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Abstract: Feature extraction of electroencephalography (EEG) signals plays a significant role in
the wearable computing field. Due to the practical applications of EEG emotion calculation,
researchers often use edge calculation to reduce data transmission times, however, as EEG involves
a large amount of data, determining how to effectively extract features and reduce the amount of
calculation is still the focus of abundant research. Researchers have proposed many EEG feature
extraction methods. However, these methods have problems such as high time complexity and
insufficient precision. The main purpose of this paper is to introduce an innovative method
for obtaining reliable distinguishing features from EEG signals. This feature extraction method
combines differential entropy with Linear Discriminant Analysis (LDA) that can be applied in
feature extraction of emotional EEG signals. We use a three-category sentiment EEG dataset to
conduct experiments. The experimental results show that the proposed feature extraction method
can significantly improve the performance of the EEG classification: Compared with the result of the
original dataset, the average accuracy increases by 68%, which is 7% higher than the result obtained
when only using differential entropy in feature extraction. The total execution time shows that the
proposed method has a lower time complexity.

Keywords: emotion recognition; feature extraction; differential entropy; linear discriminant
analysis; electroencephalography

1. Introduction

Electroencephalography (EEG) is a means of data acquisition via sensors [1,2]. In actual
applications, due to the large amount of data involved in EEG, the collected data is often used
in the mobile edge computing server for moving edge calculation. The Brain–Computer Interface
(BCI), also known as the direct neural interface, is an interdisciplinary cutting-edge technology. It is
a direct connection pathway established between a human or animal brain (or culture of brain cells)
and an external device [3–7]. The role of BCI is to establish communication between the human
brain and external computers or other intelligent electronic devices [8,9]. Emotional recognition
is a very important part of BCI. Emotional recognition generally refers to the acquisition of an
individual’s physiological or non-physiological signals to automatically identify the individual’s
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emotional state [10,11]. Emotional recognition is an important part of the emotional calculation,
and has a very important meaning in medicine and engineering [12].

Feature extraction is a crucial step in accurately classifying or decoding EEG signals in a BCI
system. Therefore, since the concept of BCI was proposed, researchers have conducted numerous
studies on how to effectively extract features from EEG signals [13,14]. Since the original EEG
signals are noisy, it is often difficult to find effective features directly by classification calculation.
How to perform effective signal decomposition is an important problem. In response to this situation,
early researchers mostly used statistical indicators (median, standard deviation, kurtosis symmetry,
etc.) of the first difference of the signal for feature extraction, and then proposed the spectral density
(EEG signal with a specific frequency band) [15], logarithmic power (Log BP) (band power based
on the oscillation process in the signal) [16], Hjorth parameters (EEG signals described by activity,
mobility, and complexity) [17], wavelet transform (decomposition of EEG signals) [15], etc. In 2013,
Duan proposed a feature extraction method based on differential entropy, which achieved good
results on emotion-based datasets [18]. In the past two years, many researchers have used differential
entropy as a feature extraction method to achieve good results on different datasets [19,20]. However,
researchers often use multi-channel acquisition equipment when collecting EEG data. This results
in high-dimension single samples, which makes the model likely to be overfitted, and the high
dimensionality will result in higher computational cost and time complexity of the model. Therefore,
the feature extraction method that uses only differential entropy may cause the training of the model
to be time-consuming and over-fitting for the multi-channel dataset.

In this situation, the dimension reduction used to perform quadratic feature extraction is an
effective method. In previous studies, researchers have also experimented with many methods for
feature extraction of EEG signals. For example, Lee proposed a data dimension reduction method
based on principal component analysis (PCA), which significantly improved the classification results
of the imaginary dataset of left- or-right-hand motor imagery data [21]. Subasi proposed a data
reduction method based on linear discriminant analysis (LDA), which proved that the LDA method can
effectively improve the classification of epileptic datasets [22]. These methods have been experimentally
proven to effectively extract important features and reduce the dimensions of the sample. In this
situation, we hope to combine signal decomposition and data dimensionality reduction in order to
improve the accuracy of classification while reducing the computational time complexity.

This paper proposes a feature extraction method based on the fusion of differential entropy
and LDA (Figure 1, yellow area). The method was tested on a three-category emotion EEG dataset.
We performed experiments on the original dataset using differential entropy, LDA, and the fusion
of differential entropy and LDA. We used five classic methods for classification: logistic regression
(LR), support vector machine (SVM), k-nearest neighbor (k-NN), random forests (RF), and multilayer
perceptron (MLP). At the same time, the cases using differential entropy alone (Figure 1, red area) and
using LDA alone (Figure 1, blue area) as the feature extraction method are compared. The experimental
results show that the proposed method can significantly improve the final classification results.
The average accuracy is 68% higher than that of experiments on the original dataset and is 7% higher
than the result when only using differential entropy for feature extraction. The execution time shows
that the proposed method has less time complexity after feature selection. The method proposed in
this paper has the following advantages compared with the previous methods: (i) compared with the
method using only differential entropy and only the LDA method, the proposed method has higher
classification accuracy; and (ii) the proposed method can effectively reduce the time complexity of the
classification method. In general, this paper proposes a feature extraction method based on the fusion
of differential entropy and LDA. The validity is verified based on the three-class emotion dataset,
and the result is better than that of previous researches.
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Figure 1. Flow chart of algorithm architecture.

The remaining sections are organized as follows: Section 2 introduces the classification methods
used in this paper, including LR, SVM, k-NN, RF, and MLP. Section 3 introduces the public dataset
used in this paper and the fusion of differential entropy and the LDA method. Section 4 gives a
performance comparison of experiments with different methods. In Section 5, the current state of the
brain–computer interface and the emotional classification field are discussed. In Section 6, a conclusion
is given and future work is described.

2. Related Works

This section introduces five classic machine-learning methods. In previous research, these methods
have been applied to emotion recognition and other classification recognition based on EEG signals.

The logistic regression (LR) method is a classic classification method. This method is widely
used in various fields including brainwave classification [23–25]. The LR method is used to solve the
classification problem, firstly establish the cost function, and then iteratively solve the optimal model
parameters through the optimization method. Finally, it verifies the quality of this model. In this paper,
the L2 norm is used to prevent overfitting.

The SVM method is a classic machine-learning method. This method is widely used in the field of
classification based on EEG signals [26–28]. If the data is not linearly separable, the kernel function will
be used. Common kernel functions include linear, poly, radial basis function (RBF), sigmoid, and so
on. In this paper, we use linear as a kernel function for the SVM method.

The k-NN method is a kind of classical data-mining method that has been used in EEG emotion
recognition for many years [29,30]. The basis of the k-NN method is measuring the distance between
different sample feature values. Its main concept is that for a new sample in the feature space, it belongs
to the most frequent category in its most similar samples of k in all samples. In general, k is usually
not greater than an integer of 20.

RF is an improved method of the decision-tree method. This method is also widely used in the
classification of EEG signals [31–33]. RF is an algorithm that integrates multiple trees through the idea
of integrated learning. Its basic unit is the decision tree, and its essence belongs to a large branch of
machine-learning-integrated learning methods. From an intuitive point of view, each decision tree
is a classifier, then for an input sample, N trees will have N classification results. The random forest
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integrates all the classification results by a voting strategy, so the category of highest frequency is the
final output.

Finally, MLP, also called an artificial neural network, is a kind of neural network method which is
often used in various fields, including EEG signal classification [34,35]. The MLP model consists of
an input layer, an output layer, and multiple hidden layers. The layers are generally in the form of
full connections, using the sigmoid or tanh functions as the activation function. MLP can implement
nonlinear discriminants. Studies have shown that any function with continuous input and output can
be approximated by MLP. An MLP neural network with a hidden layer (no limit to the number of
hidden nodes) can learn any nonlinear function of the input to output.

3. Our Method

3.1. Dataset

The experiment was conducted using a public emotional EEG dataset called SEED, which uses film
fragments as emotion-inducing materials and includes three categories: positive, neutral, and negative
emotions. In each experiment, the participants watched movie clips of different emotional states.
Each clip was played for about four minutes. In the experiment, three types of movie clips were played.
Each type of movie clip contains five movies, giving a total of 15 movies. These movie clips were all
from Chinese movies. There was a five-second prompt before each short film show, with 45 seconds of
feedback time after playback and 15 seconds of rest after watching. A total of 15 subjects participated
in the experiment (seven males, eight females, mean age 23.27 years old with a standard deviation of
2.37), all of whom had normal visual, auditory, and emotional states. The EEG signal when the subject
was watching the movie was recorded through the electrode cap, with a sampling frequency of 1000 Hz.
The experiment used the international 10-20 system and a 62-channel electrode cap. Each volunteer
participated in three experiments, and each experiment was separated by about one week. Therefore,
a total of 675 (15 × 15 × 3) data samples were formed. Then, 200 Hz down-sampling and 0.5–70 Hz
filtering were performed to obtain a preprocessed EEG dataset. For more information on the dataset,
please refer to the website http://bcmi.sjtu.edu.cn/~{}seed/index.html.

3.2. Methods

The method of using the differential entropy algorithm for feature extraction has been widely used
in the field of image and signal processing [36,37]. This method can effectively extract information
that may be valid in the sample. The feature extraction method proposed in this paper uses the
differential entropy algorithm to decompose the signal, remove the noise of the EEG signal, and extract
important features. LDA is a classic algorithm for pattern recognition. It was introduced in the field
of pattern recognition and artificial intelligence by Belhumeur in 1997 [38]. The basic idea of LDA is
to project high-dimensional samples into low-dimensional space to achieve the effect of extracting
classification information and compressing feature space dimensions. After projection, the sample
has the largest inter-class distance and the minimum intraclass distance. Therefore, it is an effective
feature extraction method. In this paper, the LDA method is used to reduce the dimension of the
data after signal decomposition, which is used to achieve the secondary extraction feature and reduce
the time complexity of the classification method. This section describes a feature extraction method
based on differential entropy and LDA. This section includes two parts: signal decomposition and
data dimensionality reduction.

3.2.1. Signal Decomposition

First, we perform signal decomposition on the original signal to remove noise and extract useful
information from the signal. Entropy is a thermodynamic quantity describing the disorder of a system.
The concept of entropy has been successfully applied to the analysis of EEG signals. Although the
original EEG signal does not follow a fixed distribution, research has proven that from 2 to 44 Hz by

http://bcmi.sjtu.edu.cn/~{}seed/index.html
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steps of 2 Hz, the EEG signal after filtering obeys a Gaussian distribution. This paper uses differential
entropy to perform signal decomposition of EEG [18].

Differential entropy is used to measure the complexity of continuous random variables, and is
the entropy of continuous random variables. The differential entropy is also related to the minimum
description length. Its calculation formula can be expressed as Equation (1):

h(X) = −
∫

X
f (x) log( f (x))dx (1)

where X is a random variable and f (x) is the probability density function of X. For the time series X
obeys Gaussian distribution N (µ, σ2), its differential entropy can be defined as Equation (2):

h(X) =
1
2

log(2πeσ2) (2)

In a fixed frequency band i, the differential entropy is defined as Equation (3):

hi(X) =
1
2

log(2πeσ2
i ) (3)

3.2.2. Data Dimensionality Reduction

Next, we use the LDA method for quadratic feature extraction and data dimensionality reduction.
There is a lot of noise in the EEG signals. However, the EEG signal after band-pass filtering has been
proven to obey a Gaussian distribution [18]. More importantly, in a large amount of data, it can be sure
that the EEG signal has a relatively obvious main component. This means that the EEG signals meet
the requirements of the LDA method; that is to say, the signal conforms to a Gaussian distribution
and has a distinct principal component. This in turn suggests that EEG signals can be extracted and
classified using the LDA method. The goal of LDA is to create a new variable that is a combination of
the original predictors. This is accomplished by maximizing the differences between the predefined
groups, with respect to the new variable. The optimization function of the two-class classification
and multi-class classification of the LDA method is different. Since this paper uses a three-category
emotion EEG dataset, we give only a brief description of the method of multi-class classification.

Assumed dataset is D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, any sample xi is n-dimensional vector,
yi = {C1, C2, . . . , CK}. We define Nj(j = 1, 2, . . . , K) as the number of samples of class j, Xj(j =

1, 2, . . . , K) is a collection of class j samples, and µj(j = 1, 2, . . . , K) is the mean vector of the j sample.
Define Σj(j = 1, 2, . . . , K) as the covariance matrix for the class j samples. The µj is Equation (4),
and the Σj is Equation (5):

µj =
1
Nj

∑
x∈Xj

x (4)

Σj = ∑
x∈Xj

(x− µj) (5)

Suppose the dimension of the low-dimensional space that the function needs to project into is
d, the corresponding base vector is (w1, w2, . . . , wd), base vector composition matrix W. It is a matrix
of n× d. The optimization objective function at this time is Equation (6). Sb is Equation (7) and Sw is
Equation (8). ∏

diag
A is the product of the main diagonal elements of A. The optimization process for

J(W) can be converted to Equation (9):

argmax︸ ︷︷ ︸
W

J(W) =

∏
diag

WTSbW

∏
diag

WTSwW
(6)
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Sb =
K

∑
j=1

Nj(µj − µ)(µj − µ)T (7)

Sw =
K

∑
j=1

Swj =
K

∑
j=1

∑
x∈Xj

(x− µj)(x− µj)
T (8)

J(W) =

d
∏
i=1

wT
i Sbwi

d
∏
i=1

wT
i Swwi

=
d

∏
i=1

wT
i Sbwi

wT
i Swwi

(9)

The process above is the feature extraction process.

4. Results

First we adopted a band filter to divide the EEG signals into five bands, including Delta (1–3 Hz),
Theta (4–7 Hz), Alpha (8–13 Hz), Beta (14–30 Hz), and Gamma (31–50 Hz). Therefore, we obtained
five datasets representing the corresponding band. Then, we combined the five-band data in order
to inform the combined band data. After that, we applied differential entropy (DE), LDA, and the
DE and LDA method proposed in this paper to extract features respectively. Finally, we adopted five
classification methods, that is, k-NN, LR, MLP, RF, and SVM. Each test randomly assigned 675 samples
into mutually exclusive training sets (70%) and validation sets (30%). The experiment adopted the
five-fold cross-validation method to ensure the accuracy of the results.

For the five classifiers, parameter tuning was conducted. After tuning, the better parameters for
these classifiers were chosen. For the logistic regression method, L2 penalty was used, and the inverse
of regularization strength was 1.0. For the SVM method, the ‘rbf’ kernel function is applied, and the
penalty parameter C was 1.0. For the k-NN method, the number of neighbors was set as 20. For the
random forest model, the number of trees in the forest was 120, the maximum depth of the tree was 10,
and the minimum number of samples required to split an internal node was 8. For the MLP classifier,
the optimizer was the Adam method, the activation function was ReLU, and the batch size was 32;
the size of two hidden layers were 64 and 32 respectively, and the learning rate was 0.0001.

We decided to adopt several evaluation methods to ensure the accuracy of the results. First,
we calculated the accuracy to evaluate the method; the accuracy is defined as the ratio of the number
of samples correctly classified by the classifier to the total number of samples in the test dataset.
However, accuracy is not always valid for evaluating the performance of a method, especially in the
situation that the numbers of true and false samples in the same datasets is not completely equal. Then,
we calculated the F1 score, which is a statistical indicator used to measure the accuracy of a binary
model. It also considers the accuracy and recall rate of the classification model. Moreover, we used the
Kappa coefficient, which is generally thought to be a more robust measure than simple percentage
agreement calculation. Finally, in order to judge the performance of the methods intuitively, we drew
the confusion matrix graph and the box plot.

4.1. Classification Result of the Experiment with Different Feature Selection Methods

Table 1 gives the experimental outputs of prediction performance in the original dataset. Table 2
gives the experimental outputs of prediction performance in the original data based on LDA feature
extraction. Table 3 gives the experimental outputs of prediction performance in the differential entropy
data. Table 4 gives the experimental outputs of prediction performance in differential entropy data
based on LDA feature extraction. These tables only show the best two classification methods in the
experiments. Details are given in Supplementary Tables S1–S4.

Table 1 shows that the random forest method has the highest average accuracy in the Gamma band.
Table 2 shows that the random forest method has the highest average accuracy in the case of combined
frequency band data. Table 3 shows that the SVM method has the highest average accuracy in the
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case of combined frequency band data. Table 4 shows that the SVM method has the highest average
accuracy in the case of combined frequency bands. It can be seen from Tables 1–4 that, under different
conditions, except for Table 1, in general, the accuracy of experiments on the combined frequency band
data is better than the accuracy of experiments on the sub-band data, and the performance of the SVM
method is superior to other methods. Therefore, the analysis of the experimental part uniformly uses
the combined frequency band data and SVM method.

Table 1. Predictive performance of five methods using the original dataset.

Method RF SVM

Band Delta Theta Alpha Beta Gamma Combined Delta Theta Alpha Beta Gamma Combined

Accuracy 0.385 ±
0.019

0.378 ±
0.029

0.365 ±
0.033

0.474 ±
0.030

0.491 ±
0.017

0.479 ±
0.038

0.310 ±
0.025

0.318 ±
0.028

0.330 ±
0.016

0.431 ±
0.021

0.315 ±
0.025

0.375 ±
0.028

Precision 0.383 ±
0.014

0.382 ±
0.030

0.378 ±
0.046

0.480 ±
0.039

0.487 ±
0.019

0.487 ±
0.032

0.311 ±
0.027

0.321 ±
0.028

0.333 ±
0.015

0.440 ±
0.026

0.324 ±
0.031

0.392 ±
0.024

Recall 0.391 ±
0.020

0.385 ±
0.031

0.373 ±
0.034

0.481 ±
0.030

0.496 ±
0.021

0.486 ±
0.035

0.311 ±
0.026

0.319 ±
0.027

0.333 ±
0.018

0.434 ±
0.022

0.320 ±
0.024

0.378 ±
0.031

F1 score 0.379 ±
0.016

0.373 ±
0.029

0.362 ±
0.035

0.465 ±
0.029

0.473 ±
0.012

0.474 ±
0.041

0.308 ±
0.024

0.315 ±
0.028

0.328 ±
0.015

0.429 ±
0.021

0.308 ±
0.025

0.372 ±
0.026

Kappa
coef.

0.084 ±
0.028

0.074 ±
0.045

0.058 ±
0.052

0.219 ±
0.049

0.242 ±
0.029

0.227 ±
0.051

0.033 ±
0.038

0.020 ±
0.040

0.006 ±
0.025

0.322 ±
0.035

0.019 ±
0.036

0.069 ±
0.042

RF denotes the random forest method, and SVM denotes the support vector machine method. Kappa coef. is
Cohen’s kappa coefficient. Each data field shows performance evaluation indices average ± std of 200 random
splits of EEG samples.

Table 2. Predictive performance with five methods using the original dataset and Linear Discriminant
Analysis (LDA).

Method RF SVM

Band Delta Theta Alpha Beta Gamma Combined Delta Theta Alpha Beta Gamma Combined

Accuracy 0.342 ±
0.039

0.298 ±
0.043

0.322 ±
0.012

0.393 ±
0.035

0.414 ±
0.015

0.537 ±
0.028

0.310 ±
0.025

0.318 ±
0.028

0.330 ±
0.016

0.451 ±
0.020

0.475 ±
0.025

0.475 ±
0.028

Precision 0.353 ±
0.049

0.306 ±
0.050

0.329 ±
0.026

0.374 ±
0.044

0.381 ±
0.056

0.510 ±
0.040

0.311 ±
0.027

0.321 ±
0.028

0.333 ±
0.015

0.449 ±
0.026

0.464 ±
0.031

0.492 ±
0.024

Recall 0.350 ±
0.043

0.304 ±
0.044

0.335 ±
0.018

0.386 ±
0.028

0.394 ±
0.021

0.530 ±
0.028

0.311 ±
0.026

0.319 ±
0.027

0.333 ±
0.018

0.434 ±
0.022

0.466 ±
0.024

0.478 ±
0.031

F1 score 0.337 ±
0.036

0.290 ±
0.047

0.305 ±
0.015

0.385 ±
0.037

0.372 ±
0.023

0.523 ±
0.034

0.308 ±
0.024

0.315 ±
0.028

0.328 ±
0.015

0.429 ±
0.021

0.458 ±
0.025

0.472 ±
0.026

Kappa
coef

0.024 ±
0.063

0.043 ±
0.063

0.002 ±
0.024

0.204 ±
0.041

0.227 ±
0.027

0.329 ±
0.039

0.033 ±
0.038

0.020 ±
0.040

0.006 ±
0.025

0.362 ±
0.035

0.319 ±
0.036

0.269 ±
0.042

RF denotes the random forest method, and SVM denotes the support vector machine method. Kappa coef. is
Cohen’s kappa coefficient. Each data field shows performance evaluation indices average ± std of 200 random
splits of EEG samples.

Table 3. Predictive performance with five methods using the differential entropy dataset.

Method RF SVM

Band Delta Theta Alpha Beta Gamma Combined Delta Theta Alpha Beta Gamma Combined

Accuracy 0.525 ±
0.025

0.527 ±
0.053

0.513 ±
0.044

0.621 ±
0.044

0.627 ±
0.041

0.704 ±
0.026

0.568 ±
0.012

0.663 ±
0.034

0.601 ±
0.015

0.694 ±
0.036

0.681 ±
0.017

0.770 ±
0.030

Precision 0.530 ±
0.021

0.537 ±
0.055

0.529 ±
0.045

0.615 ±
0.046

0.620 ±
0.047

0.700 ±
0.029 0.568±0.014 0.667 ±

0.034
0.602 ±

0.015
0.692 ±

0.031
0.680 ±

0.025
0.768 ±

0.033

Recall 0.531 ±
0.028

0.532 ±
0.055

0.522 ±
0.039

0.624 ±
0.046

0.627 ±
0.047

0.704 ±
0.029

0.567 ±
0.013

0.666 ±
0.034

0.602 ±
0.016

0.694 ±
0.037

0.681 ±
0.024

0.770 ±
0.032

F1 score 0.525 ±
0.025

0.527 ±
0.053

0.509 ±
0.047

0.614 ±
0.046

0.617 ±
0.044

0.699 ±
0.029

0.565 ±
0.011

0.663 ±
0.035

0.599 ±
0.016

0.690 ±
0.038

0.677 ±
0.022

0.767 ±
0.032

Kappa
coef

0.290 ±
0.036

0.294 ±
0.082

0.277 ±
0.063

0.433 ±
0.065

0.440 ±
0.063

0.556 ±
0.040

0.351 ±
0.018

0.496 ±
0.051

0.401 ±
0.023

0.541 ±
0.052

0.521 ±
0.027

0.654 ±
0.046

RF denotes the random forest method, and SVM denotes the support vector machine method. Kappa coef. is
Cohen’s kappa coefficient. Each data field shows performance evaluation indices average ± std of 200 random
splits of EEG samples.
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Table 4. Predictive performance with five methods using the differential entropy dataset and LDA.

Method RF SVM

Band Delta Theta Alpha Beta Gamma Combined Delta Theta Alpha Beta Gamma Combined

Accuracy 0.467 ±
0.017

0.484 ±
0.057

0.462 ±
0.049

0.556 ±
0.033

0.561 ±
0.035

0.582 ±
0.025

0.568 ±
0.012

0.663 ±
0.034

0.600 ±
0.015

0.714 ±
0.036

0.741 ±
0.017

0.825 ±
0.032

Precision 0.483 ±
0.020

0.517 ±
0.067

0.481 ±
0.048

0.570 ±
0.024

0.560 ±
0.035

0.590 ±
0.037

0.568 ±
0.014

0.667 ±
0.034

0.601 ±
0.016

0.709 ±
0.031

0.690 ±
0.025

0.801 ±
0.034

Recall 0.475 ±
0.015

0.496 ±
0.051

0.474 ±
0.047

0.568 ±
0.025

0.566 ±
0.031

0.593 ±
0.028

0.567 ±
0.013

0.666 ±
0.034

0.601 ±
0.017

0.711 ±
0.037

0.716 ±
0.024

0.802 ±
0.031

F1 score 0.453 ±
0.023

0.477 ±
0.065

0.454 ±
0.049

0.552 ±
0.033

0.555 ±
0.035

0.573 ±
0.031

0.565 ±
0.011

0.663 ±
0.035

0.598 ±
0.016

0.705 ±
0.038

0.677 ±
0.022

0.799 ±
0.033

Kappa
coef

0.208 ±
0.023

0.238 ±
0.077

0.205 ±
0.071

0.343 ±
0.042

0.345 ±
0.051

0.378 ±
0.039

0.351 ±
0.018

0.496 ±
0.051

0.400 ±
0.023

0.566 ±
0.052

0.521 ±
0.027

0.698 ±
0.049

RF denotes the random forest method, and SVM denotes the support vector machine method. Kappa coef. is
Cohen’s kappa coefficient. Each data field shows performance evaluation indices average ± std of 200 random
splits of EEG samples.

Tables 1–4 show that, in the case of using the combined frequency band data, the classification
effect of the differential entropy combined with LDA method is significantly better than the case of
using the differential entropy method alone and the LDA method alone. The average classification
accuracy of feature extraction using the differential entropy combined with LDA method is 82.5%,
and the accuracy is 7.1% higher than that of the differential entropy method alone, 73.7% higher
than that of the LDA method. The precision and the recall rate were improved by 4.3% and 4.2%,
respectively, compared with the differential entropy method alone, and improved by 62.8% and 67.8%,
respectively, compared with the LDA method alone. Compared with the feature extraction method
of differential entropy alone and the LDA method alone, the F1 score increased by 4.2% and 69.3%,
respectively. It is worth noting that the Kappa value of the differential entropy combined with LDA
method is 0.698, which indicates that the predictive category of emotional EEG is highly consistent
with the actual category, which is 59.5% higher than that of the LDA method alone and 6.7% higher
than that of the differential entropy method alone. The experimental results show that the differential
entropy combined with LDA method has better recognition effect than the existing methods based on
the differential entropy method and LDA method.

The experimental results show that the differential entropy combined with LDA method can be
effectively used to process EEG signals. The differential entropy method can extract the time–phase
information of emotional EEG and reflect the change of emotion. The use of the LDA method preserves
valid feature information while reducing the data dimension.

From the experimental results in the frequency bands of Delta, Theta, Alpha, Beta, Gamma,
and the combined frequency bands data, it is found that the differential entropy combined with LDA
method has the best classification effect, not only in the combined frequency band, but also in other
frequency bands, and the classification result of the method proposed in this paper is also better.
For example, in the Beta band, when using the SVM classification method, the average accuracy
of the differential entropy combined with LDA method is 71.4%, which is 2.9% and 58.3% higher
than the differential entropy method alone and the LDA method alone, respectively. The precision
rate of the differential entropy combined with LDA method increased by 2.5% and 55.7% compared
with the differential entropy method alone and the LDA method alone, respectively. The recall rate
was increased by 2.4% and 63.8% compared with the differential entropy method alone and the
LDA method alone, respectively. The F1 score was increased by 2.2% and 64.3% compared with the
differential entropy method alone and the LDA method alone. The Kappa coefficient increased by
4.6% and 56.4%, respectively, compared to the differential entropy method alone and the LDA method
alone. In the Gamma band, the average accuracy of the differential entropy combined with LDA
method is 74.1%, which is 8.8% and 56.0% higher than the differential entropy method alone and the
LDA method alone, respectively. The results show that the differential entropy combined with LDA
method is superior to the existing differential entropy method and LDA method in the classification of
emotional EEG in all frequency bands.
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In order to analyze the prediction results more intuitively, this paper presents box plots of the
accuracy rate of experiments in the combined frequency band, and a confusion matrix diagram for the
prediction results of the best performing methods in each experiment.

Figure 2 shows a box plot of the classification accuracy for different classification methods on
the original data. Figure 3 shows a box plot of the classification accuracy for different classification
methods on raw data based on the LDA method. Figure 4 shows a box plot of the classification accuracy
for different classification methods on raw data based on differential entropy method. Figure 5 is a box
plot of the classification accuracy for different classification methods on raw data based on differential
entropy combined with LDA method.
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Figure 6 shows a confusion matrix diagram of the best prediction results on raw data using the
random forest method. Figure 7 shows a confusion matrix diagram of the best prediction results based
on the LDA method using the random forest method. Figure 8 shows a confusion matrix diagram
of the best prediction results based on the differential entropy method for feature extraction using
the logistic regression method. Figure 9 shows a confusion matrix diagram of the best prediction
result of feature extraction based on the differential entropy combined with LDA method using the
SVM method.
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It can be seen from Figures 2–5 that the classification effect of the differential entropy combined
with LDA method is superior to other methods. In the experiments based on the LDA method of
raw data, the random forest method achieved the best accuracy. In the experiment based on the
differential entropy method, the logistic regression method achieved the best classification accuracy,
and the accuracy rate reached 77.4%. In the experiment based on differential entropy combined
with LDA method, the SVM method achieved the best accuracy; the accuracy rate reached 82.5%,
and the accuracy of the logistic regression method reached 81.7%. From the experimental results,
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the differential entropy combined with LDA method can effectively improve the results of emotional
classification based on EEG.

It can also be seen from Figures 6–9 that, in the confusion matrix diagram corresponding to the
differential entropy combined with LDA method, the dark regions are concentrated on the diagonal,
while the dark regions of other methods are relatively scattered. This indicates that the classification
performance of differential entropy combined with LDA method for feature extraction of EEG signals
is superior to other methods.

4.2. Time Complexity Result of Experiment with Different Feature Selection Methods

Table 5 shows the time complexity of four experiments with different classification methods in the
original dataset, the original dataset based on LDA feature extraction, the differential entropy dataset,
and the differential entropy dataset based on LDA feature extraction.

Table 5. Complexity in four experiments with different methods.

Experiment Method Delta Theta Alpha Beta Gamma Combined

Prediction
performance in
original dataset

kNN 5.215 ± 0.091 5.337 ± 0.349 6.077 ± 0.408 5.997 ± 0.347 6.205 ± 1.003 25.970 ± 0.069

LR 111.323 ± 4.970 93.115 ± 7.211 97.788 ± 3.705 63.628 ± 4.623 51.596 ± 8.941 98.428 ± 6.571

MLP 41.407 ± 14.262 50.474 ± 2.854 51.971 ± 1.282 50.837 ± 2.304 50.153 ± 2.195 105.568 ± 14.086

RF 4.052 ± 0.115 4.497 ± 0.533 4.572 ± 0.280 4.982 ± 0.185 4.501 ± 0.386 9.544 ± 0.271

SVM 19.429 ± 0.645 18.244 ± 1.475 19.388 ± 1.219 18.135 ± 0.993 17.517 ± 0.980 79.412 ± 2.109

Prediction
performance in
original dataset
based on LDA

kNN 2.356 ± 0.043 2.310 ± 0.040 2.341 ± 0.068 2.329 ± 0.038 2.357 ± 0.030 15.060 ± 0.100

LR 3.480 ± 0.142 3.162 ± 0.094 3.209 ± 0.078 3.320 ± 0.169 3.165 ± 0.078 16.151 ± 0.203

MLP 2.726 ± 0.080 2.647 ± 0.052 2.680 ± 0.076 2.697 ± 0.054 2.686 ± 0.041 15.408 ± 0.127

RF 2.845 ± 0.089 2.793 ± 0.062 2.836 ± 0.096 2.831 ± 0.065 2.815 ± 0.036 15.534 ± 0.153

SVM 2.850 ± 0.075 2.539 ± 0.045 2.533 ± 0.076 2.477 ± 0.048 2.483 ± 0.024 15.182 ± 0.097

Prediction
performance in

differential entropy
dataset

kNN 1.871 ± 0.007 1.876 ± 0.022 1.908 ± 0.011 1.889 ± 0.005 1.882 ± 0.012 9.370 ± 0.022

LR 5.445 ± 0.310 7.340 ± 0.405 9.168 ± 0.986 10.321 ± 0.426 9.916 ± 0.558 26.932 ± 0.908

MLP 6.524 ± 2.782 5.348 ± 1.719 4.159 ± 0.719 5.115 ± 1.640 4.865 ± 0.863 22.145 ± 3.354

RF 2.243 ± 0.036 2.254 ± 0.019 2.269 ± 0.022 2.206 ± 0.018 2.192 ± 0.023 4.908 ± 0.140

SVM 5.502 ± 0.019 5.266 ± 0.034 5.309 ± 0.059 4.125 ± 0.204 3.950 ± 0.213 24.780 ± 0.163

Prediction
performance in

differential entropy
dataset based on

LDA

kNN 0.838 ± 0.013 0.826 ± 0.027 0.823 ± 0.025 0.839 ± 0.011 0.841 ± 0.020 4.202 ± 0.079

LR 1.001 ± 0.023 1.081 ± 0.032 1.134 ± 0.031 1.117 ± 0.018 1.097 ± 0.026 4.516 ± 0.100

MLP 1.187 ± 0.023 1.162 ± 0.036 1.168 ± 0.038 1.187 ± 0.023 1.184 ± 0.015 4.668 ± 0.111

RF 1.301 ± 0.019 1.302 ± 0.028 1.295 ± 0.027 1.309 ± 0.013 1.301 ± 0.029 4.819 ± 0.143

SVM 0.966 ± 0.014 0.957 ± 0.029 0.973 ± 0.032 0.933 ± 0.022 0.928 ± 0.017 4.366 ± 0.079

LDA denotes the linear discriminant analysis method. kNN denotes the k-nearest neighbor method, and LR denotes
the logistic method. RF denotes the random forest method, and SVM denotes the support vector machine method.
Each data field shows the consumed time average ± std of 200 random splits of EEG samples.

As can be seen from Table 5, the differential entropy combined with LDA feature extraction
method has the best time complexity, and the time spent is significantly less than for other methods.
Since the SVM method has the best classification effect in the combined frequency band under normal
circumstances, the following is based on the experimental results of using the SVM method on the
combined frequency band data. In experiments using the differential entropy method, the LDA
method, and the differential entropy combined with LDA method, the time spent of the differential
entropy combined with LDA method is 28.7% of that of the LDA method, and is only 17.6% of that
of the differential entropy method. This indicates that the differential entropy method can extract
the information of emotional changes of EEG signals, and that LDA can further extract effective
features, accelerate the convergence speed of classification models, and reduce the time complexity.
The experimental results show that the time performance of differential entropy combined with LDA
method in emotional EEG recognition is better than the existing method.
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5. Discussion

The last 10 years have seen the rapid development of computers and the continuous updating
of signal acquisition equipment. New machine-learning and deep learning methods are constantly
being proposed. The research on brain–computer interface has also made great progress, from the
earliest two-category epilepsy recognition [39] and left-right hand movement imagination [40] to more
complex two-classification motion recognition [41], and finally to multi-class emotion recognition [42].
We can see that the classification situation is increasing and the difficulty of feature extraction is
increasing. This puts higher requirements on feature extraction methods and classification recognition
methods. At present, with the depth of research, more complex feature-recognition and classification
methods are constantly being proposed. Existing research has proved that the EEG signal is roughly
consistent with a Gaussian distribution through band-pass filtering and signal processing, which lays
a solid foundation for the feature extraction of EEG signals, such as signal feature extraction methods
based on Fourier transformation, signal feature extraction methods based on differential entropy have
been proposed. The proposed methods have greatly improved the classification results of EEG signals.

However, we believe that, whether in motion recognition or emotion recognition, it is necessary
to have higher real-time performance in practical applications. In order to reduce the transmission
delay, researchers often transmit the calculated data to a nearby mobile edge computing server for
edge calculation instead of sending it to the cloud. However, due to the limited computing power
of the server, the real-time transmission of EEG data is relatively high. In such a case, it becomes
very important to perform effective feature extraction to reduce the amount of calculation. Under
the premise of ensuring classification accuracy, the classification method needs to quickly judge the
current state of the user. Therefore, it is not comprehensive enough to emphasize the improvement of
classification accuracy. How to further reduce the time complexity of the method while improving the
accuracy is still the focus of our attention. On this basis, the researchers have proposed dimensionality
reduction methods such as PCA and LDA to reduce the time complexity of the classification method
and to reduce the running time of the method.

Based on the previous research results and the characteristics of EEG signals, we believe that the
combination of differential entropy and LDA method can effectively reduce the time complexity of
the method while extracting EEG data features. The final experiment also verified this. Although our
approach has many advantages, it is worth noting that our method can only reduce the complexity of
the data in the feature extraction part; we cannot directly reduce the time complexity of the classification
method. This has little effect on traditional machine learning methods. However, now, more and
more researchers tend to use deep learning methods such as convolutional neural networks (CNN),
recurrent neural networks (RNN), and deep belief network (DBN) [43–45]. Deep learning brings new
breakthroughs in the use of brain–computer interfaces. Its classification accuracy is higher, and more
complicated situations can be classified. However, due to the high dimension of EEG data and the
relative scarcity of samples, determining how to establish a corresponding deep learning network is a
big problem, and it is difficult to adjust the parameters of deep learning. Determining how to build a
common model for different data is the direction of the next research. More importantly, these methods
are inherently complex and can result in high time complexity for classification calculations. Therefore,
our next goal is to optimize the deep learning method to further reduce the run-time requirements of
the method, improve the classification accuracy, and try to build a more general deep learning model.

6. Conclusions

This paper proposes a feature extraction method based on the fusion of differential entropy
and LDA method. Experiments were performed using five classical classification methods on
emotion-based three-class datasets. The results show that the feature extraction method proposed
in this paper can effectively improve the final classification accuracy in five classical classification
methods. More importantly, the method proposed in this paper can reduce the time complexity
and running time of the model. This means that the feature extraction method based on the fusion
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of differential entropy and the LDA method proposed in this paper can be effectively applied to
multi-class emotion recognition. For the clinical environment, this means that if the method can be
used, the patient’s mood and pathology can be judged more quickly, and doctors can better diagnose
their condition and determine the patient’s state in real time. In the future, we hope to test more
datasets and test the deep learning method.
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