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Abstract: Conventional pattern-recognition algorithms for surface electromyography (sEMG)-based
hand-gesture classification have difficulties in capturing the complexity and variability of sEMG.
The deep structures of deep learning enable the method to learn high-level features of data to improve
both accuracy and robustness of a classification. However, the features learned through deep learning
are incomprehensible, and this issue has precluded the use of deep learning in clinical applications
where model comprehension is required. In this paper, a generative flow model (GFM), which is
a recent flourishing branch of deep learning, is used with a SoftMax classifier for hand-gesture
classification. The proposed approach achieves 63.86± 5.12% accuracy in classifying 53 different
hand gestures from the NinaPro database 5. The distribution of all 53 hand gestures is modelled by
the GFM, and each dimension of the feature learned by the GFM is comprehensible using the reverse
flow of the GFM. Moreover, the feature appears to be related to muscle synergy to some extent.
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1. Introduction

Surface electromyography (sEMG)-based hand-gesture classification is widely used in clinical
applications, such as controlling powered upper-limb prostheses [1] and electric-powered
wheelchairs [2]. However, sEMG is different from subject to subject, and even sEMG of the same subject
can differ substantially due to the displacement of sensors, sweat, fatigue, and many other factors [3].
To capture the complexity and variability of sEMG, conventional pattern-recognition methods have
been used to try to extract representative features of sEMG. Time-domain and frequency-domain
features of sEMG, such as root mean square, zero crossing, and power spectra, have been widely used
for hand-gesture classification [4]. However, these features are neither adequately generalizable to
different subjects nor sufficiently robust for long-time applications [5]. To address these limitations,
conventional approaches usually propose an easy-to-train model for each individual subject, and the
model is frequently retrained once the performance of the model downgrades [6]. To avoid tedious
retraining, more generalizable and robust sEMG features are needed to solve the problem of
sEMG-based hand-gesture classification.

Prominent deep learning has improved the performance of solutions for many practical problems.
The performance of deep learning lies in the ability to learn high-level abstraction of data and discover
important information hidden in the data that is otherwise hard to discover using conventional
algorithms [7]. Convolutional neural network(s) (CNN) are the most popular deep learning models
used for sEMG-based hand-gesture classification [8–10], and state-of-the-art classification accuracy
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has been achieved using CNN. Other deep neural networks, such as Recurrent Neural Network(s)
(RNN), have also been used for hand-gesture classification [11,12]. Most of the deep learning models
used for sEMG-based hand-gesture classification are deep discriminative models that model the
decision boundary between classes. Despite the high accuracy achieved with these deep discriminative
models, the high-level features used in the deep discriminative models are incomprehensible. However,
under some clinical conditions, model comprehension is crucial. For controlling prostheses, knowing
the reason an algorithm that is performing well for one person with an amputation does not
work for another person with an amputation is important for tuning the algorithm to fit different
persons. Currently, comprehending the discriminative model is one of the research focuses of
deep learning [13,14].

The deep generative model, which is a type of deep learning model other than the deep discriminative
model, models the actual distribution of the data. A deep generative model can generate input examples
from the feature learned by the model, which provides a way to understand the behavior of the model.
However, deep generative model is usually used for applications such as fake image generation [15] or
speech synthesis [16], and the model has no ability to discriminate input examples.

In this paper, a generative flow model (GFM) is used with a simple SoftMax classifier for
hand-gesture classification. GFM is an unsupervised model commonly used for generating images [17]
and synthesizing speeches [18]. In these cases, attention has been paid to the performance of the GFM
in generating realistic samples, such as images and speeches. However, we focused on understanding
the factorized features learned by the GFM and applying the learned features for supervised tasks.
The combination of the GFM with a linear SoftMax classifier has achieved high accuracy in sEMG-based
hand-gesture classification. In addition, the features learned by the GFM under the regulation
of the SoftMax classifier have physiological relevance to the muscle synergy, which is important
for comprehending the classification. The proposed approach achieved 63.86± 5.12% accuracy in
classifying 53 different hand gestures from the NinaPro database 5 [19]. Since the high-level feature
learned by the GFM is factorized, each dimension of the feature was analyzed individually using the
reverse flow of the GFM. Interestingly, each dimension of the learned feature was found to correspond
to a basic sEMG pattern that may reflect human muscle synergy in the sEMG.

2. Physiology Background of Surface Electromyography

Human hands are controlled by a hierarchical structure, as shown in Figure 1. This hierarchical
structure can be divided into three systems according to their physiological properties. In the central
nervous system, the movement command is generated from the brain to the spine. In the peripheral
nervous system, the spine activates the corresponding muscles based on the command. Please note
that the spine does not activate each muscle individually; instead, several muscles are activated
simultaneously as a group to drive the hand to the target gesture. This mechanism of activating several
muscles as a group is referred to as muscle synergy, a physiological process used by the human to
control high-dimensional systems through low-dimension commands [20]. In the end effector system,
the muscles drive the hand joints to the targeted position.

sEMG is the bio-electrical signal generated by the muscle when activated by the spine.
Conventional classification methods map the sEMG to hand gestures directly, which tries to
approximate the low-level end effector system. The proposed GFM transforms sEMG into factorized
features, which are, ideally, an approximation of the movement command to the spine activating
the mechanism of muscle synergy. Transforming sEMG into high-level abstractions can, to some
extent, increase the generalizability and robustness of the following hand-gesture classification
because high-level abstractions are believed to be more easily shared among different subjects than
low-level information.
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Figure 1. Human hierarchical system for controlling hand gestures.

3. Methods

GFM is a recent flourishing branch of the deep generative model for transforming input data
into meaningful features while requiring little or no human supervision or labeling. This model
provides a practical way for employing deep learning for EMG-based hand-gesture classification and
for comprehending the model. The transformed data by the GFM conform to a factorized distribution,
which results in independent latent variables. Since such features are learned from unlabeled datasets
and are not necessarily task-specific, downstream solutions based on the independent latent variables
could potentially be more robust and more data efficient [21]. GFM requires fewer sEMG examples
to learn by maximizing the exact log-likelihood of the input data compared to other widely used
unsupervised deep learning approaches, such as DBN [22,23] and stacked AE [24]. These unsupervised
approaches learn by maximizing the lower bound of the log-likelihood of the input data [25,26],
which requires more training examples. The combination of a GFM with a simple classifier can
leverage the advantages of deep learning for learning highly abstracted, robust features from the data.
Meanwhile, the physiological meaning of the factorized sEMG feature can be analyzed by reversing
the factorized feature to the sEMG through the reverse flow of GFM.

3.1. Surface Electromyography Signal Processing

The raw sEMG recorded by the two Myo armbands consists of 16 channels of sEMG sampled at a
sampling rate of 200 Hz. Each channel of the raw sEMG is processed to obtain its linear envelope before
being input to the GFM. The commonly used pipeline for calculating the sEMG linear envelope [27] is
adopted as shown in Figure 2. The sEMG is high-pass filter with a cutoff at 10 Hz to remove movement
artefacts. Then, the signal is rectified with an absolute value before being smoothed with a moving
average of 10 sampling points. Finally, the signal is low-pass filtered at 30 Hz to obtain the envelope
signal. The multi-channel sEMG envelope is segmented with 64 sampling points. Thus, the input
sEMG envelope for the GFM has the size 64× 16.

High-Pass 

Filter 10Hz
Rectification

Moving 

Average

Low-Pass 

Filter 30Hz
Raw sEMG sEMG Linear Envelope

Figure 2. Pipeline for calculating sEMG linear envelope. Modified from [27] with permission.
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3.2. Generative Flow Model

The starting point of GFM involves estimating an unknown distribution px(x) by a simple
factorized known distribution pz(z) given a dataset of x = [x1, ..., xN ] sampled from the unknown
distribution. The generative flow model defines a parametric invertible transformation function
fθ(x) : x → z that directly maps the input data x into the known prior z [28]. Normally, a spherical
multivariate Gaussian distribution pz(z) = N(z; 0, I) is used as the known prior. The log probability
distribution of a sample xi from the given dataset x according to the change in the variable formula
mentioned in [29] is calculated as:

log px(xi) = log pz( fθ(xi)) + log det(
∂ fθ(xi)

∂xi
) (1)

The training of the θ parameters is for learning a continuous nonlinear transformation f that
is differentiable almost anywhere to maximize the log-likelihood of the whole given dataset x [29].
For ease of training, GFM requires the determinants of the Jacobian matrix of the transformation
function f to be tractable. We use a combination of the four modules actnorm, invertible 1 × 1
convolution, affine coupling layer, and multi-scale architecture as suggested in [21,30] to construct the
transformation f . The determinants of the Jacobian matrices of the first three modules mentioned are
simply multiplications of their diagonal elements. The multi-scale architecture pushes half of its input
to conform to a Gaussian distribution, which can reduce the variability of the latent variables caused
by noise. Details on the transformation, its reverse flow, and the log-determinants of each module are
shown in the Appendix A. The proposed GFM is composed of 3 flow steps, and the first two steps
consist of a sequence including an actnorm, an invertible 1 × 1 convolution, an affine coupling layer,
and a multi-scale architecture, while the last flow step is composed of the same sequence except for the
multi-scale architecture. The multi-scale architecture divides the dimension of its input by 2. The input
sEMG linear envelope for the GFM has a size of 64× 16, and the output of the factorized feature has a
size of 32× 8.

3.3. Classifier

GFM is an unsupervised learning approach. To use the factorized feature in supervised tasks,
such as hand-gesture classification, GFM is combined with a SoftMax classifier. Since the input to the
classifier is the factorized feature, a simple linear SoftMax classifier is adopted. To train the classifier in
conjunction with GFM, the parameters θ of the GFM and the parameters φ of the classifier are updated
simultaneously to minimize the negative log-likelihood of the given dataset x and the cross-entropy
loss between the output of the classifier ŷ and the movement label y. The compound objective function
modified from the original objective function of GFM [21] is:

L = arg min
θ, φ

{−∑
N
[log pz( fθ(xi)) + log det(

∂ fθ(xi)

∂xi
)] + CE(ŷ, y)}

ŷ = cφ( fθ(x))

(2)

where L is the compound objective function, c stands for the SoftMax classifier, and CE is the
cross-entropy loss. With the cross-entropy loss of the classifier included in the objective function,
the distributions of the factorized feature z will be regulated by the classifier. Accordingly, the label
information is used to train the transformation f .

The overall structure of the proposed approach is shown in Figure 3. Output from the GFM is
fed to the classifier for classifying hand gestures. The combination of the GFM with a classifier is not
simply concatenating the output of the GFM to the input of the classifier, but the two parts are trained
together. The last term of Equation (2) changes the original objective function of GFM, which allows
the GFM and the classifier to interact with each other in the training.
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Figure 3. Overall structure of the proposed approach.

4. Experiment

To test the performance of the proposed approach in hand-gesture classification, the proposed
model is trained with the NinaPro database 5, which contains sEMG recorded with two Myo
armbands. sEMG from the Myo armbands are sampled at a rate of 200 Hz. The two Myo armbands,
each including 8 active single differential wireless electrodes, are placed next to each other, as shown
in Figure 4. The top Myo armband is placed close to the elbow with the first sensor placed on the radio
humeral joint; the second Myo armband is placed just after the first, near the hand, and is tilted by
22.5 degrees with respect to the first Myo armband. Database 5 includes 6 repetitions of 53 different
movements (shown in the Appendix A) performed by 10 intact subjects. Please note that the number
of sEMG examples for hand rest is much larger compared to the other movements, and we randomly
sampled some of the rest sEMG examples to guarantee a balance in the sEMG examples for different
hand gestures.

Figure 4. Acquisition setups for the two Myo armbands.

Two methods are used to divide the NinaPro database 5 into a train set and test set. In the
first approach, the database is divided in a machine-learning way: 70% of the sEMG examples are
randomly selected from the database and used to train the model, while the remaining 30% of the
sEMG examples are used to test the accuracy of the proposed approach in classifying hand gestures.
In the second approach, the database is divided according to subjects: sEMG examples of 7 randomly
selected subjects are used to train the model, while sEMG examples of the remaining 3 subjects are
used as a test set. The main difference between these two methods of division is whether the model can
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see sEMG examples from a subject in both the training and test sets. Obviously, the second division
approach better matches the real-world applications for sEMG. In both cases, the proposed model
was trained for 15 epochs at a batch size of 24. The average accuracy of the proposed approach was
achieved by repeating the training and testing procedures 5 times.

5. Results

The raw sEMG data were transformed into factorized features, as shown in Figure 5, using the
linear envelope pipeline and GFM. Please note that the transformation between the linear envelope
and the factorized feature is invertible.

As shown in Figure 6, the classification accuracy of the proposed approach on the test set
divided according to subjects is 55.37% ± 10.43%. In addition, the classification accuracy of the
proposed approach on the test set divided in the machine-way, where sEMG examples of the test
set are randomly selected from the NinaPro database 5, is 63.86%± 5.12%. The proposed approach,
as expected, performs worse on the test set divided according to subjects than the test set divided in
the machine-learning way. This performance reduction is caused by the approach lacking enough
knowledge about the sEMG examples of a specific subject. However, the reduction is only 8.49%,
which means that the proposed approach has learned some common features across subjects.
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Figure 5. Work flow for the proposed approach.

Figure 6. Hand-gesture classification accuracy for different test sets.
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GFM, as a generative model, models the actual distribution of the data based on the distribution
of the factorized feature. To see the distribution of the factorized feature and its association with
different hand gestures, three commonly used hand gestures for prosthetic hand control are selected,
and the distribution of their factorized features is shown in Figure 7. The figure is a snapshot from
TensorBoard [31]. The distribution of the features of all 53 hand gestures is available in the Appendix A.
From Figure 7, we can see that features belonging to the same hand gesture are gathered, and the
features of the three gestures are perfectly distinguishable. Since each dimension of the feature is
continuous and independent, features corresponding to a hand gesture are summed and averaged to
determine the center of the hand gesture. The center of a hand gesture is also considered the typical
feature of the hand gesture.

The typical features of the three hand gestures are transformed by the reverse flow of the GFM
to the corresponding sEMG linear envelope. Features and the transformed sEMG linear envelope
corresponding to hand gesture 0 (rest), 17 (abduction of all fingers), and 18 (fingers flexed together
in fist) are shown in Figure 8. We can see that the typical feature of rest is transformed to a zero sEMG
linear envelope, which correlates with the rest movement. Furthermore, hand gesture 17 and 18 differ
mainly in the activation of channel 8 and 15. Channel 8 and 15 cover the activity of the flexor carpi
ulnaris muscle of the forearm, which acts to flex and adduct the hand. Physiologically, the activity of
the flexor carpi ulnaris muscle is useful for distinguishing hand opening and hand closing.

Centers

0 Rest

18 Fingers flexed 

together in fist

17 Abduction 

of all fingers

Figure 7. Distributions of hand rest, hand open, and hand close in the feature space. Total variance
described: 24.5%

The correlation matrix is important for evaluating the ability of a generative model in
distinguishing different classes. Each element of the correlation matrix is calculated as the cosine of the
angle between two hand-gesture centers. A hand-gesture center can be treated as a vector connecting
the origin of coordinates to the center. The cosine of the angle between two vectors evaluates their
correlations. The correlation matrix of the proposed approach is shown in Figure 9. If the correlation
between two hand-gesture centers is close to 1, then the two hand gestures are hard to distinguish
from each other.
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Figure 9. Correlation matrix for the proposed approach.

Since the feature learned by the GFM is factorized, each dimension of the feature is analyzed
individually to evaluate its relation to the sEMG linear envelope. Figure 10 shows sub-images arranged
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along the axis of dimension value z in 32 rows and 8 columns in which the sub-image at row a and
column b is generated by a factorized feature with zi,j = v, i f i = a and j = b, otherwise, zi,j = 0;
v ∈ [−75, 75], i = 1, 2, ..., 32, j = 1, 2, ..., 8. The dimension value v is constrained in [−75, 75]
because ±75 is the minimum/maximum value of the feature obtained in the train set, and a dimension
with value >75 or <−75 is the output of the reasonable range of the feature. In Figure 10, generated
sEMG linear envelopes corresponding to some selected v values v = [−75,−35, 0, 35, 75] are shown.
From the results, we can see that v determines the strength of the generated sEMG linear envelope,
and the strength of the sEMG linear envelope increases with increasing v. We can also determine that
each row of the factorized feature corresponds to a basic pattern of the sEMG linear envelope, which
may reflect the muscle synergy taking effect underneath the sEMG recording channels. Each column
of the feature corresponds to the spreading of the basic pattern with time. For example, the 11th row
corresponds to a pattern of the sEMG linear envelope, where channels 16, 15, 12, 11, 10, and 4 are
activated simultaneously, and the columns determine the occurrence time of the pattern. At the first
column, the pattern occurs on the left side of the sub-image, while at the 8th column, the pattern occurs
at the right side of the sub-image. The left/right side of the sub-image corresponds to the occurrence
of a pattern in the sEMG linear envelope. In summary, the 32× 8 factorized feature is interpreted as
follows: the 32 rows determine 32 different sEMG linear envelope patterns, the 8 columns determine
the occurrence of the patterns in the sEMG linear envelope, and the elements of the matrix determine
the strength of the sEMG linear envelope.
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20

24
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4 82 6
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Figure 10. The sEMG linear envelope corresponding to each dimension of the factorized feature.
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We made a GUI for the readers to interact with the proposed approach to see the relation
between the factorized feature z and the corresponding sEMG linear envelope. The GUI is available in
the Appendix A.

6. Discussion

A deep learning approach that can extract comprehensible features from sEMG for hand-gesture
classification was proposed. The approach allows employing deep learning to clinical applications of
sEMG-based hand-gesture classification where model comprehension is required.

As a newly coming approach, GFM has not been widely used in applications other than image
generation and speech synthesis. In most cases, the Gaussian-distributed factorized features learned
by GFM are uninterpretable. Since images and speeches are intuitive for human, one can manually
interpret the meaning of the factorized feature by tuning the factorized feature and check its influences
on the generated samples from GFM. However, for biomedical signal, it is difficult to interpret the
meaning of the factorized feature without a task-related label/event to check the generated biomedical
samples from GFM. In the paper, a well-designed GFM trained under regulation of a linear SoftMax
classifier can learn good features for classification, and the task-related features are well-interpretable.

The proposed approach has achieved competitive accuracy for classifying hand gestures of
NinaPro database 5 compared with existing methods. Overall, 69.04%± 5.24% accuracy for 41 selected
hand gestures from the database was achieved by the method described in [19] using the support vector
machine (SVM) algorithm and multivariate discrete wavelet technique (mDWT). The sEMG used in
the method was segmented at a window of 200 sampling points with an overlap of 100 sampling
points. Meanwhile, 82.15% accuracy was achieved by a CNN described in [32] for 17 selected hand
gestures; however, the CNN required pre-training using sEMG from other databases. The sEMG used
in this method was segmented at a window of 16 sampling points. In the paper, NinaPro database 5
was chosen for comparing the hand-gesture classification accuracy of the proposed approach with
other existing algorithms. In addition, using an open-source database is good for other researchers
to verify the results. Since the proposed approach is applicable to most of the EMG databases by
designing a proper input/output flow of GFM and a linear classifier, we will be interested in applying
the approach to robotic prosthesis control in the future.

In designing the classifier, the linear SoftMax classifier used in the proposed approach finds a
good balance between learning a good distribution of the factorized feature and achieving a high
classification accuracy. Actually, we had tried to combine GFM with nonlinear classifiers, such as
SoftMax classifier with multiple hidden layers and CNNs. Although the nonlinear classifiers can
increase the classification accuracy a little bit, the factorized feature learned by the GFM under the
regulation of the nonlinear classifiers is incomprehensible. The distribution of the factorized features
belonging to a hand gesture is not gathered as shown in Figure 7, but the features are scattered around.
The scattered features have little physiological meaning and are uninterpretable.

The red square at the right bottom of the correlation matrix suggests that it is hard to distinguish
hand gestures 30∼52. Hand gestures 30∼52 belong to exercise C, which consists of human grasping
and functional movements. The difficulty in distinguishing functional movements is caused by the
fact that functional movements activate most of the forearm muscles, while the isometric movements
in exercise A and B only activate a small portion of the forearm muscles. With more muscles recruited,
the hand can both exert large force and reduce fatigue while performing function movements. Based on
the correlation matrix, the remarkable hand gestures out of the 53 hand gestures can be selected to
reduce improper classification. Most of the widely used discriminative methods lack a way to calculate
their correlation matrix for hand gestures because instead of modelling the actual distribution of the
hand gestures as the proposed approach, these methods only model the decision boundary of the hand
gestures, which removes the correlation information.

The analysis of each dimension of the factorized feature indicates that its rows correspond to
different sEMG linear envelope patterns, its columns correspond to the occurrence of the patterns,
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and its elements determine the strength of the pattern. The regular pattern of the factorized feature is
more comprehensive than we expected. Often, representations of features in deep learning models
are hard for humans to understand. Since the proposed approach is trained to distinguish hand
gestures of different subjects, muscle synergy, which is a common mechanism shared among subjects,
is theoretically an optimal feature for the task. From the results, we can see that the proposed approach
learned to represent the sEMG linear envelope as a combination of some basic patterns of the sEMG.
We suppose that these basic patterns may be reflections of the muscle synergy in the sEMG. However,
the dimension of the factorized feature is much larger than that of muscle synergy, which means that
there are some redundancies in the factorized feature. The dimension of the factorized feature can be
reduced by adding more multi-scale modules to the GFM. However, with the dimension of the feature
reduced, the accuracy of the classifier may decrease.

7. Conclusions

This study has developed a comprehensible deep learning model for sEMG-based hand-gesture
classification. The developed model allows the use of deep learning in clinical applications for which
model comprehension is required. This study serves as a basis for future studies on employing deep
learning in sEMG-based applications. Although the approach analyzes each individual dimension of
the factorized feature, the exact relation between the feature and the muscles is not fully understood.
In the study, we assumed that the feature reflects the muscle synergy. Further research needs to be
conducted to examine more closely the links between the factorized feature and the muscle synergy.
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Abbreviations

The following abbreviations are used in this manuscript:

sEMG Surface electromyography signal
GFM Generative flow model
CNN Convolutional neural network
RNN Recurrent neural network
AE Auto-encoder
DBN Deep belief network

Appendix A

Appendix A.1. Modules Used in the Generative Flow Model

In total four modules, Actnorm, Invertible 1 × 1 convolution, Affine coupling, and multi-scale
are used in the GFM. The transformation, its reverse flow and the log-determinant of the first three
modules are similar to those mentioned in [21]. The transformation of the multi-scale module is
calculated as:

xa, xb = split(x)

mean, log s = NN(xa)

y = xa

(A1)

where x signifies the input of the multi-scale module, y signifies the output of the multi-scale module.
Both x and y are tensors of shape [h× w× c] with spatial dimension (h, w) and channel dimension c.
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split(x) is a function that splits the tensor x into two tensors along the channel dimension by half or
by parity (in even and odd order). NN is a CNN with a hidden layer.

The reverse flow of the multi-scale is calculated as:

mean, log s = NN(y)

xb = N (mean, s2)

xa = y

x = concat(xa, xb)

(A2)

where N denotes the Gaussian distribution and concat() is a function that concatenates two tensors
along the channel dimension.

The log-determinant of the multi-scale is calculated as:

logdet = −1
2
[2 log s +

(xb −mean)2

e2 log s + log 2π] (A3)

Appendix A.2. Code for the Proposed Approach

The code for dividing the NinaPro database 5 is available at https://github.com/sun2009ban/
divide_NinaPro_database_5.

The code for visualizing the distribution of the 53 hand gestures in TensorBoard is available at
https://github.com/sun2009ban/tensorboard_53_hand_gestures.

The GUI for playing with the factorized feature of the model is available at https://github.com/
sun2009ban/glow-pytorch-with-gui.

Appendix A.3. Figures of the Hand Gestures and the GUI

Figure A1 shows 53 hand gestures in the NinaPro database 5. Figure A2 shows the distribution of
the 53 hand gestures in the latent variable space. The figure was drawn in TensorBoard using t-SNE
method [33] for dimension reduction. Figure A3 presents a snapshot of the GUI for playing with the
factorized feature. The horizontal scale bar corresponds to each dimension value of the factorized
feature. The dimension value can be set [−75, 75]. By pressing the ‘transform z => x’ button, the sEMG
linear envelope will be generated by the factorized feature determined by the scale bars using the
inverse flow of the GFM, and the generated sEMG linear envelope will be shown on the canvas.
Pressing the ‘reset’ button will reset all the dimensions of the factorized feature to zero. Pressing the
‘save image’ button will save the sEMG linear envelope shown on the canvas.

https://github.com/sun2009ban/divide_NinaPro_database_5
https://github.com/sun2009ban/divide_NinaPro_database_5
https://github.com/sun2009ban/tensorboard_53_hand_gestures
https://github.com/sun2009ban/glow-pytorch-with-gui
https://github.com/sun2009ban/glow-pytorch-with-gui
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Figure A1. Hand gestures of the NinaPro database. Modified from [34] licensed under a Creative
Commons Attribution 4.0 International License.
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Figure A2. Distribution of all 53 hand gestures (labeled by colors) in the latent variable space.

Figure A3. A GUI for interacting with the proposed approach. The f i; i = 0 ∼ 255 denotes the i+ 1− th
dimension of the factorized feature. The transform button transforms the current feature to the sEMG
linear envelope and shows the result on the canvas at the bottom. The reset button is used to save the
canvas. The reset button is used to set all the dimensions of the feature to 0.
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