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Abstract: Iterative closest point (ICP) is a method commonly used to perform scan-matching and
registration. To be a simple and robust algorithm, it is still computationally expensive, and it has
been regarded as having a crucial challenge especially in a real-time application as used for the
simultaneous localization and mapping (SLAM) problem. For these reasons, this paper presents a new
method for the acceleration of ICP with an assisted intensity. Unlike the conventional ICP, this method
is proposed to reduce the computational cost and avoid divergences. An initial transformation guess
is computed with an assisted intensity for their relative rigid-body transformation. Moreover, a target
function is proposed to determine the best initial transformation guess based on the statistic of their
spatial distances and intensity residuals. Additionally, this method is also proposed to reduce the
iteration number. The Anderson acceleration is utilized for increasing the iteration speed which has
better ability than the Picard iteration procedure. The proposed algorithm is operated in real time
with a single core central processing unit (CPU) thread. Hence, it is suitable for the robot which has
limited computation resources. To validate the novelty, this proposed method is evaluated on the
SEMANTIC3D.NET benchmark dataset. According to comparative results, the proposed method is
declared as having better accuracy and robustness than the conventional ICP methods.

Keywords: iterative closest point; SLAM; best initial transformation guess; intensity residuals;
anderson acceleration

1. Introduction

The estimation step carried out simultaneously to maintain the robot pose is regarded as
the main work of simultaneous localization and mapping (SLAM) [1]. The iterative closest point
(ICP) [2] is a well-known algorithm to deal with the laser scanner data presented in the form of point
clouds. For example, an improved probabilistically-motivated maximum likelihood estimation (MLE)
algorithm including the ICP algorithm was used in [3] to adaptively decrease the search scope in an
efficient real-time mobile unmanned ground vehicle (UGV) indoor positioning system for large-area
applications. A vehicle localization method based on a vertical corner feature used ICP algorithm
to deal with the geometric relations between the scan data of the 3D light detection and ranging
(LIDAR) [4]. A technique to estimate the ego motion of a vehicle was presented in [5] where the ICP
algorithms were evaluated for their accuracy and computational speed based on laser range data.
A 3D mapping system proposed an art ICP-based SLAM method [6] using only point cloud data.
A robust and accurate SLAM algorithm for omnidirectional mobile robots based on a novel 2.5D
LIDAR device and ICP algorithm was presented in [7,8]. In their works, the 2.5D LIDAR device could
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also perform vertical scanning within the motion range of the liner stage. Hence, the 2.5D points
cloud could be performed by the ICP algorithm to improve the robustness and accuracy of the scan
matching. Besides the LIDAR SLAM, the ICP algorithm is also used in the problem of scan-matching
in visual SLAM. An adaptation of the ICP algorithm was introduced for the matching of straight lines
between two stereo image pairs so that the speed improvement and local minima reduction can be
seen in visual SLAM [9]. A real-time, robust, low-drift and depth-only SLAM system applied a local
map-based motion estimation strategy using the ICP algorithm to reduce the local drift [10].

The concept of the ICP is straightforward. Initially, it estimates the corresponding points between
the source and target frame by utilizing a certain metric. Then it estimates the relative transformation
with a closed-form solution which aims to minimize the distance between the correspondences.
These two steps are iteratively performed until a convergence criterion, or the maximum number, is
precisely reached.

There have been many modified ICP algorithms presented nowadays. Globally optimal iterative
closest point (Go-ICP) was introduced in [11] to speed up the conventional ICP. Point-to-line metric
iterative closest point (PLICP) could converge in a finite number of steps with quadratic speed [12].
A tensor-based ICP did some works on the optimal initial transformation guess [13]. A 3-step approach
based on ICP and point Cloud Projection (ICP-CP) performed well for both enhancing the accuracy and
reducing the execution in most cases [14]. 4D-ICP was put forward in [15] to accelerate the registration
of 3D point cloud segments with hue data from the associated imagery. Besides that, there were lots of
variant ICP such as [16–19].

Intensity information extracted from LIDAR data or visual data sometimes can be used for
registration and localization. An intensity-based medical image registration added intensity information
into ICP algorithm for scan-matching [20]. The paper [21] put forward a new ICP algorithm assisted
with intensity information for visual ranging estimation from a RGB-D camera in visual SLAM.
An automatic registration system was presented for aligning intensity scan pairs which was designed to
handle several challenges including extensive structural changes, large viewpoint differences, repetitive
structure, illumination differences and flat regions [22]. A robust vehicle localization method applied a
novel fusion algorithm assisted with vertical and road intensity information for robust localization
based on a prior point cloud in urban area [23].

Slightly different from [21] mentioned above, this paper presents a fast and robust ICP based
on the assisted intensity method using both the intensity and distance. In addition to adopting
the Anderson method encompassed under the used acceleration algorithm, this paper contains the
following contributions.

The proposed method utilizing the assisted intensity approach to compute the initial transformation
guess of ICP different from that of [21]. The intensity information in [21] is used to be set up as
robust weighting function to correct the next transformation in the iterative process with an initial
transformation guess still set up as identity matrix. However, the intensity information in this paper is
added to a target function to determine the best initial transformation guess based on the statistics of
spatial distances and intensity residuals of the point cloud with an iteration process being no robust
weighting function.

The rest of this paper is organized as follows. Section 2 describes the conventional ICP method [2]
and the Anderson acceleration [24]. The proposed intensity-assisted ICP method is explained in
Section 3. Section 4 presents the performance of the proposed method depicted by the evaluation of
the SEMANTIC3D.NET benchmark dataset. Finally, a conclusion is presented in Section 5.

2. Preliminaries

2.1. Conventional Iterative Closest Point (ICP)

The ICP algorithm is commonly used for the robot navigation in performing scan-matching of
certain data generated by LIDAR. The source frame P1 assisted by intensity I1 can be consider as
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< P1, I1>. Then the target frame is the same as the source frame aligned as < P2, I2>. Furthermore the
conventional ICP algorithm can be described as follows:

(1) Transform P1 using initial transformation guess T0 which is usually set as an identity matrix.
(2) Search for each point in P1 a closet point in P2 as correspondence with the transformationTk−1

in the k-th iteration of algorithm. For the i-th point in P1, the index of corresponding point in P2 is
described as index(i), where:

index(i) = argmin
j
‖Tk−1P1(i) − P2( j)‖. (1)

(3) Discover transformation Tk that minimizes the distance between the correspondence:

Tk = argmin
T

∑
i

∥∥∥TTk−1P1(i) − P2(index(i))
∥∥∥. (2)

(4) Apply transformation Tk to P1.
(5) Stop algorithm when the incremental transformation is smaller than the threshold or oppositely

proceed to Step 2.

2.2. Anderson Acceleration

The Anderson acceleration [25,26] is a recursive procedure that is usually used to find fixed points
of contractive mapping that have been considered to have better performance than conventional
picard iteration procedures. Pavlov et al. [24] proposed Anderson accelerated version of ICP (AA-ICP)
by utilizing Anderson acceleration. Similarly, Anderson acceleration is also used in this paper to
increase the iteration speed to quickly get the final transformation. In the k-th iteration, the Anderson
acceleration can be described as follows.

(1) As mentioned above in Section 2.1, the process of transformation Tk derived from last
transformation Tk−1 can be described as a contraction mapping G. Thus Tk be described by referring to
the following Equation (3):

Tk = G(Tk−1). (3)

(2) The error between current transformation Tk and last transformation Tk−1 can be described as
ƒk−1. Hence ƒk−1 can be obtained from Equation (4) below:

fk−1 = Tk − Tk−1. (4)

(3) The goal of the algorithm is to find αwhich minimizes,

n∑
j=1

α j f j, (5)

where, ∑
j

α j = 1. (6)

(4) The optimal transformation Tk+1 can be produced by the following Equation (7):

Tk+1 =
n∑

j=1

α jG(T j). (7)

(5) Apply transformation Tk+1 into source frame aiming to measure the distance between two
frames. Furthermore, the Anderson acceleration will be stopped if the incremental iteration is smaller
than a threshold or, by contrast, will proceed to Step 1.
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The core content of Anderson acceleration is to minimize iterations as little as simple iterations to
blend with the same error. The iteration step cost is neglected compared to a single ICP iteration step
while it depends on iteration history. The most important thing is that it can be added trivially to the
existing ICP implementation with little modification.

3. Intensity-Assisted Iterative Closest Point

The intensity-assisted ICP proposed in this paper is different from the conventional ICP as
described below.

(1) Initial Transformation Guess—The initial transformation guess is not set as an identity matrix,
and determined by utilizing the proposed target function which is based on the statistics of their
spatial distances (see detail in Section 2.1) and intensity residuals. It is computed with assisted
intensity for their relative rigid-body transformation which aims to reduce the computational cost and
avoid divergence.

(2) Anderson Acceleration—Anderson acceleration is different from the standard Picard iteration
which is commonly used in the conventional ICP. It is used to increase the speed of iteration for quickly
reaching a convergence (see details in [24]).

An overview of the proposed ICP method compared with conventional ICP in this paper can be
seen in Figure 1.
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Figure 1. An overview of intensity-assisted iterative closest point (ICP) method compared with
conventional ICP.

As can be observed in the conventional ICP, the initial transformation guess is usually set as
identity matrix. This may lead to divergence when the distance of the source and target frame is too
large. For this reason, the intensity residuals between correspondences are considered to obtain the
optimal initial transformation guess as described below.

3.1. Salient Intensity Point Selection

The cost of the computation for the initial transformation may be enormous if there is no sampling
process for the point cloud. A new sampling method is proposed in this paper which aims to select the
salient point assisted with the intensity that is different from the random sampling method in the point
cloud library (PCL).

In this paper, a market square dataset called marketsquarefeldkirch4-reduced that can be found
from the SEMANTIC3D.NET benchmark dataset is used in the proposed method. In this dataset, a 2D
point clouds of the ground shown in Figure 2 are extracted to support the experiment. The intensity
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value of the method used to select the salient point is obtained from this dataset. Due to the intensity
information in this dataset extracted from 3D Velodyne LIDAR, the method in this paper can perform
well in other LIDAR datasets. However, this method may be not suitable for visual point cloud due to
the different intensity structure between the LIDAR point cloud and visual point cloud.Sensors 2019, 19, x FOR PEER REVIEW 5 of 16 
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Figure 2. (a) Depending on the distribution of intensity value in point cloud, it can be found that the
high-intensity points (not blue) are usually on the edge of point cloud with low-intensity points (blue)
inside. Therefore, the point cloud composed of high intensity points can represent the shape of the
point cloud. (b) Based on 100 times experiments to intensity point selection, it can be seen that most of
points (not blue) can be extracted for filtered point cloud by Equations (8) and (9).

As shown in Figure 2a, the intensity value of most of points on the edge of the point cloud is
higher than −1000. This is caused by the most points on edge are green points with the intensity of
between −1000 and 0. Therefore, the criterion of the salient point x is:

− 1000 < I1(x) < 0. (8)

− 1000 < I2(x) < 0. (9)

The filtered point cloud is produced by the random sampling method with this criterion. As can
be seen in Figure 2b, the threshold about the −1000 and 0 can be used to obtain 80% of the edge points
for filtered point cloud by 100 times the random sampling method. This can prove the validity of
this threshold.

Besides that, the number of the selected points is set to 100 reference to [21] so that it can be used
to reduce the cost of computation but not affect the accuracy of the experimental results. Thus, the
point cloud filtered by the new sampling method presented in this paper is depicted in Figure 3.
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Figure 3. It can be seen that some high intensity points on the edge of the point cloud can be extracted
for next registration without so much cost of computation using the method in Section 3.1.
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As can be seen, the selected points are usually located on the edge of the point cloud with the
internal points having disappeared. By using sampling method mentioned above, the filtered point
cloud can represent the direction and shape of the point cloud. Then the filtered point cloud is set up
as the source frame and transformed to the target frame with a certain number of candidates of initial
transformation guess. Once the filtered point cloud is chosen, it is used for all candidates of initial
transformation guess. When the optimal initial transformation guess is obtained, the point cloud for
later iteration is the original point cloud but not the filtered point cloud.

3.2. Discover Optimal Initial Transformation Guess

In this step, a certain amount of initial transformation guesses {u1, u2 u3, u4, . . . , un} will be
produced by the algorithm. Then, the correspondences between filtered source frame and filtered
target frame is established by each initial transformation guess ui.

Despite the sampling method to choose the points randomly, it can generally cover the entire edge
of the point cloud with the criterion in experiment as described in Figure 3. With that the filtered source
frame and filtered target frame have the same direction and shape. Hence, a proper transformation can
be obtained.

A target function is proposed to determine the best initial transformation guess uoptimal based on
statistics of their spatial distances and intensity residuals. Intensity information can be demonstrated
so that it can be used to registration and localization as mentioned in [20,22,23].

For example, the corresponding point of i-th point in source frame P1(i) is P2(index(i)) with an initial
transformation guess ui. The intensity residuals and spatial distances between the correspondences are
considered for the target function used in this experiment. The intensity residuals ri

(I) of the i-th pair
are calculated as:

ri
(I) = I1(i) − I2(index(i)). (10)

Inspired by [21,27], the Student’s t-distribution is used to scale each intensity residual.
The conventional method uses the t-distribution to reduce the outliner influence and to determine
the correspondence correctly in [21]. By contrast, the use of t-distribution in this paper focuses
on the computation of its variance which is obviously different from the conventional method. By
referring [28], the intensity component of the target function is derived based on t-distribution. Thus,
weight function wI(ri

(I)) is:

wI(ri
(I)) =

v(I) + 1

v(I) + ( ri
(I)

σ(I)
)

2 . (11)

In this experiment, the degree of freedom (DoF) ν(I) is set to 2.055 and the initial standard variance
σ(I) is set to 7.7189. Notice that the ν(I) and σ(I) come from the “fitdist” function in MATLAB. Although
ν(I) and σ(I) are based on current dataset, the value can still be applied to other Lidar datasets (see
Table 1).

By contrast with the usage in [27], the variance of t-distribution used in this experiment is used to
determine the best initial transformation guess. When a correspondence between the filtered source
frame and filtered target frame is established by an initial transformation guess, the score(I) is computed
by using Equation (12):

score(I) =
1
n

∑
i

(ri
(I)
)2wI(ri

(I)). (12)

The score(I) is the same as the variance of t-distribution. The effect of this score is illustrated in
Figure 4a where the variance of optimal t-distribution produced by uoptimal is lower than the initial
t-distribution produced by u1. It means that most of values of the intensity residuals are zero when
optimal initial transformation guess is given. The optimal initial transformation guess can be found in
the search process when the score(I) reaches minimum.
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Figure 4. (a) The variance of optimal t-distribution about the intensity residuals is lower than that
given by initial t-distribution. (b) The variance of optimal t-distribution about the spatial distances is
lower than that given by initial t-distribution.

Another component of the target function is based on the spatial distances between
correspondences. The spatial distance ri

(G) is considered as follows:

ri
(G) = ‖Tk−1P1(i) − P2(index(i))‖. (13)

The computation of wG(ri
(G)) follows the same method for the intensity residual.

wG(ri
(G)) =

v(G) + 1

v(G) + ( ri
(G)

σ(G) )
2 . (14)

The degrees of freedom (DoF) of the spatial distances ν(G) is set to 1.22 which is different from ν(I).
The initial standard variance σ(G) is set to 0.5326. Then, the score(G) can be calculated by Equation (15):

score(G) =
1
n

∑
i

(ri
(G)

)2wG(ri
(G)). (15)

The effect of the score(G) can be described the same as score(I). When the optimal t-distribution of
spatial distance is obtained by utilizing optimal initial transformation guess, the variance is close to
zero as can be seen in Figure 4b.

Referring to Figure 4a,b, the variance of t-distribution fits the real data significantly. Then the
score(I) and score(G) are all normalized for the same weight by Equation (16).

SCORE
(I)

ui
=

score
(I)
ui

n∑
n=1

score(I)ui

, SCORE
(G)

ui
=

score
(G)

ui
n∑

n=1
score(G)

ui

. (16)

Thus, the curves of the SCORE(I) and SCORE(G) in the search process can be depicted by Figure 5a,b,
respectively. The SCORE(I) will be extremely close to the minimum the same as SCORE(G) when
optimal initial transformation guess is given. However, SCORE(I) and SCORE(G) may not necessarily
sync to the minimum which means that the SCORE(I) has multiple minimums. The reason is that the
correspondence may be identified when a part of the initial transformation guess is close to the given
optimal value. Thus the SCORE(I) computed by optimal initial transformation guess may be the same
as others around the optimal value.
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However, the SCORE(I) can help to find the optimal initial transformation guess due to it being
able to access to the area including the optimal value. Then the corresponding SCORE(G) for the same
SCORE(I) are different. By combined with SCORE(G), the target function that used to find the optimal
initial transformation guess uoptimal is described as follows:

uoptimal = argmin
u1,u2...un

(
SCORE

(I)

ui
SCORE

(G)

ui

)
. (17)

With the new method which is assisted by the intensity, the optimal initial transformation guess
can be quickly obtained so that the proceeding speed of ICP will be increased.

Besides the method to compute the initial transformation guess, the Anderson acceleration is also
used to increase the speed of iteration. Therefore, the entire algorithm of ICP assisted by the intensity
method is represented by Algorithm 1.
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Algorithm 1: Intensity-Assisted ICP

Input: Source frame <P1, I1> and target frame <P2, I2>, the search criteria Cθ, Cx, Cy, the search step Sθ, Sx, Sy

Output: Convergence transformation Tfinal
get sampled point cloud from P1, P2 with Section 3.1
get Cθ, Cx, Cy, Sθ, Sx, Sy with Algorithm 2
n = 1
for θ = −Cθ: Sθ: Cθ do
for x = −Cx: Sx: Cx do
for y = −Cy: Sy: Cy do
get the SCORE(I) and SCORE(G) with un produced by θ, x, y
n++

end for
end for
end for
get uoptimal with Section 3.2
T0 = uoptimal
Anderson acceleration begin with T0 between P1, P2
when convergence criteria is true, return Tfinal

In this algorithm, it is set that Cθ = 45◦, Cx = 1, Cy = 1, Sθ = 3, Sx = 0.2, Sy = 0.2 for large distances
registration with umax = u3000 or Cθ = 10◦, Cx = 0.2, Cy = 0.2, Sθ = 1, Sx = 0.04, Sy = 0.04 for small
distance registration with umax = u2000. An adaptive algorithm is introduced in this paper to select
the thresholds above automatically so that the intensity-assisted ICP can perform well in continuous
registration. The process to choose the thresholds is shown below.

In this step, the filtered point clouds obtained in Section 3.1 are used for adaptive selection of
thresholds. Inspired by [16], the mean µ and the covariance Σ of filtered point clouds P is produced
through Gaussian distribution as follows:

µ =
1
|P|

∑
P(i),

∑
=

1
|P|

∑
(P(i) − µ)T(P(i) − µ). (18)

Then the covariance Σ is used to obtain eigenvector ξ1, ξ2 by eigenvalue decomposition as follows.

∑
= (ξN, ξL

)( λN 0
0 λL

)
(ξN, ξL)

T. (19)

Here λN and λL are the eigenvalues of Σ in ascending order, and ξN, ξL can represent the axes of
the ellipsoid approximating the point distribution. The eigenvector ξN corresponding to the smaller
eigenvalue of ξN, ξL is the normal vector so that it describes the direction of the point cloud excellently.

Finally threshold selection is done from the filtered source frame P1 and the filtered target frame
P2 using Equations (20) and (21):

‖µ1 − µ2‖ ≤ 0.2. (20)

‖ξ1,N − ξ2,N‖ ≤ 10◦. (21)

When Equation (20) or Equation (21) is satisfied in algorithm, it is set that Cθ = 10◦, Cx = 0.2,
Cy = 0.2 and Sθ = 1, Sx = 0.04, Sy = 0.04. If not, then the parameters can be set to Cθ = 45◦, Cx = 1, Cy = 1
and Sθ = 3, Sx = 0.2, Sy = 0.2. The adaptive algorithm to select thresholds is described by Algorithm 2
and Figure 6.
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Algorithm 2: Adaptive Threshold Selection

Input: The filtered source frame P1 and the filtered target frame P2
Output: The search criteria Cθ, Cx, Cy, the search step Sθ, Sx, Sy

get µ1, µ2, ξ1,N, ξ2,N with Equations (18) and (19)
if satisfy with Equation (20) || satisfy with Equation (21) then
Cθ = 10◦, Cx = 0.2, Cy = 0.2 and Sθ = 1, Sx = 0.04, Sy = 0.04
else
Cθ = 45◦, Cx = 1, Cy = 1 and Sθ = 3, Sx = 0.2, Sy = 0.2
end if
return the Cθ, Cx, Cy and Sθ, Sx, Sy
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4. Experimental Results

The proposed intensity assisted ICP algorithm is evaluated using a new large-scale point cloud
classification benchmark called SEMANTIC3D.NET [29]. This data set means as for data-hungry (deep)
learning methods with over four billion manually labelled points. The SEMANTIC3D.NET benchmark
dataset consists of dense point clouds acquired with static terrestrial laser scanners. It contains
eight semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad
tracks, squares, villages, soccer fields and castles, providing more dense and complete point clouds
with a much higher overall number of labelled points compared to those already available to the
research community.

Due to our new ICP method containing the intensity information, the SEMANTIC3D.NET
benchmark dataset is suitable for our experiment compared to other data sets.

In this paper, the proposed method focus on 2D datasets produced from the SEMANTIC3D.NET
benchmark dataset, however, it may perform well on 3D ICP as well.

To validate the performance of the proposed method, it was compared with the conventional ICP
in point cloud library (PCL). This comparison was initiated by performing both mentioned methods
on a desktop computer with Ubuntu 16.04, equipped with Intel Core i7-6700HQ CPU (2.6 GHz) and
16GB RAM. Note that this implementation was only run on a single CPU thread.

All subsequent experiments are based on a dataset called marketsquarefeldkirch4-reduced in
the semantic-8 benchmark (contains approximately 10,538,633 points). The part of this point cloud is
selected where z is less than 2 m and also mapped to the x-y plane for the experiments.
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The iteration examples of the intensity-assisted ICP and conventional ICP in PCL are shown in
Figures 7 and 8. Based on these figures, it can be shown that the properties of the accelerative statistics
for the number of iterations required for convergence is calculated for ε = 0.001.
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Note that the experimental data (containing approximately 20,000 points) are taken randomly
about 100 times from the original dataset with the PCL random sample method because the original
dataset is too large for ICP operation. After each sampling, the obtained point cloud is used as the
source frame, and then the point cloud is transformed as the target frame with rotation: 30◦, translation:
1 m on the X-axis.

Due to Cx = Cy =1 and Sx = Sy = 0.2, the experimental result (rotation: 30◦, translation: 1 m on the
Y-axis) is the same as that (rotation: 30◦, translation: 1 m on the X-axis). Hence, the experiments in this
paper are focused on the situation (rotation: 30◦, translation: 1 m on the X-axis).

As illustrated by Figure 8, the number of iterations of the proposed method is clearly reduced
compared to conventional ICP. That is because of the optimal initial transformation guess and
Anderson acceleration.

In addition to the comparison of iterations for convergence, intensity-assisted ICP generates some
results with the same quality as given by conventional ICP or even better. This can be seen from
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Figure 9, which depicts the error distribution of intensity-assisted ICP and conventional ICP. The error
is estimated as the sum of the differences between correspondences in an Euclidean sense, divided by
the number of correspondences. Most of runs converge to the same errors, but the number of errors
produced from intensity-assisted ICP distributed between 0 and 1 × 10−10 are more than that from
conventional ICP, which means that intensity-assisted ICP may be more robust than conventional ICP.
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Figure 9. The final error convergence of intensity-assisted ICP and conventional ICP.

Due to the process to produce a certain amount of the initial transformation guess, the reduction
in number of iterations may not prove the efficiency of the proposed method. The relative change of
speed to converge between two algorithms for the same dataset is shown in Figure 10. The speed is
calculated from the running time of two algorithms on the same computer. Figure 10 can demonstrate
that although the process used to generate the initial transformation guess takes a certain amount of
time, the average speed of the intensity-assisted ICP method is still faster than the conventional ICP.
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Figure 10. The intensity-assisted ICP speed-up relative to the conventional ICP.

To test the acceleration properties of intensity-assisted ICP, 100 random iterations per given
degree are introduced and then the relative acceleration is recorded and compared to conventional
ICP, where ε is calculated as 0.001. As can be seen, Figure 11 illustrates the result of the experiments.
Relative speed-up of intensity assisted ICP is all higher than that of conventional ICP when rotation
increases and finally stay on the slope of approximately 150% when rotation = 45◦.
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The next experiment was conducted for translations. Similarly, 100 random translations per
given distance were also introduced. As demonstrated in Figure 12, it looks quite similar to the
experiments with random rotations. Relative speed-up of intensity-assisted ICP is all higher than that
of conventional ICP when distance increases and can stay on the slope of approximately 50% when
translation = 0.95 m.
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Figure 12. Box-plot of relative intensity assisted ICP speed-up versus random translation distance
for dataset.

Note that the large fluctuation of relative speed-up originates from different point clouds per
sampling operation.

Finally the intensity-assisted ICP is compared with conventional ICP, AA-ICP and implicit moving
least squares-ICP (IMLS-ICP) [30] with datasets Market (marketsquarefeldkirch4-reduced), Stgallen
(stgallencathedral6-reduced), Station (untermaederbrunnen1) extracted from SEMANTIC3D.NET
using the downsampling method with the sampled grid size 0.1 m different from the rand sampling
method above. The three original datasets can be seen in Figure 13.

As shown in Table 1, the intensity-assisted ICP performs well in the three datasets even better than
experiments above. The reason is that the sampling method is downsampling in this step but in the
experiments above it is rand sampling. The intensity-assisted ICP can achieve faster speed and better
accuracy compared to conventional ICP and AA-ICP. The IMLS-ICP algorithm [30] is a state-of-the-art
ICP algorithm introduced in 2018 and ranked third in the KITTI dataset. The remarkable feature
of the IMLS-ICP algorithm is its high accuracy. The intensity-assisted ICP is also faster to converge
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than IMLS-ICP but with low accuracy. This may be a disadvantage of intensity-assisted ICP, but the
intensity-assisted ICP can still maintain excellent performance compared to other algorithms.Sensors 2019, 19, x FOR PEER REVIEW 14 of 16 
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Figure 13. (a) The Market datasets (marketsquarefeldkirch4-reduced). (b) The Stgallen datasets
(stgallencathedral6-reduced). (c) The Station datasets (untermaederbrunnen1).

Table 1. Comparison of the speed and accuracy of four ICP algorithms.

Dataset Parameters
Algorithms

ICP AA-ICP IMLS-ICP Our ICP

Market

Experiment1 (1 m, 0 m, 30◦)

Errors (m) 5.808 × 10−3 3.644 × 10−3 1.317 × 10−4 1.556 × 10−3

Time (s) 125.936 76.455 45.469 12.674

Experiment2 (0.5 m, 0 m, 15◦)

Errors (m) 5.806 × 10−3 3.261 × 10−3 3.746 × 10−5 2.185 × 10−3

Time (s) 56.454 23.113 42.924 13.901

Experiment3 (0.1 m, 0 m, 10◦)

Errors (m) 1.755 × 10−3 1.757 × 10−3 3.293 × 10−4 1.659 × 10−9

Time (s) 54.458 37.008 48.154 22.093

Stgallen

Experiment1 (1 m, 0 m, 30◦)

Errors (m) 8.662 × 10−3 5.891 × 10−3 1.523 × 10−4 3.265 × 10−3

Time (s) 239.642 168.634 138.276 21.272

Experiment2 (0.5 m, 0 m, 15◦)

Errors (m) 6.039 × 10−3 1.971 × 10−3 6.603 × 10−5 1.853 × 10−3

Time (s) 158.853 70.818 121.159 23.416

Experiment3 (0.1 m, 0 m, 10◦)

Errors (m) 4.159 × 10−3 9.012 × 10−3 4.203 × 10−5 1.942 × 10−3

Time (s) 156.046 59.321 114.177 20.718

Station

Experiment1 (1 m, 0 m, 30◦)

Errors (m) 3.096 × 10−2 1.527 × 10−2 2.417 × 10−5 2.357 × 10−3

Time (s) 57.688 47.728 56.993 12.524

Experiment2 (0.5 m, 0 m, 15◦)

Errors (m) 1.368 × 10−2 1.079 × 10−2 2.387 × 10−4 9.748 × 10−4

Time (s) 51.574 37.425 64.251 12.576

Experiment3 (0.1 m, 0 m, 10◦)

Errors (m) 4.911 × 10−3 8.655 × 10−3 9.817 × 10−5 1.049 × 10−4

Time (s) 54.861 41.817 42.546 12.876
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5. Conclusions

As discussed above, the intensity-assisted ICP is proposed and analyzed. A novel modification of
the conventional ICP based on the initial transformation guess and Anderson acceleration indicates the
proposed method can perform well in this paper. On the initial transformation guess stage, this new
method improves the conventional ICP significantly. A target function is proposed to determine the best
initial transformation guess based on the statistic of their spatial distances and intensity residuals with
a little runtime cost. It reduces substantially the number of iterations required for achieving desired
matching quality compared to the conventional ICP. Besides that, the Anderson acceleration is also used
to increase the speed of iteration which has been considered as having better performance compared to
the conventional Picard iteration procedure. Moreover, the SEMANTIC3D.NET benchmark dataset is
used to evaluate the proposed method. The experimental results show that the new method presented
in this paper achieves better speed and quality for convergence compared to the conventional ICP.
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