ωδAω T̂a âB + T̂ω Âω T̂ana − T̂ωnω.

(A12)

Equations (A7), (A10) and (A12) form the error-state kinematic which is same as in Equations (22)–(24).

Appendix A.2. Mid-Point Integration for the IMU Preintegration

We perform the Mid-point numerical integration in our implementation code. This section shows
the computation details.

As showed in the Figure 2, we assume that the i-th IMU measurement is obtained at the time
instant of frame k, and j-th measurement at frame k + 1. For a real sensor suite, there may be no
IMU measurement at the time instant of a image frame is captured. In this case, linear interpolation
method can be used to estimate a IMU measurement at the corresponding time instant. As showed in
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Section 3.6, the Ta, Tω , Aω is also assumed constant in the timespan of sliding window, so we will not
explicitly distinguish the Ta,i, Tω,i, Aω,i and Ta,i+1, Tω,i+1, Aω,i+1 in the following equations.

A. Nominal-State Preintegration

Integrating Equations (19)–(21) is to get the nominal-state estimation:

α̂
bk
i+1 = α̂

bk
i + β̂

bk
i+1δt +

1
2

γ̂
bk
i T̂a(

1
2
(ami + ami+1)− b̂a)δt2 (A13)

β̂
bk
i+1 = β̂

bk
i + γ̂

bk
i T̂a(

1
2
(ami + ami+1)− b̂a)δt (A14)

γ̂
bk
i+1 = γ̂

bk
i ⊗ T̂ω

(1
2
(ωmi + ωmi+1)− Âω T̂a(

1
2
(ami + ami+1)− b̂at)− b̂ωt

)
δt, (A15)

where δt is the time interval between ti and ti+1. At the beginning of integration, α
bk
bk+1

, β
bk
bk+1

is 0,

and γ
bk
bk+1

is identity quaternion. The prorogation starts with i = i and repeats step by step until
i + 1 = j.

In the following we will detail how to obtain the error-state Jacobian and covariance using the
Mid-point integration.

B. Error-State of Orientation Preintegration

Define ω̄B = 1
2 (ω̂B,i + ω̂B,i+1), āB = 1

2 (âB,i + âB,i+1). Integration Equation (A12) in discrete time:

δθi+1 =
(

I − [T̂ωω̄B]×δt
)
δθi + T̂ω Âω T̂aδtδba,i − T̂ωδtδbω,i − T̂ω ÂωδTa āBδt

+ δTω āBδt− T̂ωδAω T̂a āBδt + T̂ω Âω T̂aδtna − T̂ωδtnω

= f33δθi + f34δba,i + f35δbω,i + f36δta,i + f37δtω,i + f38δaω,i + n31na + n32nω,

(A16)

where,

f33 = I − [T̂ωω̄B]×δt, f34 = T̂ω Âω T̂aδt, f35 = T̂ωδt, f36 = −T̂ω Âω [āB]Tδt

f37 = [āB]Tδt, f38 = −T̂ω [T̂a āB]Tδt, n31 = T̂ω Âω T̂aδt, n32 = −T̂ωδt.

C. Error-State of Velocity Preintegration

Define

Ra0 =
1
2

R̂i[T̂aaB,i]×, Ra1 =
1
2

R̂i+1[T̂aaB,i+1]×

R̄ =
1
2
(R̂i + R̂i+1)

RaT =
1
2
(R̂i[aB,i]T + R̂i+1[aB,i+1]T ).

Integration Equation (A10) in discrete time:

δβi+1 = δβi − (Ra0δθi + Ra1δθi+1)δt− R̄T̂aδtδb̂a,i + RaT δtδta,i − R̄T̂aδtna

= δβi − (Ra0δθi + Ra1
(

f33δθi + f34δba,i + f35δbω,i + f36δta,i + f37δtω,i + f38δaω,i

+ n31na + n32nω)
)
δt− R̄T̂aδtδb̂a + RaT δtδta − R̄T̂aδtna

= δβi + f23δθi + f24δba,i + f25δbω,i + f26δta,i + f27δtω,i + f28δaω,i + n21na + n22nω,

(A17)

where,
f23 = −(Ra0 + Ra1 f33)δt, f24 = −(Ra1 f33 + R̄T̂a)δt, f25 = −Ra1 f35δt,
f26 = (−Ra1 f36 + RaT )δt, f27 = −Ra1 f37δt, f28 = −Ra1 f38δt,
n21 = −(Ra1n21 + R̄T̂a)δt, n22 = −Ra1n22δt.
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D. Error-State of Translation Preintegration

δαi+1 = δαi + δβiδt +
1
2

δβ̇iδt2

= δαi + δβiδt +
δt
2
(

f23δθi + f24δba,i + f25δbω,i + f26δta,i

+ f27δtω,i + f28δaω,i + n21na + n22nω

)
.

(A18)

Equations (A16)–(A18) can be represent in matrix form:



αi+1
βi+1
γi+1

ba,i+1
bω,i+1
ta,i+1
tω,i+1
aω,i+1


=



I3
δt
2 f23 I3δt δt

2 f24
δt
2 f25

δt
2 f26

δt
2 f27

δt
2 f28

0 f22 I3 f24 f25 f26 f27 f28

0 f32 0 f34 f35 f36 f37 f38

0 0 0 I3 0 0 0 0
0 0 0 0 I3 0 0 0
0 0 0 0 0 I6 0 0
0 0 0 0 0 0 I9 0
0 0 0 0 0 0 0 I9


︸ ︷︷ ︸

Fm,i



αi
βi
γi

ba,i
bω,i
ta,i
tω,i
aω,i



+



δt
2 n21

δt
2 n22 0 0

n21 n22 0 0
n31 n32 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Gm,i


na

nω

nba
nbω

 . (A19)

Again, the Jacobian and covariance matrix can propagate recursively:

Ji+1 = Fm,i Ji (A20)

Pi+1 = Fm,iPiFT
m,i + Gm,iQGT

m,i. (A21)
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