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Abstract: Over the past few decades, we have witnessed a dramatic rise in life expectancy owing
to significant advances in medical science and technology, medicine as well as increased awareness
about nutrition, education, and environmental and personal hygiene. Consequently, the elderly
population in many countries are expected to rise rapidly in the coming years. A rapidly rising elderly
demographics is expected to adversely affect the socioeconomic systems of many nations in terms of
costs associated with their healthcare and wellbeing. In addition, diseases related to the cardiovascular
system, eye, respiratory system, skin and mental health are widespread globally. However, most of
these diseases can be avoided and/or properly managed through continuous monitoring. In order
to enable continuous health monitoring as well as to serve growing healthcare needs; affordable,
non-invasive and easy-to-use healthcare solutions are critical. The ever-increasing penetration of
smartphones, coupled with embedded sensors and modern communication technologies, make it
an attractive technology for enabling continuous and remote monitoring of an individual’s health
and wellbeing with negligible additional costs. In this paper, we present a comprehensive review of
the state-of-the-art research and developments in smartphone-sensor based healthcare technologies.
A discussion on regulatory policies for medical devices and their implications in smartphone-based
healthcare systems is presented. Finally, some future research perspectives and concerns regarding
smartphone-based healthcare systems are described.

Keywords: smartphone; remote healthcare; mHealth; telehealth; medical device; regulation;
smartphone sensor

1. Introduction

Life expectancy in many countries has increased drastically over the last several decades. This large
increase can be attributed primarily to the remarkable advances in healthcare and medical technologies,
and the growing consciousness about health, nutrition, sanitation, and education [1–4]. However, this
increased life expectancy, combined with the globally decreasing birthrate is expected to result in a
large aging population in the near future. In fact, the elderly population over the age of 65 years is
expected to outnumber the children under the age of 14 years by 2050 [3]. Furthermore, approximately
15% of the world’s population have some forms of disability, and 110–190 million adults suffer from
major functional difficulties [5]. Disability of any form in a person limits mobility and independence,
thus preventing or delaying them from receiving necessary healthcare support on time. In addition, a
significant number of people around the globe suffer from chronic diseases and medical conditions
such as cardiovascular diseases, lung diseases, different forms of cancer, diabetes and diabetes-related
complications. It is reported that six of ten American adults (>18 years) suffer from at least one chronic
disease, with four of ten having multiple chronic conditions [6]. Further, chronic diseases account for
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~65–70% of total mortality among the ten leading causes of death [7]. In fact, heart disease and cancer
together account for 48% of all deaths, thus becoming the leading cause of mortality [7,8].

In addition, the unregulated blood sugar i.e. diabetes is likely to be the seventh leading cause
of death by 2030 [9]. Diabetes increases the risk of long-term complications such as kidney failure,
limb amputations, and diabetic retinopathy (DR). Diabetic retinopathy is an eye disease that results
from the damage of retinal blood vessels due to the prolonged presence of excessive glucose in the
blood. It may lead to blindness if not treated in time. In fact, DR was estimated to account for 5 million
blindness globally in 2002 [10]. Other prevalent eye-related diseases include cataract, glaucoma, and
age-related macular degeneration (AMD) that together with DR caused 65% of all blindness globally
in 2010, with cataract alone accounting for 51% [11]. Furthermore, poor air quality in many large cities
threatens city-dwellers with diseases like asthma and lung diseases. Globally, an estimated 235 million
people are currently suffering from asthma, which caused 383,000 deaths in 2015 [12]. Therefore, the
demand for healthcare services is understandably rising more rapidly than ever before.

An important issue related to providing adequate healthcare services is the continuously increasing
cost of pharmaceuticals, modern medical diagnostic procedures and in-facility care services, which
together renders the existing healthcare services unaffordable. To give one example, in the 2017 budget
of the Province of Ontario in Canada, an additional $11.5 billion was allocated for the next three
years in healthcare sectors [13]. Further, the total health spending per Canadian was expected to be
$6839 in 2018, representing more than 11% of Canada’s GDP and these numbers are similar to most
other OECD (Organization for Economic Co-operation and Development) countries [14]. Therefore,
present-day healthcare services are likely to cause a substantial socioeconomic burden on many nations,
particularly the developing and least developed ones [15–19]. Furthermore, a large fraction of the
elderly relies on other persons such as family members, friends and volunteers, or an expensive
formal care services such as caregivers and elderly care centers for their daily living and healthcare
needs [20–22]. Therefore, enabling superior healthcare and monitoring services at an affordable price
is urgently needed, particularly for persons having limited access to healthcare facilities or to those
living under constrained or fixed budget conditions. However, through long-term monitoring of key
physiological parameters and activities of the elderly in a continuous fashion, many of the medical
complications can be avoided or managed properly [22–25]. Long term monitoring of health enables
early diagnoses of developing diseases. However, current practice requires frequent visits to or long
term stays at expensive healthcare facilities. In addition, a shortage of skilled healthcare personnel, and
limited financial capability, coupled with increasing healthcare costs [26] contribute to the bottleneck
in realizing long-term health monitoring. Smartphone-based healthcare systems, on the other hand,
can potentially enable a cost-effective alternative for long-term health monitoring and may allow the
healthcare personnel to monitor and assess their patients remotely without interfering with their daily
activities [22,27].

The enormous advances in energy efficient and high-speed computing and communication
technologies have revolutionized the global telecom industry. Furthermore, the significant progress in
display, sensor and battery technologies together have paved the way for modern mobile devices such
as smartphones and tablets, enabling seamless internet connectivity, entertainment, and health and
fitness monitoring on the go along with conventional voice and text communication. Smartphones
have grown in popularity over the past decade and by 2021, the global penetration of smartphones
is expected to exceed 3.8 billion [28]. Modern day smartphones come with a number of embedded
sensors such as a high-resolution complementary metal-oxide semiconductor (CMOS) image sensor,
global positioning system (GPS) sensor, accelerometer, gyroscope, magnetometer, ambient light sensor
and microphone. These sensors can be used to measure several health parameters such as heart rate
(HR), HR variability (HRV), respiratory rate (RR), and health conditions such as skin diseases and eye
diseases, thus turning the communication device into a continuous and long-term health monitoring
system. Table 1 presents the health parameters and conditions that can be monitored using current
embedded sensors of the smartphone. The data that are measured by the sensors can be analyzed
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and displayed on the phone and/or transmitted to a distant healthcare facility or healthcare personnel
for further investigation over the wireless mobile communication platform such as 3G, high speed
packet access (HSPA), and long-term evolution (LTE). These existing platforms offer high-speed and
seamless internet connectivity even on the go, thereby allowing people to remain connected with their
healthcare providers [7,22].

Table 1. Smartphone sensors used for health monitoring.

Monitored Health Issues Typically Used Smartphone Sensors
Cardiovascular activity e.g., heart rate

(HR) and HR variability (HRV) Image sensor (camera), microphone

Eye health Image sensor (camera)
Respiratory and lung health Image sensor (camera), microphone

Skin health Image sensor camera)

Daily activity and fall Motion sensors (accelerometer, gyroscope, proximity sensor), Global
positioning system (GPS)

Sleep Motion sensors (accelerometer, gyroscope)
Ear health Microphone

Cognitive function and mental health Motion sensors (accelerometer, gyroscope), camera, light sensor, GPS

In this article, we present a detailed review of the current state of research and development in
the health monitoring systems based-on embedded sensors in smartphones. In Section 2, we discuss
the evolution of smartphones. Some important recent works on different health monitoring systems
are presented in Section 3, which is followed by a discussion (Section 4) on the regulatory policies
associated with smartphone-based medical devices. Finally, the paper is concluded in Section 5 with a
discussion on future research perspectives and some key challenges in realizing smartphone-based
medical devices.

2. Evolution of Smartphone

In 1992, IBM announced a ground-breaking device named Simon Personal Communicator that
brought together the functionalities of a cellular phone and a Personal Digital Assistant (PDA) [29–31],
thus unveiling a whole new concept of so-called ‘smartphone’ in the cellular phone industry. Simon
featured a 4.5” × 1.4” monochrome LCD touchscreen and came with a stylus and a charging base
station. Along with conventional voice communication, the device was also capable of communicating
emails, faxes, and pages—some features that were later attributed to smartphones. Simon featured a
notes collection to write in, an address book, calendar, world clock and an appointment scheduler, and
was also flexible to third-party applications [29–31]. While it was a giant leap into the market by IBM,
it, however, was expensive, costing the customer $899 with a service contract. Being much ahead of its
time and with such a high price tag, Simon failed to attract customers. Even though the tech giant sold
approximately 50,000 units in 6 months [32], it opted out of making a second-generation Simon.

In 1996, Nokia revealed a clamshell phone, Nokia 9000 Communicator, which opened to a full
QWERTY keyboard and physical navigation buttons flanking a monochrome LCD screen nearly as
big as the device itself. It featured Web browsing capability on top of most of the features that IBM’s
Simon offered. However, Ericsson first coined the term ‘Smart-phone’ for its Ericsson GS 88. The GS
88, also known as ‘Penelope’, was strikingly similar to the Nokia 9000. However, it was never released
to the public, arguably because of its weight and poor battery quality [31]. Later in 2000, Ericsson first
officially used the term ‘Smartphone’ for the Ericsson R380, which was much cheaper, smaller and
lighter than the Nokia 9000. Ericsson R380 was the first device to use the mobile-specific Symbian
operating system (OS) and only second to IBM’s Simon to have a touchscreen in a phone. R380 was one
of the first few smartphones that used the wireless application protocol (WAP) for faster and smoother
web browsing.

In 2002, Handspring and RIM released their first smartphones Treo-180 and Blackberry 5810 (5820
for Europe) in the market, respectively [29–31]. The Treo-180 brought the functionality of a phone, an
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email messaging device and a PDA together, and enabled the users to check the calendar while talking
on the phone and to dial directly from the contact list. The Blackberry 5810 featured enterprise e-mail
and instant messaging services, text messaging, and a WAP browser. However, this device lacked
an integrated microphone, for which the user had to attach a headset to make or receive calls. Both
the BlackBerry 5810 and the Treo-180 featured a large monochrome screen and a QWERTY keyboard
like a PDA. However, unlike the BlackBerry 5810, the Treo-180 came in a clamshell format with a
visible antenna and a hinged lid over the phone that flipped up to serve as the earpiece for phone
conversations. Then RIM released Blackberry 6210, otherwise known as the ‘BlackBerry Quark’ in the
following year, featuring a built-in microphone and speaker [30,31].

In 2000, both Samsung and Sharp introduced a camera phone in their respective local markets.
In South Korea, Samsung released SCH-V200 that featured a 1.5” TFT-LCD display and a 0.35-megapixel
video graphics array (VGA) camera that could capture up to 20 images. A few months later, in Japan,
Sharp released the J-SH04 in Japan with a 256-color display and a built-in 0.11-megapixel CMOS
camera. Although the camera resolution of J-SH04 was much less than that of the SCH-V200, it
featured a phone-integrated camera in the true sense for the first time and allowed for transferring of
images directly from it, whereas the SCH-V200 brought two separate devices in one enclosure and
therefore needed to transfer the pictures to a computer for sharing. However, none of the camera
phones supported web browsing and email communication until Sanyo launched the first smartphone
with a built-in camera in 2002. The Sanyo SCP-5300 came in a clamshell format and featured dual color
displays, WAP browser, and an integrated 0.3-megapixel camera with short-range LED light sensor
pro flash. It also had brightness and white balance control, self-timer, digital zoom, and several filter
effects such as sepia, black-and-white, and negative colors.

Fast forward to a decade later, modern smartphones featured a number of sensors such
as high-resolution and high-speed CMOS image sensor, GPS sensor, accelerometer, gyroscope,
magnetometer, ambient light sensor, microphone, and fingerprint sensor (Figure 1). In addition,
the processing and data storage capability of current smartphones has improved significantly. Figure 2
shows the built-in sensors that most present-day smartphones possess.

Figure 1. Evolution of smartphones and smartphone-embedded sensors over time.
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Figure 2. Built-in sensors in a typical present-day smartphone.

3. Smartphone Sensors for Health Monitoring

As discussed earlier, the modern-day smartphones are fitted with a number of sensors.
These sensors allow for active and/or passive sensing of several health parameters and health
conditions. The data thus measured by the smartphone-sensors, sometimes coupled with information
related to device usage such as call logs, app usage and short message service (SMS) patterns can
provide valuable information of an individual’s physical and mental health over a long period of
time. In this way, the smartphone can potentially be turned into a viable and cost-effective device
for continuous health monitoring. In the following sections (Sections 3.1–3.7), we discuss how the
smartphone can be used for heart, eye, skin, mental health and activity monitoring, respectively.

3.1. Cardiovascular Health Monitoring

Heart rate (HR) or pulse rate is one of the four ‘vital signs’ that is routinely monitored by physicians
to diagnose heart-related diseases such as different types of arrhythmias [22,33]. HR and HR variability
(HRV) are typically extracted from the Electrocardiogram (ECG) (Figure 3a). However, these systems,
particularly the conventional 12-lead ECG systems are expensive, restrict user’s movement and require
trained medical professionals to operate in clinical settings. HR and HRV can also be measured
using portable and hand-held single-lead ECG devices [22,34]. Furthermore, with the advancement of
wearable sensor technologies, HR and HRV can now be obtained using commercial fitness trackers
such as Fitbit® (San Francisco, CA, USA), Jawbone® (San Francisco, CA, USA), Striiv® (Redwood City,
CA, USA), and Garmin®, (Olathe, KS, USA) [22].

Figure 3. Measuring heart rate (a) from a typical trace of a single lead Electrocardiogram (ECG) signal,
and (b) using a smartphone camera.

However, these portable and wearable systems require additional accessories, which can be
avoided by exploiting the embedded sensors such as a camera and microphone in the smartphone for
monitoring HR and HRV. Using smartphone camera sensors, it is possible to estimate HR and HRV
from the photoplethysmogram (PPG) signal derived from the video of the bare skin such as of the
fingertip (Figure 3b) or the face. The light absorption characteristics of hemoglobin in blood differ
from the surrounding body tissues such as flesh and bone. PPG estimates the volumetric changes in
blood by detecting the fluctuation of transmissivity and/or reflectivity of light with arterial pulsation
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through the tissue (Figure 4) [22,35]. Although near-infrared (NIR), red light sources are used in most
commercial systems [22,35], some researchers [36–40] exploited the smartphone embedded white
flashlight to illuminate the tissue to measure the PPG.

Figure 4. Photoplethysmograph (PPG) signal obtained from the pulsatile flow of blood volume.

Most published smartphone-based HR and HRV monitoring applications [36–40] follow a
similar approach where these parameters are extracted from the PPG signal either by measuring
pulse-to-pulse time difference in time-domain [39] or by finding the dominant frequency in the
frequency domain [36,38]. In Reference [39], the HR and HRV were estimated from the PPG signal
obtained from the fingertip using the flashlight and the camera of a smartphone. The green channel of
the video data was used to derive the pulse signal after a low-frequency band-pass filtering. Instead of
using a conventional peak/valley detection method, the authors detected the steepest slope of each
pulse wave and evaluated the correlation of the PPG signal with a pulse wave pattern to determine the
cardiac cycles. The calculated HR and HRV were highly correlated to that measured from a commercial
ECG monitor, although the degree of improvement in the measurement accuracy with the proposed
algorithm over the conventional method was not reported. In addition, the authors did not evaluate
the performance of the proposed algorithm when there were any bodily movements. A previously
reported [41,42] motion detection technique was employed in Reference [36] to identify and discard
the corrupt video data that is highly affected by motion artifacts. The PPG signal was derived from the
video of the index fingertip recorded using all three channels (red, blue and green) of a smartphone
camera. They calculated a threshold based on the difference of the maximum and the minimum
intensity and summed up the pixel values with intensity greater than the threshold for each frame,
from which the PPG signal was obtained. The periodic change in the blood volume flow during the
cardiac cycles was reflected in the PPG signal acquired through the red channel in comparison to the
other two channels. The pulse rate was finally extracted by performing simple Fast Fourier Transform
(FFT) analysis on the PPG obtained through the red channel, achieving an average accuracy of as
high as 98% with a maximum error of three beats per minute (bpm) with respect to the actual pulse.
However, the algorithm cannot correct motion artifact in the video. Rather, it relies on restarting the
video recording when the movement exceeds a predefined level.

In Reference [38], both the front- and rear-cameras of a smartphone were used to simultaneously
monitor the heart rate (HR) and respiration rate (RR). The HR was obtained as usual from the PPG
signal of the fingertip placed on top of the rear-facing camera. The front camera was used to estimate
the RR by detecting the movement of the chest and the abdomen. The HR and RR were obtained
by identifying the dominant frequency of the images in frequency-domain (Welch’s power spectral
density). The authors reported achieving a high (95%) agreement in the measured HR compared to
that obtained using the standard ECG from 11 healthy subjects with a variation ranging from −5.6 to
5.5 beats-per-minute. The RR estimated from the chest and the abdominal walls resulted in average
median errors of 1.4% and 1.6%, respectively. In order to achieve a wide dynamic range of 6–60 breaths
per minute, an automatic region-of-interest (ROI) selection protocol was used. With this protocol, a
signal either from the abdomen or the chest based on the absolute value of mean autocorrelation was
selected. However, this approach of monitoring RR restricts the movement of the body during video
recording to avoid motion artifacts (MA). MA can be eliminated or reduced by incorporating MA
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estimation algorithms [41–43] in the system. In addition, extra caution is necessary while estimating RR
in presence of colorful and patterned cloths, which can affect the fidelity of video recordings, thereby
affecting the estimation accuracy of the RR.

All HR monitoring systems discussed above are contract-based, which require the user to keep
the fingertip in close contact with the smartphone camera lens using sufficient strength. Any alteration
of the finger position and illumination condition may result in an erroneous estimate of HR [44].
Contactless monitoring systems, on the other hand, estimate HR from the PPG signal derived from
the video of the face. Such a non-contact cardiac pulse monitoring application named FaceBeat was
presented in Reference [45]. The application was based on an algorithm similar to the first-of-its-kind
video-based HR monitoring system proposed in Reference [46], which had exploited the webcam of
a laptop for video recording. FaceBeat extracts cardiac pulse and measures HR from the video of a
user’s face recorded using the front camera of the smartphone. The photodetector array of the camera
sensor detects the variation in the reflected light from a specific region of interest (ROI) in the face with
the change of blood volume in the facial blood vessels. The authors exploited the green channel data
of the recorded video, which as reported in References [40,44,47,48], is most suitable for evaluating
HR, particularly in the presence of motion artifacts. The authors used independent component
analysis (ICA) to remove noise and motion artifacts from the video data of the ROI and performed
the frequency domain analysis on the both the raw and decomposed signals to extract HR and HRV.
The HR thus measured showed a maximum average error of 1.5% with respect to the reference ECG
signal obtained from a commercial ECG monitor. However, the complex computation process required
for the application increase the processor load and computation time, thereby increasing the power
consumption and reducing the battery life.

Unlike the conventional approach, which estimates HR from the fluctuation of reflected light
through specific color channels (R, G, B), researchers in Reference [49] proposed a method that estimates
both HR and RR by detecting the variation in the hue of the reflected light from the face. A 20 s video
of the subject’s face was recorded. However, only the forehead region of the face was analyzed in the
frequency domain to determine the dominant frequencies in the time-varying changes of the average
Hue. The authors reported achieving highly accurate HR and RR measurements showing a higher
correlation to the measurements with standard instruments than the green channel PPG. Nevertheless,
this approach may not work if the forehead skin is covered with any object such as hair, headband or
cap, or has scar tissue on it. Although face-based contactless monitoring of HR offers a more convenient
alternative to the contact-based systems, its performance can vary with the variation in illumination,
skin color, facial hair, scar and movement of the face. Table 2 presents some smartphone-sensor based
cardiovascular monitoring systems presented in the literature.
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Table 2. Smartphone-sensors for cardiovascular health monitoring.

Ref. Year Measured
Signs Type Smartphone

Model Sensor Used Video
Resolution

Frame Rate
(fps)

Video
Length Method Performance wrt

Standard Monitors
# of

Subjects

[37] 2018 HR, HRV Contact-based
(index finger)

iPhone 6,
Apple Inc.,

Cupertino CA
Front camera 1280 × 720 240 5 min • Reflection of light from the

finger is measured.

Pearson Correlation
coefficient (PC) for
most parameters
between PPG and
ECG: >0.99

50 (11 F,
39 M)

[39] 2016 HR, HRV Contact-based
(index finger)

iPhone 4S,
Apple Inc.,

Cupertino CA
Rear camera 30 5 min

• Combination of the steepest
slope detection of pulse wave
derived from the green channel of
the reflected light and its
correlation to an optimized pulse
wave pattern.

PC: >0.99 (HR), ≥0.90
(HRV)

68 (28 F,
40 M)

[38] 2016 HR, RR

Contact-based
(HR) and

contactless
(RR)

HTC One M8,
HTC

Corporation,
New Taipei
City, Taiwan

Front (for
RR) and rear

(for HR)
camera

RR: 320 × 240
(ROI: 49 × 90

abdomen)
HR: 176 × 144
(ROI:176 × 72)

30
(down-sampled

to 20 (RR),
25 (HR))

–
• Frequency domain analysis of
the noncontact video recordings
of chest and abdominal motion.

Average of median
errors for RR:
1.43%–1.62% between
6 and 60 breaths per
minute

11
(2 F, 9 M)

[45] 2012 HR Contactless
(face)

iPhone 4,
Apple Inc.,

Cupertino CA
Front camera 640 × 480 30 20 s

• Analysis of the raw video signal
(green channel) and
ICA-decomposed signals of the
face in the frequency domain.

Error rate: 1.1% (raw
signal), 1.5%
(ICA-decomposed
signals)

10
(2 F, 8 M)

[49] 2018 HR, RR Contactless
(face)

LG G2, LG
Electronics Inc.,

Korea
Rear camera –

30
(down-sampled

to 10)
20 s

• Frequency domain analysis of
the color variations in the
reflected light (hue) from the face.

PC: 0.9201 (HR) and
0.6575 (RR)

25 (10 F,
15 M)

[36] 2016 HR
Contact-based
(index finger)

– Rear camera 1920 × 1080 – –

• Frame-difference based motion detection for improving
data quality.
• Uses all 3 channels (R, G, B) for PPG extraction. 20

• Blood volume flow was
observed clearly in the Red
channel.

Average accuracy:
98%

[50] 2015 Pulse, HR,
HRV

Contact-based
(index finger)

Motorola Moto
X, Motorola,

Libertyville, IL
and Samsung S

5

Rear camera 640 × 480 30 100 s

• Extracts PPG by averaging the
Green channel data of the video.
• HR is calculated by detecting
the consecutive PPG peaks.

PC of pulse and R-R
interval from two
phone models > 0.95

11
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Table 2. Cont.

Ref. Year Measured
Signs Type Smartphone

Model Sensor Used Video
Resolution

Frame Rate
(fps)

Video
Length Method Performance wrt

Standard Monitors
# of

Subjects

[40] 2014 HR, NPV Contact-based
(index finger)

iPhone 4S,
Apple Inc.,

Cupertino CA
Rear camera ROI:

192 × 144 30 20 s

• HR and NPV were measured in
the presence of a controlled
motion (6 Hz) of the left hand.
• Evaluated the effect of motion
artifact (MA) on the PPG in all
three color (R, G, B) channels.

Higher SNR for B and
G channel PPG in
presence of 6Hz MA.
PC: HR>0.996 (R, B,
G), NPV = 0.79 (G)

12 (M)

[51] 2014 HR, HRV Contact-based
(index finger)

Sony Xperia S,
Sony

Corporation,
Tokyo, Japan.

Rear camera – – 60 s

• HR was estimated by detecting
the consecutive PPG peaks and
also the dominant frequency.
• Combines several parameters
(HR, HRV, Shannon entropy) to
detect Atrial fibrillation (AF).

HR error rate: 4.8%
AF detection: 97%
specificity, 75%
sensitivity

[52] 2012 HR, HRV Contact-based
(index finger)

iPhone 4s and
Motorola

Droid,
Motorola,

Libertyville, IL

Rear camera ROI:
50 × 50

30 (iPhone),
20 (Droid)

2, 5 min
(iPhone,
Droid)

• Several ECG parameters were
extracted with two different
models of smartphone both in
supine and tilt position and
performed comparative analysis
with the data obtained from a
standard five lead ECG.

PC: ~ 1.0 (HR), PC for
Other ECG
parameters: 0.72-1
(Droid), 0.8-1 (iPhone)

9
(iPhone)

13
(Droid)

[44] 2012 HR Contact-based
(index finger)

HTC HD2 and
Samsung
Galaxy S

Rear camera

ROI:
288 × 352

(HTC) 480 ×
720 (Samsung)

25
(HTC)

30 (Samsung)
6 s • HR is calculated by detecting

the consecutive PPG peaks. Error: ± 2 bpm 10

[53] 2012 HR Contact-based
(index finger)

Motorola
Droid,

Motorola,
Libertyville, IL

Rear camera ROI:
176 × 144 20 5 min

• HR from the PPG signals was
obtained at sitting, reading and
video gaming by using an
Android-based software.

PC: ≥ 0.99
Error: ± 2.1 bpm

14 (11 F, 3
M)
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3.2. Pulmonary Health Monitoring

Air pollution across the globe has increased significantly in the last decade [54] resulting in billions
of people being at increased risk for chronic pulmonary diseases such as cough, asthma, chronic
obstructive pulmonary disease (COPD) and lung cancer. In addition, smoking tobacco is one of the key
risk factors for lung cancer and other pulmonary diseases [55]. In fact, lung cancer is the most common
form of cancers and caused ~19% of all cancer-related deaths in 2018 [55]. Therefore, early detection
of these lung diseases and continuous monitoring of pulmonary health are paramount for timely
and effective medical intervention. Many researchers [56–62] used the microphone of a smartphone
to detect the sound of a cough and breathing and analyzed the recorded audio signals in efforts to
develop a cost-effective and portable tool for faster assessment of pulmonary health.

The smartphone can be used for lung rehabilitation exercise. In Reference [56], an interactive
game was developed where the users play to dodge obstacles through inhalation and exhalation.
The game, ‘Flappy Breath’ was designed for smartphones and either used its built-in microphone or a
Bluetooth-enabled stretchable chest belt to detect breathing. When played using the microphone, the
game detects the frequency and strength of the input sound, calculates the average volume of airflow,
and also calibrates itself to identify the frequencies corresponding to silence, inhalation and exhalation.
However, interferences from other nearby sources can corrupt the sound of breathing and may even
make the game unresponsive to breathing. In contrast, the game does not require any initial calibration
when played using the chest belt. It also allows the users to keep their hands free, but it incurs an
additional cost to the user. The app can also store a person’s breathing patterns and information related
to their airflow over a long period of time that can be useful in the long-term monitoring of lung health.

A cough detection algorithm, proposed in Reference [57], was used to analyze the audio signal
recorded by the smartphone’s microphone to detect the cough event. There, the authors first obtained
the spectrogram from the time-varying audio signal, and the cough sound was found to generate
higher energy over a wide frequency range compared to other sounds such as throat clearing, speech,
and noise. Based on the distinct pattern, the spectrogram of the cough sound from several training
sequences was isolated, normalized and analyzed using the principal component analysis (PCA). A
subset of the key principal components was then used to reconstruct the cough signal with high fidelity
and finally, to classify the cough events. The authors reported achieving a sensitivity of 92% and a
false positive rate of 0.5% in recognizing cough events using a random forest classifier. However, the
phone was placed around the user’s neck or in the shirt pocket to improve the audio quality of the
recorded sound, which may not be comfortable or always feasible for regular use. Therefore, further
research is needed to implement the algorithm in a mobile platform for a complete phone-based cough
detection system. A similar phone-based system for identifying and monitoring nasal symptoms such
as blowing the nose, sneezing and runny nose was proposed in Reference [58]. This system also tracks
the location information using the GPS data in the case of a nose related event, thereby allowing it to
keep a record of contextual information related to the event for future reference.

Some researchers [58–62] used the microphone of the smartphones to realize a low-cost spirometer
in a mobile platform. Spirometers are widely used in clinical settings to quantify the flow and volume
of air inspired and expired by the lungs during breathing. In standard spirometry, a volume-time (VT)
curve (Figure 5a) and a flow-volume (FV) curve (Figure 5b) are obtained from forced expiratory flow.
These curves are used to extract some clinically important parameters such as forced vital capacity
(FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and the ratio FEV1 to
FVC (FEV1/FVC), which are routinely used clinically to determine the degree of airflow obstruction
in patients with pulmonary disorders such as asthma, COPD and cystic fibrosis. However, clinical
spirometers are expensive and cost several thousands of dollars. Therefore, a smartphone-based
spirometer can be a viable low-cost alternative to these expensive spirometers, particularly for the
people in remote areas and in underdeveloped countries.
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Figure 5. Typical spirometric flow curves (a) volume-time curve, and (b) flow-volume curve.

A smartphone-based spirometer, ‘SpiroSmart’, was proposed in Reference [58] using the built-in
microphone to record the sound of forced exhalation and send the audio data to a remote server for
analysis and parameter extraction. In the server, an algorithm to estimate the flow rate from the audio
signal of forced exhalation was implemented. There, the authors first compensated for the loss of air
pressure as the sound travels a distance from the mouthpiece to the microphone. Then, they estimated
the air pressure at the opening of the mouth, which was converted to flow rate. This signal was further
processed to extract a set of features from a window of 15 ms to approximate the flow rate over time.
Finally, the spirometric parameters were estimated from the flow rate features following a bagged
decision tree and mean square error-based regression techniques, and k-means clustering. In addition,
the FV curve was estimated by regression using a combination of conditional random field (CRF) and
a bagged decision tree. The authors reported achieving a median error of ~8% for the four spirometric
parameters in reference to the measurements from a clinical spirometer. In a later work, the same
research group proposed a call-in based system in References [60,61], where instead of recording the
sound on the phone, users can directly call-in to record the audio of forced exhalation in a remote server.
The system, named ‘SpiroCall’, runs a similar algorithm in the server as ‘SpiroSmart’ and estimated
the spirometric parameters from the audio data. The transmission of exhalation sound over voice
channels was found to have a negligible effect on the bandwidth and resolution of the signal as well as
on the accuracy of the system, thus making the system suitable for remote monitoring of lung health.

In the smartphone-based spirometer proposed in Reference [62], the authors attached a commercial
mouthpiece with the smartphone using a custom-made 3D-printed adapter fabricated with polylactic
acid (PLA) material. Following a down-sampling and subsequent filtering of the original audio signal,
the authors performed a time-frequency analysis on the recorded signal using variable frequency
complex demodulation (VFCDM). From VFCDM, they derived two curves—maximum power of each
sample against accumulated maximum power and accumulated maximum power against time—which
showed a similar pattern to the typical FV curve and VT curve, respectively. Finally, FVC, FEV1, and
PEF were extracted from these curves. Although the individual parameters showed poor correlation
with the reference, the FEV1/FVC or the Tiffeneau-Pinelli index, which is a key metric in diagnosing
chronic obstructive pulmonary disease (COPD), was found to be highly correlated (r = 0.8) to the
reference measurements with a root mean squared error (RMSE) of ~5.5% and ~14.5% in healthy
persons and COPD patients, respectively.

In References [63,64], a smartphone application, ‘LungScreen’ was developed to realize a
personalized tool for lung cancer risk assessment. The application assesses the risk of lung cancer
based on the user’s response to an interactive questionnaire that includes duration of tobacco use,
occupational environment and family history of lung cancer. Based on this information, it instantly
classifies the users into three risk groups—low, moderate and high. Using the location information
from the GPS sensor of the smartphone, the users at high risk of lung cancer are referred and navigated
to their nearest screening centers for further investigation. Although the app can be useful for initial
and fast screening of lung cancer, the sensitivity and specificity of the app were not reported [63]. In
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addition, in Reference [64], 32 participants were found positive in a low-dose computed tomography
(LDCT) screening among the 158 participants (Baranya County, Hungary) who were identified by the
app being at high risk of non-small-cell lung carcinoma (NSCLC), the false negative rate (FNR) of the
app was not reported.

3.3. Ophthalmic Health Monitoring

Diabetic Retinopathy (DR) is one of the common complications of diabetes, which if diagnosed
late and left untreated, can lead to blindness. Currently, the seven-field stereoscopic-dilated fundus
photographs are considered as the ‘gold standard’ for diagnosing DR by the Early Treatment of Diabetic
Retinopathy Study (ETDRS) group [65,66]. However, this protocol requires an expensive imaging
system, specially-skilled photography personnel, and specialized processing and storage of films.
Single-field digital fundus photography (Figure 6), although not as comprehensive as the seven-field
stereoscopic-dilated fundus photography, can still serve as a screening tool for DR before a detailed
ophthalmic evaluation and management [67]. Single-field digital fundus imaging is less expensive
and more convenient in comparison to the standard seven-field stereoscopic ETDRS photography.
However, this system is still costly with a price of the complete imaging system ranging from several
thousand to ten thousand dollars [68], thus limiting its large-scale adoption for diagnosing DR and
other eyes-related diseases, especially in developing and under-developed countries. However, the
ever-increasing popularity and rapid technological advances of smartphone cameras, coupled with
modern-day cloud-based image processing, storage and management services have paved the way for
low-cost and efficient remote screening and diagnosis of ophthalmic diseases. This smartphone-based
imaging technology can potentially be useful in inpatient consultations and emergency room visits [69].

Figure 6. Image of the retinal fundus of a healthy eye; Source: https://pixabay.com/en/eye-fundus-
close-1636542/.

At present, there are some smartphone applications available to perform simple ophthalmic tests,
although their reliability and performance are often not guaranteed. In order to diagnose Diabetic
Macular Edema (DME), Diabetic Retinopathy (DR), and most types of age-related macular degeneration
(AMD), a good quality fundus image with an adequate field-of-view is critical. A resolution of at least
50 pixels/◦ along with an imager larger than 1024 × 768 pixels are required [70], and most modern-day
smartphone-cameras meet this requirement. The idea of using the smartphone camera for retinal
fundus imaging was first presented in Reference [69]. In this work, the image of the retinal fundus
was captured with a smartphone camera through a 20 Diopter (D) lens, and a pen torch was used
for illumination. Although the first of its kind, the system was not user-friendly and cannot ensure
good image quality since multiple tasks such as holding the pen torchlight, the smartphone and the
lens altogether while directing the light, focusing the camera, and finally pressing the touchscreen
for capturing the image, must be performed. An alternative method is proposed in Reference [71],
for capturing good quality fundus image. Unlike Reference [69], this system exploited the embedded

https://pixabay.com/en/eye-fundus-close-1636542/
https://pixabay.com/en/eye-fundus-close-1636542/
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flashlight of the smartphone as a light source for the camera. The user can use one hand to control
the smartphone for focusing, magnifying and recording the video image while directing the light to
the patient’s retina by holding a 20D or 28D ophthalmic lens with the other. The still image of the
retinal fundus was then obtained from the video sequence. In Reference [72], the authors demonstrated
capturing fundus images from human and rabbit eyes using a similar approach as [71]. They exploited
an inexpensive application (Filmic Pro, Cinegenix LLC, Seattle, WA, USA; http://fimicpro.com/) to
control the illumination, focus, and light exposure while recording the video image. Although all
systems reported capturing a fundus image, no validation or comparison in reference to the standard
systems was reported. Furthermore, these techniques require the use of both hands, thus leaving no
room for eye indentation. In addition, the potential for peripheral retinal imaging was not explored.

In Reference [73], a 3D printed lightweight attachment was designed for smartphones to capture
high-quality fundus images. Unlike the systems reported in References [69,71,72], the attachment can
hold an ophthalmic lens at a recommended but an adjustable distance from the lens of the smartphone
camera and can use either the phone’s built-in flash or external light source for illumination. A similar
attachment for smartphones and an external LED light source were used in Reference [68] for near
visual acuity testing and fundus imaging, thus enabling remote screening of DR patients. A similar
fixture was also presented in Reference [74] which has slots to accommodate a smartphone and hold a
20 D lens, thus allowing the physicians to use the system in one hand and keep the other hand free for
indentation. Along with central fundus images, both systems [73,74] enables capturing high-quality
images of the peripheral retina such as ora serrata and pars plana. Thus, they can be useful in screening
for peripheral lesions as well, although the researchers in Reference [73] did not explore this possibility.

In Reference [75], a 3D printed plastic attachment (14× 15.25× 9 cm3) designed for the smartphones
to enable high-quality wide-field imaging of retinal fundus was developed. The attachment houses
three white LEDs for illumination, optical components including one 54D lens, one 20 mm focal
length achromatic lens for light collection, two polarizers and a beam splitter, and a phone holder to
ensure proper alignment between the camera sensor and the imaging optics. The smartphone can
adjust the illumination level to the retina by regulating a battery powered on/off dimming circuit that
independently controls each LED. The variability in axial length and the refractive error in the subject’s
eyes were corrected by exploiting the auto-focus mechanism of the smartphone. The Ocular CellScope,
as they named the complete imaging system, cost only $883 and was reportedly capable of capturing a
wide field-of-view (~55◦) in a single fundus image with a dilated pupil, thus making it a promising
low-cost alternative to most commercial retinal fundus imaging systems.

Similar to the Ocular CellScope, a much smaller (47 × 18 × 10 mm3) and less expensive ($400)
magnetic attachment called D-Eye was reported in References [76] and [77]. The device houses similar
optical components except for the light source, for which D-Eye exploits the smartphone’s embedded
flashlight. The cross-polarization technique significantly reduced the corneal Purkinje reflections, thus
making it possible to easily visualize the optic disc and screen patients, particularly for glaucoma even
with undilated pupils. The authors reported achieving a field of view of ∼20◦ for each fundus image
with a significant agreement with dilated retinal bio-microscopy which is conventionally used for
grading the severity level of diabetic retinopathy. Furthermore, the retinal fundus imaging of babies
was convenient due to their spontaneous attraction to the non-disturbing light emitted by the device.
In addition, the device allows the examiner to work at an ergonomically convenient distance (> ~1 cm)
while using the smartphone’s screen to focus the light on the patient’s retinal fundus. A stitching
algorithm can be used to create a composite image, thus increasing the field-of-view of the retinal
fundus. Figure 7 shows the typical arrangement of the optical components for fundus imaging with
a smartphone.

http://fimicpro.com/
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Figure 7. Typical arrangement of the optical components for fundus imaging with a smartphone.

A portable eye examination kit (PEEK) was presented in References [78,79] that exploited the
camera of a smartphone to realize a portable ophthalmic imaging system. The system can perform an
automatic cataract test by acquiring the image of an eye with a smartphone camera and comparing it
to a set of preloaded images of cataract affected eyes with different intensity. However, additional
external hardware is required to make PEEK suitable for fundus imaging. The additional hardware
primarily comprises a red LED to illuminate the blood vessels and hemorrhages, a blue LED to observe
corneal abrasions and ulcers after staining the eye with fluorescein, and a lens to magnify the image.
The image of the retinal fundus is then displayed on the screen of the smartphone for diagnostic
purpose. The system was successfully used to identify visual impairment in children [80,81] and to
monitor the effect of prolonged exposure to extreme environments such as the long frigid darkness of
Antarctica during the winter on the health of the explorers’ eyes [82].

3.4. Skin Health Monitoring

Skin cancer is one of the most common of all human cancers that is caused by the abnormal
growth of skin tissue. Experts have identified three major types of skin cancer basal cell carcinoma
(BCC), squamous cell carcinoma (SCC), and melanoma, the malignant form of the latter being the
most dangerous one among the three. Melanoma is primarily caused by over-exposer to harmful
ultra-violet rays of the sun that hinders melanin synthesis by damaging the genetic material of the
melanin-producing melanocyte cells of the skin and thus putting people at high risk of skin cancer.
Malignant melanoma tends to spread to other parts of the body and may turn fatal if not diagnosed
and treated early. According to the America Cancer Society, 91,270 new cases of skin melanoma were
estimated to be diagnosed in the US in 2018, out of which 9320 deaths were estimated [83]. Skin cancer
is characterized by the development of precancerous lesions with varying shape, size, color and texture.
Apart from skin cancer, there are other types of skin diseases such as psoriasis, eczema, and moles
that require medical attention, thus causing loss of productivity and increase in medical expenditures.
In fact, one in four Americans underwent treatment for at least one skin disease in 2013, costing $11
billion in lost productivity and $75 billion for treatment and associated costs [84]. Therefore, a low-cost
solution for early detection of skin disease would be of immense use. Smartphones, being widely
popular at present, can offer a viable solution for early diagnosis of skin diseases, most particularly for
remote screening and long-term monitoring of skin lesions. Figure 8 shows some common medical
conditions associated with the skin.

To evaluate the efficacy of smartphone-based imaging in assessing the evolution of skin lesions, a
cross-sectional study of skin disease was conducted in Reference [85]. Photographs were taken and
sent by the patients themselves reportedly assisted the physicians to strengthen, modify and confirm
the diagnosis in 76.5% of the patients, thus significantly influencing the diagnosis and treatment of skin
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diseases. Furthermore, in comparison to the conventional paper-based referral system, it was observed
that smartphone-based Teledermoscopy (TDS) referral schemes can significantly reduce the waiting
time for skin-cancer patients [86]. In addition, the quality of most images captured by the smartphones
was good enough to reliably improve the triage decisions, thus potentially making the management of
patients with skin cancer faster and more efficient as compared to the traditional paper-based referrals.

Figure 8. Several types of skin diseases (a) Eczema, (b) Psoriasis and (c) two forms of Melanoma.

Most existing portable solutions for skin disease detection rely on conventional image processing
techniques along with conventional monochrome or RGB color imaging [87,88]. However, owing to its
poor spatial and spectral resolution, conventional imaging approaches may not be suitable for resolving
heterogeneous skin lesions [89,90] and can potentially lead to diagnostic inaccuracies. The spectral
imaging techniques, on the other hand, exploits the spectral reflectance characteristics of affected sites
on the skin [91,92] to resolve heterogeneous lesions and was reported to be useful in differentiating skin
diseases, such as early-stage melanoma from dysplastic nevi and melanocytic nevi [93], and various
acne lesion types [94]. A ring-shaped light source for the smartphone camera to study the feasibility of
using smartphones for skin chromophore mapping was presented in Reference [95]. The ring comprises
one white LED and three LEDs with different emission spectrum (red, green and blue) as well as two
orthogonally oriented polarizers. The polarizers reduce the specular-reflected light from the skin, thus
allowing the camera sensor to detect light scattered only from the skin [96]. The white light enables
identifying the skin malformation, while the distribution of skin chromophores is estimated from the
reflected or scattered RGB lights. Thee different smartphones were tested both in vitro and in vivo to
estimate the Hemoglobin index (HI) and the Melanin index (MI). Both HI and MI reportedly increased
in the in-vitro test with the concentration of absorbents in the phantoms. In vivo tests further showed
the Hemangiomas and the Nevi having higher HI and MI, respectively compared to the healthy skin.
Although the results achieved from all the smartphones were promising, they lacked consistency to
some extent, which was attributed to the built-in automatic camera settings such as white balance, and
ISO of some smartphones, and the difference in spectral sensitivities of the cameras.

A smartphone-based miniaturized (92× 89× 51 mm3) multi-spectral imaging (MSI ) system, which
is somewhat similar in principle to the approach in Reference [95] was implemented in Reference [90]
to facilitate portable and low-cost means of skin disease diagnosis. Instead of using four different LEDs
as in Reference [95], the system exploits the smartphone’s flashlight, nine narrow-band band-pass
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filters, and a motorized filter wheel to periodically obtain light of different wavelengths, which
along with a plano-concave lens, a mirror, a 10× magnifying lens, and two linear polarizers are
housed in a compact enclosure. An Android application (SpectroVision) was developed to control a
custom interface circuit, perform multispectral imaging and analyze skin lesions. By controlling the
motorized filter remotely via Bluetooth, the application captures nine images at different wavelengths
ranging from 440 nm to 690 nm and one white-light image. The captured images are sent to a skin
diagnosis/management platform over WiFi or LTE, where further processing of the images such as
gray-scale conversion, shading correction, calibration and normalization is performed. A quantitative
analysis of the nevus regions using the system was performed. In addition, quantifying acne lesions
using ratio-metric spectral imaging and analysis was reported, thus demonstrating the potential of the
system in diagnosing and managing skin lesions.

In order to capture the cellular details of human skin with a smartphone, a low-cost and
first-of-its-kind confocal microscope was developed and used in Reference [97]. A two-dimensional
confocal image of the skin was obtained by using a slit aperture and a diffraction grating, thus avoiding
any additional beam scanning devices. The diffraction grating spread the focused illumination
line on different locations on the tissue with different wavelengths. The authors reported observing
characteristic cellular structures of human skin, including spinous and basal keratinocytes and papillary
dermis with a lateral and axial resolution of 2 µm and 5 µm, respectively. However, in comparison
to commercial systems, the designed system has a shallow imaging depth, which can be attributed
to the use of slit aperture and a shorter wavelength (595 nm) light source of the smartphone device.
In addition, the low illumination efficiency limits the imaging speed to only 4.3 fps. A light source of
longer wavelength and enhanced coupling with the illumination slit [98] may improve the imaging
depth and speed. Nevertheless, the small dimension (16 × 18 × 19 cm3) and low cost ($4200) of such a
high-resolution imaging system may enable the system to be used in rural areas with limited resources
for standard histopathologic analysis.

A smartphone-based system named DERMA/care was proposed in Reference [99] to assist in
the screening of melanoma. An inexpensive and small dimension (6 cm × 4 cm × 2 cm) off-the-shelf
microscope was mounted on the camera of the smartphone for capturing high-resolution images of the
skin. In addition, a mobile application that can extract some characteristic features from the image of
the affected skin was developed. The application was used to extract textural features such as entropy,
contrast and variance, and geometric features such as area, perimeter and diameter. The features were
then fed to a support vector machine (SVM) classifier to enable automatic classification of skin lesions.
In another work, a multi-layer perceptron (MLP) was employed on a smartphone to analyze skin images
captured by its camera, thus enabling skin cancer detection [100]. A similar application was proposed
in Reference [101], which upon capturing the image of the skin, can alert the users about a potential
sunburn and/or the severity of melanoma. There a novel method to compute the time-to-skin-burn by
utilizing the information of burn frequency level and UV index level was introduced. Additionally, for
dermoscopic image analysis, a system for the smartphones that incorporates algorithms for image
acquisition, hair detection and exclusion, lesion segmentation, feature extraction, and classification
was developed. After excluding the hair and identifying the ROI, a comprehensive set of features were
extracted to feed to a two-level classifier. The authors reported achieving high accuracy (>95%) in
classifying among benign, atypical, and melanoma images.

3.5. Mental Health Assessment

As mentioned earlier, present-day smartphones have a number of embedded sensors such as
accelerometer, GPS, light sensor and microphone. The data from these embedded sensors can be
collected passively with the smartphone, which coupled with the user’s phone usage information
such as call history, SMS pattern and application usage may potentially be used to digitally phenotype
an individual’s behavior and assess one’s mental health. For example, an individual’s stress level
or emotional state can be deduced from their voice while talking over the phone and recording the
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conversation with the smartphone’s microphone [102–104]. In addition, the accelerometer can provide
information about physical activity and movement during sleep. The GPS can provide information
about the location and thus the context and variety of activity. Therefore, the smartphone enables a
less intrusive and more precise alternative to the traditional self-reporting approach, and it may be
very useful in assessing the mental wellbeing of an individual.

Many researchers used the smartphone data to assess or predict an individual’s general mental
health such as social anxiety [105], mood [106,107] or daily stress level [108]. The GPS location data of
16 university students were analyzed in Reference [105], and it was reported that there was a significant
negative correlation between time spent at religious locations and social anxiety. The accelerometer
data along with device activity, call history and SMS patterns were analyzed in References [106]
and [107] to predict mood. A prediction model based on the Markov-chain Monte Carlo method was
developed in Reference [107] and it achieved an accuracy of 70% in mood prediction. In Reference [106],
personalized linear regression was used to predict mood from the smartphone data. In Reference [108],
by extracting device usage information and data from smartphone sensors (accelerometer, GPS, light
sensor, microphone), an attempt was made to determine the factors associated with daily stress levels
and mental health status [108]. There, researchers found a correlation between sleep duration and
mobility with the daily stress levels. They also found speech duration, geospatial activity, sleep
duration and kinesthetic activity to be associated with mental health status.

Some works in the literature also exploited the sensor data and usage information of the smartphone
to assess specific mental health conditions such as depression [109–114], bipolar disorder [115–119],
schizophrenia [119–122] and autism [123]. A significant correlation between some features of the
GPS location information and depression symptom was observed in Reference [111]. For example,
in Reference [114], the authors analyzed the data from the smartphone’s GPS, accelerometer, light
sensor and microphone as well as call history, application usage, and SMS patterns of 48 university
students. They observed that the students’ depression was significantly but negatively correlated
with sleep and conversation frequency and duration. Some researchers [109,110,112,113] attempted to
predict depression from the smartphone sensor data. In Reference [109], they predicted depression
based on the accelerometer, GPS and light sensor data from the smartphone. Both the support vector
machine (SVM) and random forest classifier were used in Reference [113] to predict depression from
the GPS and accelerometer data, as well as from the calendar, call history, device activity and SMS
patterns. However, the prediction accuracy in References [109] and [113] was only slightly better than
the chance. In Reference [110], only the GPS data was used to predict depression and with the SVM
classifier, moderate sensitivity and specificity of prediction were achieved. In Reference [112], both the
GPS data and the device activity information were exploited to predict depressive symptoms. Using a
logistic regression classifier for prediction, the authors achieved a prediction accuracy of 86%.

Some significant correlations between the activity levels and bipolar states were observed in
some individual patients, where the physical activity level was measured with the smartphone’s
accelerometer [115]. In Reference [119], the authors used data from the Bluetooth, GPS sensor and
battery consumption information of the smartphone to track an individual’s social interactions and
activities. There, they found that the data from these sensors are significantly correlated with their
depressive and manic symptoms. In References [116,117], the accelerometer and GPS data of the
smartphone were used to detect the mental state and state change of persons with bipolar disorder.
They reported detecting state change with 96% precision and 94% recall and achieved an accuracy
of 80% in state recognition [116]. Using additional information from the microphone and call logs,
the precision and recall increased to 97%; thus improving the reliability of the system. However, the
state recognition accuracy was somewhat reduced, which was attributed to the noisy ground-truth
and inconsistencies in the daily behavioral patterns of the participants [117]. In Reference [118], the
accelerometer and light sensor data of the smartphone, the call history and SMS patterns were exploited
in a generalized and a personalized model to predict the state among persons with bipolar disorder. A
precision and recall of 85% and 86%, respectively was achieved in state prediction.



Sensors 2019, 19, 2164 18 of 45

In Reference [120], a study on the feasibility and acceptance of passive sensing by smartphone
sensors among the people with schizophrenia was conducted. Persons with schizophrenia were mostly
found open to sensing with smartphones and two-thirds expressed interest in receiving feedback, but
a third expressed concern about privacy. The GPS location information was exploited to recognize
outdoor activities among people with schizophrenia and thereby to infer social functioning [121].
In Reference [122], the authors proposed a system called CrossCheck that used data from the GPS,
accelerometer, light sensor and microphone as well as call history, application usage, and SMS patterns
to predict the change in mental health among patients with schizophrenia. There, they collected
data from 21 patients and observed statistically significant associations between the patients’ mental
health status and features corresponding to sleep, mobility, conversations and smartphone usage. The
authors used random forest regression to predict the mental health indicators in the patients with
schizophrenia and reported achieving a mean error of 7.6% with respect to the scores derived from the
participants’ responses to a questionnaire.

Recently, Apple Inc.’s ResearchKit initiative launched a mobile application called “Autism and
Beyond” [123]. This application captures images of the users’ facial expressions in response to
standardized stimuli by the iPhone’s front-facing camera and analyzes these images using algorithms
designed for emotion recognition. This application can potentially identify individuals who are at risk
of autism and other developmental disorders. A large-scale trial is currently underway to assess the
validity and utility of this approach.

3.6. Activity and Sleep Monitoring Systems

Daily physical activities such as walking, running and climbing stairs involve several joints
and muscles of the body and require proper coordination between the nervous system and the
musculoskeletal system. Therefore, any abnormalities in the functioning of these biological systems
may potentially affect the natural patterns of these activities. For example, persons at the early onset of
Parkinson’s disease tend to exhibit small and shuffled steps, and occasionally experience difficulties
to start, stop and take turns while walking [22,124]. Additionally, due to gradual deterioration of
motor control with age, older adults are at high risk of fall and mobility disability. In fact, an estimated
10% (2.7 million) of Canadians, aged 15 years and over, suffered from mobility-related disabilities in
2017 [125]. Furthermore, falls in the older adults may cause hip and bone fractures, joint injuries, and
traumatic brain injury, which not only require longer recovery time but also restrict physical movement
thereby affecting an individual’s daily activities. In addition, fall-related fractures reportedly have a
strong correlation with mortality [124]. Moreover, nearly one-third (30%) of Canadian adults between
18 and 79 years of age were estimated to be at intermediate or high risk for sleep apnea [126], which is
often associated with high blood pressure, heart failure, diabetes, stroke, attention deficit/hyperactivity
disorder, and increased automobile accidents [127,128]. Therefore, quantitative assessment of gait, knee
joints and daily activities including sleep are critical in early diagnosing musculoskeletal or cognitive
diseases, sleep disorders, fall and balance assessment, as well as in the post-injury rehabilitation period.

Most existing activity monitoring systems rely on a network of cameras fixed at key locations in a
home [22,129]. Although such systems can provide comprehensive information about complex gait
activities, they are expensive and generally have a limited field-of-view. In recent years, there has been
a growing interest in using smartphone embedded motion sensors such as accelerometers, gyroscopes,
and magnetometers as well as location sensors such as the GPS sensor for real-time monitoring of
human gait and activities of daily living (ADL) [130–157]. These sensors measure the linear and
angular movement of the body, and the location of the user, which can be used to quantify and classify
human gait events and activities in real time. A general architecture of smartphone-based activity
monitoring is presented in Figure 9.
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Figure 9. General architecture of a smartphone-based activity monitoring system.

At the heart of an activity monitoring and recognition system is the classification or recognition
algorithm. However, signal processing techniques and extraction of appropriate features also
play critical roles in realizing a computationally efficient and reliable system. Signal processing
techniques may include filtering, data normalization and/or data windowing or segmentation.
Subsequently, a good number of key features from the statistical, temporal, spatial and frequency
domains are extracted to feed into the classification model. Table 3 presents a list of typical features
that are extracted from the motion signals. Finally, an appropriate classification model such as
support vector machine (SVM) [137,138,155,158,159], naive Bayes (NB) [136,149,155,156], k-means
clustering [138,149], logistic regression [134,155,156], k-nearest neighbor (KNN) [133,136,155,156,158],
neural network (NN) [140,141,143,151,152] or a combination of models [134,140,141,148,150] are
employed for activity recognition.

Table 3. Typical features extracted from motion signals [22].

Spatial Domain Temporal Domain Frequency Domain Statistical Domain
Step length Double support time Spectral power Correlation

Stride length Stance time Peak frequency Mean
Step width Swing time Maximum spectral amplitude standard deviation

RMS acceleration Step time Covariance
Walking speed Stride time energy

Signal vector magnitude (SMV) Cadence (steps/min) Kurtosis

The Manhattan distance metric was used in Reference [130] to compare the accelerometer data
of an average gait cycle from a test sample to three template cycles corresponding to three different
walking speeds. The authors attempted both statistical and machine learning approaches and the
highest accuracy (~99%) in classifying three different walking speeds was achieved with the support
vector machine (SVM). An important limitation of this approach is that it relies on the local peak and
valley detection to identify the gait cycles, but their consistency varies with walking speed and/or
style. A two-stage continuous hidden Markov model (CHMM) was proposed in Reference [131] for
recognition of human activities. Some subsets of optimal features were first produced by employing
the random forest importance measures. The static and dynamic activities were then distinguished by
applying the first-level CHMM, which was followed by a second-level CHMM for achieving a finer
classification of the activities with an accuracy of ~92%. In Reference [132], a fuzzy min-max (FMM)
neural network based incremental classification approach was used to learn activities, which includes
walking, ascending and descending stairs, sitting, standing, and laying. The authors then applied a
classification and regression tree (CART) algorithm to predict these activities and reported achieving
a recognition accuracy of ~96.5%. A voting scheme was adopted in Reference [134] to combine the
classification results from an ensemble of classifiers such as a J48 decision tree, logistic regression (LR)
and multilayer perceptron (MLP). These authors reported identifying four activities such as walking,
jogging, sitting and standing with an accuracy of more than 97%. However, the proposed approach
performed poorly in distinguishing between activities like ascending and descending stairs, where the
recognition accuracy reduced to ~85% and ~73%, respectively. In Reference [135], four smartphones
were attached to the waist, back, leg, and wrist and captured motion data from the accelerometer
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and gyroscope for activity measurement; humidity, temperature, and barometric pressure sensors
for sensing environmental parameters; and Bluetooth beacons for location estimation. A modified
conditional random field (CRF) algorithm was implemented on each unit to classify the activities
individually using a set of suitable features extracted from the preprocessed sensor data. The decisions
from each unit were then assessed based on their relevance to the body positions to finally determine
the activities. The authors reported identifying 19 daily activities including cooking, cleaning utensils
and using bathroom sink and refrigerator with more than 80% accuracy.

An orientation independent activity recognition system based on smartphone embedded inertial
sensors was reported in Reference [137]. The raw sensor data were processed by signal processing
techniques including coordinate transformation and principal component analysis. A set of statistical
features were extracted from the processed sensor signals, which is then fed to several classification
algorithms such as ANN, KNN and SVM to identify the same six activities (walking, ascending and
descending stairs, sitting, standing, and laying) investigated in References [131–133]. The authors
also presented an online-independent SVM (OISVM) for incremental learning that can deal with the
inherent differences among the measured signals resulted from the variability associated with the
device placement and the participants. There they reported identifying the activities with an accuracy
of ~89% using OISVM. In order to deal with the high computational costs associated with the machine
learning techniques for activity recognition, a hardware-friendly support vector machine (HF-SVM)
based on fixed-point arithmetic was proposed in Reference [138]. There the authors reported achieving
a recognition accuracy of 89%, which is comparable to the performance of the conventional SVM.

Some researchers [139–143,150–152] exploited more advanced techniques such as deep neural
networks for activity recognition. Unlike conventional machine learning approaches, these techniques
do not employ separate feature extraction and feature selection schemes. Rather, they automatically
learn the features and perform activity recognition simultaneously. In References [140,141], a deep
convolutional neural network (Convnet) was formed by stacking several convolutional and pooling
layers to extract key features from the raw sensor data. The Convnet, being coupled with multilayer
perceptron (MLP) can classify six activities as [131–133] with an accuracy of ~95%. By incorporating
additional features extracted from the temporal fast Fourier transform (tFFT) of the raw data, the
performance of the Convnet was found to improve by ~1%. The authors in Reference [142] implemented
an activity recognition system using a bidirectional long short-term memory (BLSTM)-based incremental
learning approach that exploits both the vertical and horizontal components of the preprocessed
sensor data to obtain a two-dimensional feature. Several such BLSTM classifiers were then combined
to form a multicolumn BLSTM (MBLSTM). The authors compared the performance of MBLSTM
with that of several classifiers such as SVM, kNN and BLSTM, and achieved the lowest error rate
(~15%) in recognizing seven activities that include jumping, running, normal and quick walking, step
walking, ascending and descending stairs. In Reference [150], a smartphone-based activity recognition
system was developed using a deep belief network (DBN). There the authors first extracted a set of
five hundred and sixty-one features from the motion signals following a signal processing step that
includes signal filtering and data windowing. A kernel principal component analysis (KPCA) was
then employed on these features and only the first one hundred principal components were fed into
the DBN while training the model for activity recognition. The authors reported achieving an accuracy
of ~96% in recognizing 12 activities that include standing, sitting, lying down, walking, ascending and
descending stairs, stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and lie-to-stand. However,
unlike most deep learning-based system, the approach in Reference [150] requires a stand-alone feature
extraction step, thus increasing the computational load. In general, the key issues associated with
the deep learning-based approaches are their high computational cost, making them unsuitable for
real-time applications, especially for devices with limited high-end processing capabilities.

Some researchers exploited smartphones for fall detection [144,145,157–162] and posture
monitoring [146,147]. In Reference [144], the angle between the longitudinal axis of the device
and the gravitational vector was continuously monitored using the smartphone embedded motion
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sensor. When this angle drops below a pre-determined threshold of 40◦, the system recognizes the
event as a fall. The proposed system, when worn on the waist, was able to distinguish a fall from a
normal body motion, i.e., lying, sitting, static standing and horizontal/vertical activities with high
accuracy. However, the system requires the phone to remain attached to the waist for fall detection,
which may not be comfortable or always feasible for users. A similar fall detection system was
implemented in Reference [145] where the smartphone was kept in the shirt pocket with its front side
facing the body in order to maintain consistency in the orientation of the sensors. The system monitors
the changes in the acceleration along the three directions and detects a fall if the change happens faster
than an experimentally established minimum time spent on performing normal activities of daily
living. However, no quantitative information regarding the accuracy of the system was provided
in both References [144,145]. In Reference [159], the authors proposed an SVM-based fall detection
algorithm. They used smartphone’s built-in accelerometer to record user’s motion data by placing the
phone in the front pocket of the shirt. The participants performed some activities of daily living (ADL),
and also some simulated fall events. The authors reported distinguishing fall events from non-fall
activities with high sensitivity (~97%) and specificity (95%). A detailed review of smartphone-based
fall detection systems was presented in References [161,162].

In Reference [146], the authors reported a smartphone-based posture monitoring application
named Smart Pose. The accelerometer data and facial images were captured simultaneously while
holding the smartphone and facing towards it. The pitch and roll orientation of the device, and thereby
the cumulative average of tilt angle (CATA) of the user’s neck is estimated, assuming the device’s
orientation correlates to and represents the position of the user’s neck. A bad posture is determined
when CATA exceeds an acceptable range of 80◦ to 100◦. The authors compared the performance of their
proposed system with a commercial three-dimensional posture analysis system and reported achieving
similar performance with the Smart Pose. An application named iBalance-ABF was proposed in
Reference [147] to assess the balance of the body and to provide audio feedback to the user accordingly.
The smartphone embedded accelerometer, gyroscope and magnetometer were used to determine the
tilt of the mediolateral trunk. When the tilt angle of the trunk exceeds an adjustable but predetermined
threshold, the system sends audio feedback to the user over the earphone. The smartphone, mounted
on a belt, however, needs to be attached to the back at the level of the L5 vertebra, which requires
assistance. Nevertheless, iBalance-ABF can be useful, particularly for older adults to improve their
posture and balance.

Applications based-on smartphone-sensors that facilitate monitoring of knee joints [162,163],
sleeping patterns [164–166] and sleep disorders [167] were reported. Table 4 summarizes several recent
smartphone-sensor based activity and sleep monitoring systems. In addition, it should be noted that
there are published research results that used external inertial measurement units (IMUs) for activity
recognition [7,22,142]. For example, the authors in Reference [143] combined the convolutional neural
network (CNN) and LSTM to form a deep convolutional LSTM (DeepConvLSTM) and used this
approach for activity recognition.The CNN can determine the key features from the signal automatically,
while the LSTM translates the temporal patterns of the signals into features. The authors reported
recognizing a complex set of daily activities with high precision (F1 score > 0.93). Smartphone
embedded motion sensors such as accelerometers, gyroscopes and magnetometers can replace these
external IMUs and achieve similar performance. However, in order to recognize a complex set of
activities, as it was reported in Reference [143], it requires several sets of IMUs/smartphones to be
attached at different parts of the body, which is not cost-effective and may not be practical.
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Table 4. Smartphone-sensor based activity monitoring systems.

Ref. Proposition Phone Sensors Experiment Protocol n Method Performance/Comment

[130] Human activity and
gait recognition

Samsung
Nexus S a,ω

• Subjects walked ~30 m for each of three different walking
speeds
• Smartphone in the trouser pocket
• Sampling rate: 150 sample/s

25

• Each gait cycle was detected
and normalized in length.
• Several distance metrics
between the test and template
cycle were calculated as features.
• Statistical analysis and machine
learning used for recognition.

• Gait recognition accuracy
89.3% with dynamic time
warping (DTW) distance
metric.
• Activity recognition
accuracy >99%.

[131] Human activity
recognition

Samsung
Galaxy S II a,ω

• University of California Irvine (UCI) Human activity
recognition (HAR) dataset
• Subjects performed an activity twice, with the phone (1)
mounted on the belt at the left side (2) placed according to the
user’s preference.

30

• Feature selection using random
forests variable importance
measures.
• Two-stage continuous HMM for
activity recognition.
• First and 2nd level for coarse
classification and fine
classification, respectively.

• Activity (walking,
ascending and descending
stairs, sitting, standing, and
laying) recognition accuracy
91.76%.

[132] Human activity
recognition

Samsung
Galaxy S II a,ω

• UCI HAR dataset
• Activities are: walking, ascending and descending stairs,
sitting, standing, and laying

30

• A hybrid model based on the
fuzzy min-max (FMM) neural
network and the classification
and regression tree (CART).

• Activity (walking,
ascending and descending
stairs, sitting, standing, and
laying) recognition accuracy
96.52%.

[133]

Evaluation of
hyperbox (HB) NN

for classifying
activities

Samsung
Galaxy S II a,ω

• UCI HAR dataset
• Five subsets of varying sizes (5%, 10%, 20%, 50% and 100% of
the dataset) were created for training purpose

30

• One HB is assigned for all
attributes of a class and has one
or more associated neurons for
class distribution.
• Points falling into (1) only one
HB are immediately classified (2)
overlapping regions of HBs use
the neural outputs for prediction.

• Performance was
comparable to SVM, decision
tree, KNN and MLP classifier.
• Activity (walking,
ascending and descending
stairs, sitting, standing, and
laying) recognition accuracy
75%–87.4%

[134] Human activity
recognition

Nexus One,
HTC Hero,
Motorola
Backflip

a
•Wireless sensor data mining (WISDM) dataset from
http://www.cis.fordham.edu/wisdm/dataset.php
• Sampling rate: 20 samples/s

36

• Extracted 43 features from the
mean and standard deviation of
acceleration, mean absolute
difference, mean resultant
acceleration, time between peaks
and binned distribution.
• A Voting scheme to combine the
results from the J48 decision tree,
logistic regression and MLP.

• Accuracy > ~97% (walking,
jogging, sitting and standing),
~86% (ascending stairs), and
~73% (descending stairs)

[156] Human activity
recognition iPod Touch a,ω •Measured activities: sitting, walking, jogging, and ascending

and descending stairs at different paces 16

• Evaluated different
classification models (decision
tree, multilayer perception, Naive
Bayes, logistic regression, KNN
and meta-algorithms such as
boosting and bagging) in terms of
recognition accuracy.

• Accuracy for sitting,
walking, and jogging at
different paces: 90.1%–94.1%
• Accuracy for ascending and
descending stairs:
52.3%–79.4%

http://www.cis.fordham.edu/wisdm/dataset.php
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Table 4. Cont.

Ref. Proposition Phone Sensors Experiment Protocol n Method Performance/Comment

[135]
Complex activity

recognition system
Samsung

Galaxy S IV
a,ω, P, T, H

(and
Gimbal
beacons)

• Four smartphones worn on the waist lower back, thigh, and
wrist.
• Participants performed 19 activities in 45 minutes according
to their own order of choice and repetition.

• Conditional random field (CRF)
based classification was
performed on each device
separately.

• Activity recognition
accuracy > 80%

• Final recognition was based on the result from the most relevant
device to that particular activity.
• 19 activities are: walk and run indoors, clean utensil, cook, sit
and eat, use - bathroom sink and refrigerator, move from/to indoor
to/from outdoor, ascending and descending stairs, stand, lie on the -
bed, floor, and, sofa, sit on the bed, floor, sofa, and, toilet.

[136]
A feature selection
approach for faster

recognition

Samsung
Galaxy S II a,ω

• UCI HAR dataset
• Activities are: walking, ascending and descending stairs,
sitting, standing, and laying.

30

• Data segmentation by sliding
window and extraction of time
and frequency domain features
• A hybrid of the filter and the
wrapper (FW) methods for
feature selection
• Performance verified by naïve
Bayes and KNN.

• Activity recognition
Accuracy, precision and
F1-score to 87.8%, 88.0% and
87.7% (with a,ω data)
• Significant reduction in
recognition time.

[137]
Algorithm for

Human activity
recognition

Google
NEXUS 4 a,ω • Subjects performed each activity twice for 30 s each, keeping

the device at five different orientations. 5

• Employed coordinate
transformation and principal
component analysis (CT-PCA) on
the data to eliminate the effect of
orientation variation.
• Used several classification
models for evaluation.

• Activity (static, walking,
running, going upstairs, and
going downstairs) recognition
accuracy 88.74% with
online-independent SVM
(OISVM)

[138] A hardware friendly
SVM for HAR

Samsung
Galaxy S II a,ω

• UCI HAR dataset
• Activities are: walking, ascending and descending stairs,
sitting, standing, and laying.

30

• Standard support vector
machine (SVM) with fixed-point
arithmetic for computational cost
reduction.

Activity recognition accuracy
~89% (similar to standard
SVM)

[139]
Unsupervised

learning for activity
recognition

Samsung
Galaxy Nexus

a,ω
• Smartphone was kept in a pants pocket for measurements
• n = 5 activities: walking, running, sitting, standing, and lying
down
• Each activity was performed for 10 min.

–

• Experiment 1: known n.
k-means, Gaussian mixer model,
and average-linkage hierarchical
agglomerative clustering (HIER)
were used for recognition.
• Experiment 2: unknown n.
Density-based spatial clustering
of applications with noise
(DBSCAN) along with three other
models used for classification.

• GMM achieved 100%
recognition accuracy when n
is known
• HIER and DBSCAN
achieved over 90%
recognition accuracy when n
is unknown.

• DBSCAN requires setting two parameters (eps and minPts) and
for other models, n was chosen based on local maxima of the Calin´
ski–Harabasz index (CH).
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Table 4. Cont.

Ref. Proposition Phone Sensors Experiment Protocol n Method Performance/Comment

[140,
141]

DNN for Human
activity recognition

Samsung
Galaxy S II

a,ω • UCI HAR dataset
• Activities are: walking, ascending and descending stairs,
sitting, standing, and laying.

30

• DNN was formed by stacking several convolutional and pooling
layers to extract discriminative features.

• Number of layers, number of feature maps, pooling and
convolutional filter size were adjusted to maximize test-accuracy
by ‘softmax’ classifier.
•Multilayer perceptron for final
recognition. • Accuracy: 94.79%–95.75%

[148] Human activity
recognition

Samsung
Galaxy S II and

Huawei P20
Pro

a,ω

• Smartphone was attached to the waist.
• Sampling frequency = 50 Hz
• 10,299 samples with Samsung Galaxy SII and 4752 samples
with Huawei P20

30

• An Ensemble Extreme learning
machine with Gaussian random
projection (GRP).
• GRP was used for the
initialization of input weights of
base ELMs.

Activity (sitting, standing,
laying, walking, walking
upstairs and downstairs)
recognition accuracies:
97.35% (Samsung), 98.88%
(Huawei)

[154]
Human activity

recognition

Samsung Galaxy Note I,
Motorola Droid,

• Collected 2 weeks of GPS data continuously
• Subjects prepared a journal of real-time information about
their everyday activities.

3

• A fuzzy logic -based approach
for classification. Classification accuracy: ~96%

• Location uncertainty improved by calculating the probabilities of
different activities at a single location.

Nokia N900 GPS • Recognized activities by a segment aggregation method while
adjusting for location uncertainties.

[149] Human activity
recognition

Samsung
Galaxy S 4 a,ω

• Free walk at a natural pace and run in a straight path,
maintain a standing position and minimize additional bodily
movement (25 s each).

1

• Feature set consisted of linear
acceleration, normal acceleration
and angular velocity.
• Naive Bayes and k-means
clustering for classification

Classification accuracy: 85%

[150]
Human activity

recognition
a,ω

• A database of 12 activities (standing, sitting, lying down,
walking, ascending and descending stairs, stand-to/from-sit,
sit-to/from-lie, stand-to/from-lie, and lie-to/from-stand).

–

• Extracted features were processed by a kernel principal
component analysis (KPCA) and linear discriminant analysis
(LDA).

• Deep belief network (DBN) for
classification.

Mean recognition rate: 89.61%
and
overall accuracy: 95.85%
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[151] Human activity
recognition Huawei Mate 9 a,ω • Activities were logged approximately 5–8 hours a day for 4

months 1

• A six-layer independently
recurrent neural network
(IndRNN) processed data of
different lengths and captured the
temporal patterns at different
time intervals.

Classification accuracy: ~96%

[152] Human activity
recognition

Samsung
Galaxy S II

a,ω, ф,
and P

• UCI HAR dataset
• Activities are: walking, ascending and descending stairs,
sitting, standing, and laying

30

• DNN-based subassembly
divides sensor data into various
motion states. The transformation
subassembly derives the intrinsic
correlation between the sensor
data and personal health.

• Accuracy: 95.9% with
unsupervised feature
extraction
• 96.5% with manual feature
extraction

[153] Walk@Work(W@W)-App
for HAR – a,ω • 1 h laboratory protocol and two continuous hours of

occupational free-living activities 17 (10F 7 M)

• Calculated agreement,
intra-class correlation coefficients
(ICC) and mean differences of
sitting time against the
inclinometer ActivPAL3TM, and
step counts against the SW200
Yamax Digi-Walker pedometer
for performance comparison.

• ICC: 0.85 for self-paced
walking, 0.80 for active
working tasks.
• ICC (free-living): 0.99, 0.92
with a difference of 0.5 min
and 18 steps for sitting time
and stepping, respectively.

[155] Human activity
recognition

Samsung
Galaxy S II a,ω, ф,

• Four smartphones attached to four body position: right
pocket, belt, right arm, and right wrist
•Measured activities: walking, running, sitting, standing,
walking upstairs and downstairs

4

• Data from three types of sensors
were evaluated in terms of
recognition accuracy using seven
classifiers (naïve Bayes, SVM,
neural networks, logistic
regression, KNN, rule-based
classifiers and decision trees).

• Best performance was
achieved using both
gyroscope and accelerometer
data together.
•Magnetometer data played
little role.

[147]

Balance analysis and
Audio Bio-Feedback

(ABF) system iPhone 4
a,ω, ф,

mic

• Smartphone was mounted on a belt.
• Subjects wore the belt on the posterior low back at the level of
the L5 vertebra and a pair of earphones, placed arms close to
the trunk, stood barefoot, with their eyes closed.

20 (11F and
9 M)

• Tilt angles and heading were
calculated from accelerometer
and gyroscope, respectively as
well as from the magnetometer.

–

• Kalman filter was used to correctly estimate the rotation angles
from the difference between the two previous estimates.
• Audio feedback sent through the mic when trunk orientation is
above a threshold.

• Subjects kept sway minimum in parallel feet (10 cm apart), tandem stance-positions, and 2 experimental conditions with and without ABF.
• Each experimental condition was performed in random order six times, each for 30 s.
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[144]
Fall detection and
notification system

Lenovo
Le-phone

a • Smartphone mounted on the waist –
• Extracted signal magnitude area (SMA), signal magnitude vector
(SMV) and tilt angle from the median filtered accelerometer data.
• Fall detection with a decision
tree-based algorithm.
• In case of a fall, a multimedia
messaging service (MMS) was
sent with time and location info.

• Performance comparison
not reported.

[145] Fall detection Samsung
Galaxy S III a • Collected acceleration data

• Detected a fall if the
acceleration along a direction
changed at a faster rate than that
in normal daily activities.

• Performance comparison
not reported.

[157]
Fall detection,
tracking and

notification system
– a

• Evaluated the tracking error range at two outdoors and one
indoor fall location.
• Tests conducted near a school and a subway station at three
periods of the day: 7:00–12:00, 12:00–18:00, and 18:00–24:00 to
evaluate the accuracy of tracking with mobile obstacles.

10

• Calculated accelerometer SMV.
• Rapid change in the SMV to a
large value indicated a fall.
• In case of a fall detected, the
GPS location of the smartphone is
communicated.
• The real-time location tracking
system used Google’s 3D
mapping services.

• Overall accuracy of the
location tracking system: < 9
m.
• Larger error range observed
between 12:00 and 18:00.
• High density of Wi-Fi
installations improves
location accuracy.

[158]
Fall detection and

daily activity
recognition

Sony C6002
Xperia Z,

Apple iPhone
4s

a,ω, ф

• Subjects kept phones in the right, left and front-pockets and
fall onto a 15 cm thick cushion.
• Activities: four types of fall (forward, backward, toward the
left and right) and ADL.

8

• Activities were classified using
supervised machine learning
(SVM, Decision tree, KNN and
discriminant analysis) algorithms.
• A fall is detected when SMV
goes above a threshold value
(24.2 ms-2).

• ADL (sitting, standing,
walking, laying, walking
upstairs and walking
downstairs) recognition
accuracy 99% with the SVM.

[159] Fall detection
algorithm Sony Z3 a

• Smartphone was placed in the front pocket
• Subjects performed six activities of daily living and six fall
activities

10 (7 M and
3 F

• Six features (SMV, sum vector excluding gravity magnitude, max
and min value of acceleration in gravity vector direction, mean of
the absolute derivation of acceleration in gravity vector direction,
and gravity vector changing angle) were derived from the
accelerometer data.
• SVM was used to classify fall
and non-fall events.

• 96.67% sensitivity, 95%
specificity

[160]

Fall detection based
on high-level fuzzy
petri net (HLFPN) HTC Desire S a

• Smartphone was placed in the thigh pocket
• Activities: Falls (forward, backward, vertical, and sideways)
and ADLs (walking, jogging, jumping, sitting, and squatting).

12 (7 F and
5 M)

• Calculated accelerometer SMV
and frequency of occurrences
from the accelerometer data.

• Fall detection accuracy 90%
with HLFPN

• Fuzzy degree was generated by substituting the calculated values
into the membership function formulated by the experiment.
• Final classification with HLFPN.

[163] Knee Joint ROM iPhone 6 a

• Dynamic knee extension ROM was measured three times
with an interval of 5 min.
• Phone was attached to the tibia
• An isokinetic dynamometer used to generate and measure
the knee motion for validation.

21 (M)

• A MATLAB program
automatically detected the
min/max values of knee extension
angles from the accelerometer
data.
• The difference between the min
and max values was calculated as
the dynamic knee extension
ROM.

• Highly correlated (rs =
0.899) and low error (~0.62◦)
wrt the commercial system
(Biodex System 4 Pro)
• Limits of agreement: −9.1 to
8.8 deg.
• ICCE between two methods
>0.862
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[164]
Assessment of

smartphone
apps for

measuring
knee range of

motion

–
Camera,

inclinometer
(a,ω, ф)

• Five measurements of knee range of motion
from each subject by a commercial system, two
apps - Goniometer Pro and Dr. Goniometer
• Goniometer Pro (by 5fuf5) and Dr. Goniometer
(by CDM S.R.L.) were based on smartphone
inclinometer and camera, respectively.

10
(5 F and

5 M)

• Goniometer Pro: attached to the
anterior of the thigh proximal to the
skin incision, and on the anterior of
the distal tibia distal to the skin
incision and knee flexion angle (θFx)
was derived by adding the two
measured angles.

• θFx by Dr. Goniometer was
clinically identical to θFx from the
commercial system, with a mean
difference of <1◦ and 1/50
difference >3◦

• Dr. Goniometer: calculated θFx by taking pictures from the lateral side of
the operated knee with markers virtually placed at the level of the greater
trochanter, the knee joint and the ankle joint.

[165]

An app Toss
‘N’

Turn (TNT) for
sleep quality
monitoring

Any Android
phone (version

4.0 +)

a, Mic, light
sensor, screen

proximity
sensor

• Subjects installed TNT in the phones and kept
it in the bedroom while sleeping and entered a
daily sleep diary every morning.
• TNT stores sensor data, data about running
processes, battery and display screen state in a
protected database on the phone.

27
(19 F and

8 M)

• The time-series sensor data were
divided into a series of
non-overlapped 10 min windows for
data analysis and feature extraction.
• Extracted 32, 122 and 198 features
associated with sleep detection, daily
sleep quality inference, and global
sleep quality inference, respectively.

• Classification accuracy: 93.06%
(Sleep state), 83.97% (daily sleep
quality), 81.48% (overall sleep
quality)

[166]

Best effort
sleep (BES)
model for

sleep duration
monitoring

Light sensor
and Mic
(+ Phone

usage)

• BES tracked six phone usage features (total
duration of phone-lock, phone-off, phone
charging, phone in darkness, phone in a
stationary state and phone in a silent
environment) on a daily basis for one week.

8

•Model assumption: Sleep duration
is a weighted linear combination of
six features.
•Weights are estimated using a
non-negative least-squares
regression.

• Sleep duration estimation error
range: ± 42 min
• Estimated duration is close to
commercial wearable systems.

[167]
Sleep

monitoring
system

iPhone a

• Subjects recorded data for at least four
consecutive nights using both the ActiGraph,
attached to the non-dominant wrist and the
smartphone, placed close to the pillow.

13
(4 F and

9 M)

• Four sleep measures (sleep onset
latency (SOL), total sleep time (TST),
wake after sleep onset (WASO), and
sleep efficiency (SE%)) are extracted
from both systems.

• Satisfactory agreement with the
ActiGraph for all sleep
parameters except for the SOL.

[127]
Contactless

Sleep Apnea
Detection

Samsung
Galaxy S4

Phone speaker
and

micro-phone

• The speaker transmits 18–20 kHz sound waves
and the microphone senses the reflections.
• Total of 296 hours of measurements
• Polysomnography (simultaneously done EEG,
EMG, airflow, SpO2, electrooculogram) was
conducted for performance comparison.

37
(17 F and

20 M)

• Employed FMCW (frequency
modulated continuous wave)
transmissions to isolate reflections
arriving at different times.
•Mapped the human body-specific
arrival times of the reflected signals
to carrier frequency shift, allowing
for extracting the amplitude changes
due to breathing.
• Reflection patterns of
non-breathing movements are
different than breathing movements.

• Highly correlated (correlation
coefficient of 0.9957, 0.9860, and
0.9533 for central apnea,
obstructive apnea and hypopnea,
respectively) with the ground
truth
•Average error (rate of apnea and
hypopnea events) < 1.9 events/h.

a: accelerometer,ω: gyroscope, P: pressure sensor, T: temperature sensor, H: humidity sensor, ф: magnetometer, n: number of subjects.
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3.7. Hearing Impairment Monitoring Systems

According to the World Health Organization (WHO), 6.1% of the world’s population including
one-third of the adults aged 65 or above suffer from different levels of hearing loss [168]. Moreover, the
number of people with disabling hearing impairment is estimated to grow rapidly over the coming
years, reaching 630 million by 2030 and over 900 million in 2050 [168]. Hearing impairment at mild to
moderate level may cause people to lose 50%–70% of speech in the noisy environment [169–171] and
can degrade a person’s quality of life, if not corrected [171,172]. Generally, a hearing test is performed
by the pure-tone audiometry (PTA) to determine the hearing threshold levels of an individual based
on the patients’ feedbacks to pure tones stimuli. Therefore, PTA is usually recommended for patients
over five years of age i.e., old enough to follow the test procedures [173]. In addition, PTA requires
trained personnel, special infrastructure and arrangements to keep the ambient noise levels low during
the test and regular maintenance of the systems to ensure high precision and accuracy in the test
results [174,175]. Consequently, hearing care services are expensive and so are scarce, particularly
in developing and lesser-developed countries. Fortunately, smartphone-based hearing assessments
applications can provide a low-cost and faster alternative to conventional hearing screening procedures.

In Reference [176], a smartphone application for hearing loss screening called uHear was evaluated
in twenty-six subjects aged 84.4 ± 6.7 years. The result was compared with respect to that obtained
from a standard portable audiometer as well as from the participants’ feedback obtained through a
questionnaire. For most frequencies, the pure tone thresholds for the uHear application were found to
be higher than the audiometric thresholds (40 dB), which was attributed by the authors to the poor
quality of the earbuds, causing leakage of audio signals and penetration of ambient noise to the ear
canal. However, 92% of the test results from the application were found to be in agreement with that
obtained from the audiometer, resulting in a screening sensitivity and specificity of 100% and 60%,
respectively. Another such application, HearScreen™ was investigated in References [177,178] for
assessing hearing loss. In Reference [177], the HearScreen™ application was operated by community
health workers (CHW) to perform community-based screening of hearing loss through home visits
over a period of 12 weeks. The referral rates by HearScreen™were reported to be 12% and 6.5% for
children (2–15 years) and adults (16–85 years), respectively. Although the authors in Reference [177]
reported receiving positive feedbacks from the CHWs about the application in terms of its usability,
screening time, and community need, the sensitivity and specificity of the application were not verified.
However, the performance of HearScreen™ was investigated in Reference [178] with respect to a
clinical audiometer. There, they investigated HearScreen™ application to screen for hearing loss among
1,236 participants and validated the test results with clinical pure-tone audiometry. With HearScreen™,
the authors reported achieving high sensitivity (81.7%) and specificity (83.1%) in screening for hearing
loss at an average screening time of around one minute.

A smartphone-based audiometer was presented in Reference [179] that used custom designed
hearing aids as the audio source. There, they implemented a program on the smartphone that
controlled the hearing aids over a low-power wireless communication medium to generate audio
stimuli. The generated audio signals showed a little variation of less than 0.5 dB hearing level (HL) at
all six frequencies (1 kHz, 2 kHz, 4 kHz, 8 kHz, 500 Hz and then 250 Hz) compared to the expected
values. The system was further tested on twenty subjects with different degrees of hearing loss in a
sound-proof environment and verified with respect to a conventional audiometer. While assessing
hearing-loss severity at different levels, the proposed system demonstrated little difference (<6 dB
HL on average) in the hearing thresholds with respect to the conventional audiometer. Owing to the
systems significantly reduced (50%) screening time, high portability and low cost in comparison to
the conventional audiometers, the system can, therefore, be very useful and effective for hearing loss
screening at point-of-care diagnostics in rural and urban areas.

A detailed review of some ear and hearing assessment applications was presented in
Reference [180]. Only a small subset of all these applications was reported to have been investigated
by peer-reviewed studies and the reported performance of these applications in terms of screening
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accuracy, referral rates, sensitivity and specificity varied across the studies. Nevertheless, even though a
smartphone based system may not determine the degree of hearing loss as accurately as a conventional
audiometer, it may be useful and effective for faster initial screening for hearing loss at home or at
primary healthcare centers in the rural and urban areas of developing and least-developed countries.

To assist hearing-impaired people, hearing aids are generally prescribed by the physicians.
Hearing aids amplify the audio signals entering the ears, thus improving the audibility of the sound.
Smartphone-based hearing aids can allow the users to control the volume and frequency-gain response
as per their comfort level, thereby making them a viable alternative to conventional hearing aids.
In Reference [181], the feasibility of smartphone applications based hearing aids was studied on a group
of people aged between 50 and 90 years with mild-to-moderately severe hearing loss, who had been
using hearing aids for less than 3 months. The participants used a conventional hearing aid and two
smartphone apps, EARs and microphone, each for 2–3 weeks. While using the smartphone apps they
attached an inline microphone to the shirt and in-ear headphones to the phone. From the electroacoustic
measurements and speech-in-noise test, the authors observed similar performance among all three
devices. However, the authors attributed the differences in the placement of microphones in the
hearing aid compared to the smartphone apps for similar speech-in-noise performance. In addition,
the participants overall showed greater satisfaction with smartphone applications compared to the
hearing aids.

A smartphone-based hearing assistive system was presented in Reference [182] to assist people
with mild-to-moderate hearing loss. The application (SmartHear), picks up the speaker’s voice by the
smartphone’s microphone, converts the analog signal to pulse-code-modulated (PCM) digital signals.
The PCM signals are then transmitted over the Bluetooth medium to a receiver, which converts the
digital signal back to the analog domain and sends the analog signal to the ear through headphones.
The authors reported achieving an average improvement in speech intelligibility by 0.2 on a scale of
0–1 at four different noise levels and across four different audiograms for mild-to-moderate hearing
loss. However, unlike the traditional hearing aids, the smartphone’s microphone in the proposed
architecture resides near the speaker’s vicinity, which may not be always feasible for practical use.

4. Regulatory Policies

As smartphone-based health monitoring systems and applications are increasing rapidly and
becoming more pervasive in society, there is a growing concern about the safety issues and associated
potential dangers [183,184]. Concerns also remain among many researchers about whether and/or how
a regulatory policy would be adopted and enforced by the government bodies such as the US Food
and Drug Administration (FDA), and Medicines and Healthcare Products Regulatory Agency (MHRA)
in the United Kingdom (UK) [185,186].

Many experts [187–195] have raised questions about the accuracy and reliability of
smartphone-based health monitoring applications/systems, the vast majority of which reportedly
lacked enough involvement of medical professionals during the design and evaluation phases. For
example, in Reference [189], the authors studied and tested a dermatology app called ‘Skin Scan’, which
was found to recognize only 10.8% images correctly as high-risk melanomas against 93 clinical images
from the National Cancer Institute and Fitzpatrick’s Dermatology in General Medicine. Furthermore,
in January 2017, a team of researchers [196] conducted a search for suitable apps in the iTunes App
Store and Google Play that can assist people to deal with anxiety disorders and selected 52 apps for
study. They found that 63.5% (33 out of 52) of the apps were reported as having no information about
the intervention approach. In addition, no information related to the manufacturers’ professional
credentials were available for more than two-thirds (35 out of 52) of the applications. Only two
out of the 52 anxiety apps were found to be thoroughly tested by the psychiatrists [196]. Therefore,
cautious use of many of these applications was advised in References [190,192] due to their diagnostic
inaccuracies and unreliability. Some of them are reported to be unsafe to use [188,193,194] and even
may cause life-threating consequences [195]. Hence, adoption and enforcement of some regulatory
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policies were recommended by the experts [187,191] to ensure accountability, data-privacy, information
security and patient welfare in terms of safety and diagnostic effectiveness.

Following the FDA’s release of a draft guideline for regulating mobile medical apps in 2011, key
experts in this industry expressed their expectations regarding the policies for medical apps [197].
These experts urged the FDA to draw a clear demarcation line between the medical apps and the
fitness or wellness app, as well as between diagnosing apps and monitoring apps. They recommended
for defining the risk-level threshold of regulatory significance for medical apps. They also suggested
defining the boundaries of FDA regulations for apps serving as device accessories and making a
guideline to deal with the modular applications. In February 2015, the FDA released the latest
version of the guidelines defining the categories of smartphone-based healthcare applications that
must require regulatory oversight [198]. According to the guideline, FDA will regulate only those
medical applications that can turn a smartphone into a medical device such as ophthalmoscopes and
dermatoscopes using external and/or internal sensors and devices. Regulatory oversight will also be
applied to those applications that can be used as an accessory to the FDA-approved medical devices
such as a smartphone-based ECG monitor. In short, regulatory oversight from the FDA is required
if any application that can possibly affect the ‘performance or functionality’ of the FDA-regulated
medical devices, and thus may pose a risk to patient safety. However, some mobile applications,
although being a medical device by the definition, enjoy “enforcement discretion” as they pose a low
risk to patients [198]. Regardless, all high-risk class III devices and about 75% of medium-risk Class II
devices require clinical trials and/or other evidence to demonstrate their safety and compliance with the
intended operation [184]. However, if a device demonstrates substantially similar performance to an
already approved and legally marketed device (predicate device), it may enjoy an exemption from new
clinical trials upon proper evidence that shows the device has same intended use and technological
characteristics as the predicate device [199]. In the case when the new device has different technological
characteristics in terms of device safety and effectiveness—first, it must not raise any new concerns,
and second, it must meet the minimum standards of the predicate device [199]. Nevertheless, there
remain serious concerns about safety assurances in the process of device approval based on predicate
devices. Therefore, both the Institute of Medicine [200] and the U.S. Congress [201] understandably
urged to curtail this approach of device approval. So far, the FDA has approved several healthcare
applications developed for the mobile platform [202]. The diagnostic radiology app ‘Mobile MIM’ is
the first such application ever available in iTunes stores [203]. This app allows a healthcare professional
to view, assess and securely share images with patients, peers or partner institutions, thus reducing
diagnosis and treatment delay. KardiaMobile (AliveCor, Inc.) is another FDA approved device that
comes with an application, which can turn a smartphone into a portable single-lead electrocardiogram
(ECG) machine [204]. Other FDA approved healthcare apps for smartphones include the iExaminer™
(Welch Allyn, Inc.) adapter for PanOptic™ Ophthalmoscope [205], BlueStar® (WellDoc, Inc.) for type
2 diabetes management [206], and ResolutionMD® (PureWeb Inc., Calgary, Canada) for viewing and
assessing diagnostic images [207].

In Europe, according to the EU Medical Device Directive MDD 93/42/EEC [208], published on
14 June 1993 and amended in the Directive 2007/47/EC [209], any stand-alone or combination of
‘instrument, apparatus, appliance, software, material or other article’ intended for healthcare purposes
including diagnosis, monitoring, prevention and treatment will be considered be as ‘medical device’.
Therefore, most smartphone-based healthcare applications including those that monitor and assess
cardiovascular health, eye and skin health through imaging, and lung health, will fall under the
umbrella of ‘medical device’ and thus require Conformité Européenne (CE) certification for marketing
the product within the European Economic Area (EEA). The CE certification or ‘CE marking’ ensures
the product’s conformity with the health, safety, and environmental protection standards set by the
EU’s harmonization legislation [210]. For example, an Irish app ONCOassist™ [211] was designed as a
decision support tool for professional oncologists at the point-of-care and incorporated prognostic
tools, drug interaction checker, survival rate predictors for diseases such as breast cancer, colon cancer,
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and lung cancer. In addition, this app also incorporated some algorithms to determine, for example,
liver cirrhosis severity, level of consciousness, the prognostic score for patients with advanced Hodgkin
lymphoma and appropriate dosage of chemotherapy agents based on patient’s body surface area (BSA)
and thereby, was considered as a medical device. ONCOassist™ received the CE certification in 2013
and displays the CE mark on its welcome screen.

A new medical device regulation (MDR) [212] (EU) 2017/745 was published in the Official Journal
of the European Union repealing the MDD 93/42/EEC on 5 May 2017. The new MDR brings previously
unregulated non-medical and cosmetic devices under the umbrella of ‘medical device’, with many
of them being reclassified as medium to high risk (such as class IIa, IIb and III) devices. The other
key changes in the MDR over the MDD includes inclusion of medical purpose devices and active
implantable medical devices (AIMD), requirements for the manufacturers to update clinical data,
technical documentation, and labeling; and generate and provide detailed clinical data to validate
safety and performance claims and enforce unique device identification (UDI) for tracking. A wider
range of smartphone-based commercial healthcare apps will now be defined as the ‘medical devices’
according to the MDR that require the manufacturers, and app development companies to revisit their
safety and quality control processes to ensure compliance with the new MDR, that is scheduled to be
enforced on May 26, 2020. Although these changes are meant to ensure a much safer, transparent and
sustainable regulatory framework for the consumer, changeover on such a scale in a limited timeframe
is a mammoth task for manufacturers and regulatory bodies to achieve. Furthermore, the scheduled
parting of the United Kingdom (UK) from the EU—popularly termed as ‘Brexit’—is causing more
confusion for the manufactures to this already highly challenging task. It was unclear whether the UK
would comply with EU regulations [213]. However, the UK Government, on 4 July 2017, vowed to
work closely with the EU in terms of medicines regulation to ensure public health and safety even after
leaving the EU [214]. In a recent statement, the UK’s Department of Health and Social Care declared
that it will comply with the key elements of the MDR and recognize all medical devices approved for
the EU market and CE-marked after leaving the EU, in the case a no Brexit deal is reached [215].

Currently, the Medicines and Healthcare Products Regulatory Agency (MHRA) of the UK complies
with the existing Medical Device Directive (MDD) and defines any healthcare app or software as
a ‘medical device’ based on the functionality or service it provides to the users and the associated
risks in terms of patient’s safety [216]. According to the MHRA, an app/software is most likely to be
considered as a ‘medical device’ if it is designed to perform some calculations or run some algorithms
on the raw data to detect, diagnose and prevent disease, or to monitor the course of a disease or injury.
Apps that are intended for archiving records without modification, providing existing information,
and making general recommendations for an expert’s advice, can safely be excluded from ‘medical
devices’ category. However, if the decision-support apps perform some calculations or interpret or
interpolate the data and do not allow the clinicians to review the raw data, then such apps/software are
highly likely to fall into the ‘medical device’ category. Apps that perform simple and straightforward
calculations to track physical fitness such as heart rate, step-count or BMI (body mass index) are
not considered as ‘medical devices’. However, apps/software that perform complex calculations, for
example, to determine medicine doses can potentially fall into the high-risk class III ‘medical device’
category [217–219]. The MHRA recommends the users to use a CE marked medical purpose app to
ensure user safety.

In order to receive a ‘CE mark’ for the medical purpose apps—a ‘medical device’ by the MDD
93/42/EEC—the manufacturers need to identify the class of the device based on the perceived risk
associated with it and select the corresponding conformity assessment procedure. The conformity
assessment procedure ensures tighter control to be applied to the device in case the perceived risks
associated with it is higher. Next, the manufacturer prepares a document that generally includes the
technical details about the design and manufacturing process of the device as well as the intended
operation of the product to demonstrate the product’s compliance with the MDD 93/42/EEC. For a
low-risk i.e., class I device, the manufacturer can self-declare the device’s compliance with the Directive.
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For class IIa devices, manufacturers must also declare the device’s compliance with the corresponding
regulatory requirements of the Directive. Additionally, class IIa devices as well as class IIb and class III
devices must require a notified body (NB) to carry out a detailed conformity assessment and receive
a ‘Declaration of Conformity’ certificate from the NB to submit as an evidence of the app/software’s
being compliant with the MDD 93/42/EEC [208].

However, it was argued in a report to the U.S. Congress of the Global Legal Research Center
that the ‘CE mark’ on a medical device does not necessarily ensure the quality of the device in
terms of its performance and clinical effectiveness, rather it merely shows its compliance with the
EU legislation [220]. Medical devices in the EU are approved based on the safety and performance
standards, and demonstration of the devices’ clinical efficacy is not required by the MDD [184].
However, the new MDR, which is scheduled to be in force in 2020 has put more emphasis on clinical
trials and evidence [212]. On the other hand, the US Food and Drug Administration (FDA) requires the
devices to ensure not only the safety and performance but also their clinical efficacy [221]. Furthermore,
only one organization, the FDA, governs the entire process of device approval in the US. While this
ensures better surveillance on the regulatory processes, however, often it turns out to be an expensive,
rigid and lengthy process for manufacturers [222]. In contrast, in the EU, the manufacturers can flexibly
appoint one of the many EU approved private, for-profit ‘notified bodies’ to assess and approve the
devices in terms of regulatory standards, thus expediting the process for obtaining a ‘CE’ mark, but
this may be, at a potential risk of compromised safety [223,224]. In addition, some ’high-risk medical
devices developed, for instance, by an academic institution, can likely be distributed through/among the
associated entities for non-commercial use without a CE mark, whereas in the US, prior FDA-approval
is an absolute necessity before distribution [225]. However, the approval process of medical devices
based on the predicate device and without rigorous new clinical evidence can deter the manufactures
to carry out expensive and time-consuming clinical trials, which not only raise concerns in terms of
device safety and efficacy but also may lessen the scope of device improvement and innovation [225].

While the US and the EU represent 40% of the global markets for medical devices [226], other
markets such as Canada, Australia, and Japan have their own regulatory bodies to enforce regulatory
policies for medical devices. Health Canada, for example, categorizes the medical devices into four
classes from Class I to Class IV based on the risks associated with the devices [227]. Prior to marketing
a medical device in Canada, the manufactures or the distributors must apply for and receive the
Canadian Medical Device License (MDL) for class II, III, and IV devices and the Medical Device
Establishment License (MDEL) for class I devices [227]. However, the information required to file an
application for Health Canada approval is approximately the same as that required in the US and
EU [228]. On the other hand, Australia’s Therapeutic Goods Administration (TGA) relies mostly on the
EU regulations and CE mark certification from the European NBs before granting approval to market
medical devices there [229]. Recently, Australia’s TGA decided to begin recognizing registrations and
certifications from additional foreign medical device regulators including US FDA, Health Canada, the
Japanese Pharmaceutical and Medical Devices Agency (PMDA) [230].

In 2014, the International Medical Device Regulators Forum (IMDRF) launched the Medical
Device Single Audit Program (MDSAP) pilot to develop an efficient and standardized global directive
to auditing and monitoring medical devices [231]. The regulatory bodies participating in this program
include TGA of Australia, Agência Nacional de Vigilância Sanitária (ANVISA) of Brazil, Health Canada,
the U.S. FDA, and the Ministry of Health and Labor and Welfare (MHLW) of Japan, while the EU
participated as an observer [231]. TGA has recently decided to recognize registrations and certifications
from MDSAP auditing organizations [230]. Starting in January 2019, Health Canada also planned
to discard the Canadian Medical Device Conformity Assessment System (CMDCAS) and replace it
with the MDSAP certification. In fact, Health Canada urged the MDL holders to submit evidence for
MDSAP transition from CMDCAS and/or MDSAP certificates by the 31st December 2018 [232].
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5. Conclusions and Research Challenges

In this paper, we have presented a state-of-the-art survey on health and activity monitoring
systems that exploit the embedded sensors in smartphones for measuring physiological parameters
and tracking health conditions. The ubiquity of smartphones has grown enormously in the past decade.
In addition, the significant advances in sensor technologies in terms of size, cost, energy requirements
and sensitivity has enabled the integration of a number of sensors into present-day smartphones.
The embedded sensors in smartphones such as the image sensor, microphone, ambient light sensor
and motion sensors coupled with modern high-speed data transfer technologies may assist people
to lead an independent and active life while ensuring non-invasive monitoring of their health and
physical well-being in a regular fashion without adding much to their personal expenses.

Monitoring the health of the heart, eye, respiratory systems and skin, as well as the activities of
daily living (ADL) and mental conditions in a continual fashion, can provide detailed information about
an individual’s overall health and wellbeing over a prolonged period of time. The smartphone and
its embedded sensors coupled with present-day information and communications technologies have
opened a new window of opportunity for cost-effective remote healthcare services. The raw medical
data thus obtained by the smartphone sensors can be sent over the internet to a remote healthcare
facility for detailed investigation. Furthermore, the incredible improvements in the processing and
data storage capabilities in the modern-day smartphones may allow for faster, real-time and onboard
execution of complex predictive algorithms and/or artificial intelligence (AI) technologies using the
high-volume of raw data measured by the smartphone sensors. Thus, smartphones may play an
incredible role in enabling a low-cost solution for early diagnosis through continuous monitoring,
initial screening of diseases such as melanoma, and diabetic retinopathy and remote monitoring of the
progression of some diseases.

Owing to the high market penetration and ever-increasing computational capabilities of
smartphones, there have been growing interests among the researchers and the manufacturers
in building smartphone-based devices for healthcare and wellness purposes. However, there remain
some key challenges that need to be addressed prior to achieving a global acceptance of smartphones
as medical devices.

First, most of the works reported in the literature are based-on nonrandomized, non-blinded
studies on a limited number of subjects using a proof-of-concept device. Further, the limited size and
possible bias in the samples implies that the universal efficacy of the devices is still a critical concern.
Therefore, rigorous clinical trials are required to evaluate the safety and efficacy of the proposed
smartphone-based ‘medical’ devices.

Second, although major regulatory bodies have their own guidelines for a medical app to be
considered as a ‘medical device’, the boundaries between the fitness and wellness apps and the medical
apps remain ambiguous, particularly in a situation when the self-monitoring thorough a fitness app is
integrated within the patient care and treatment scheme. These blurred boundaries need to be resolved
to safeguard the users from possible harmful consequences.

Third, unlike the US Food and Drug Administration (FDA), the intermediate- and high-risk
devices in the EU require an authorized private and for-profit third-party organization called the
‘Notified Body’ (NB) to assess and certify the device’s compliance with the corresponding directive.
Although this process offers more flexibility to the manufacturers and reduces unnecessary delay in the
approval process, it is, however, subject to the risk of compromised safety owing to varying standards,
pricing and work ethics of different NBs.

Fourth, approving a medical device based on a predicate may cause safety concerns and was
therefore criticized by some experts. It was argued that some predicates were in the market even before
any regulatory policies were implemented. Some predicate devices were never tested on humans and
some were even recalled voluntarily from the market due to their poor performance, thus questioning
the credibility of the predicate itself. In addition, this process of device approval encourages the
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manufacturers to evade the expensive and time-consuming but critical clinical trials before bringing
the product in the market.

Fifth, among the abundant number of healthcare and wellness apps published to-date, the user is
often left perplexed in finding and using the most appropriate and safe one, specific to his/her needs.
A centralized database or a dedicated app store of approved medical apps can be of immense benefit
for both product developers and consumers. The centralized system, similar to other app stores, can
serve as a common platform for both the users and the developers. It can also review and recommend
the apps based on the quality, reliability, medical effectiveness, safety, privacy and value-for-money.

Sixth, in order to ensure widespread acceptance of the smartphone-based health monitoring
devices/apps among the users, these devices/apps need to be affordable, easy-to-use, and compatible
with the most mobile operating systems as well as smartphones from different manufacturers.
Therefore, more research and development efforts are needed to improve the systems’ ease-of-use
and pervasiveness.

Seventh, one of the major concerns for smartphone-based healthcare systems is associated with
the privacy and security of any sensitive medical information. However, to date, most publications
either did not address these critical issues or did so in a cursory manner. Therefore, more efforts are
needed to develop and implement robust algorithms to ensure data privacy and information security.
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