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Abstract: The study focused on a method of detection for bee colony infestation with the Varroa destructor
mite, based on the measurements of the chemical properties of beehive air. The efficient detection
of varroosis was demonstrated. This method of detection is based on a semiconductor gas sensor
array and classification module. The efficiency of detection was characterized by the true positive rate
(TPR) and true negative rate (TNR). Several factors influencing the performance of the method were
determined. They were: (1) the number and kind of sensors, (2) the classifier, (3) the group of bee colonies,
and (4) the balance of the classification data set. Gas sensor array outperformed single sensors. It should
include at least four sensors. Better results of detection were attained with a support vector machine (SVM)
as compared with the k-nearest neighbors (k-NN) algorithm. The selection of bee colonies was important.
TPR and TNR differed by several percent for the two examined groups of colonies. The balance of the
classification data was crucial. The average classification results were, for the balanced data set: TPR = 0.93
and TNR = 0.95, and for the imbalanced data set: TP = 0.95 and FP = 0.53. The selection of bee colonies
and the balance of classification data set have to be controlled in order to attain high performance of the
proposed detection method.
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1. Introduction

Honey bees have an essential role in nature that goes beyond the production of honey and beeswax.
They play a vital role in the environment by pollinating both wild flowers and many agricultural
crops. The honey bee population has strongly declined in recent years [1] due to a combination of
multiple stresses, including diseases, pathogens and pesticides. Bees, like all animals including humans,
are susceptible to viruses (e.g., deformed wing virus, Israeli acute paralysis virus, Kashmir bee virus,
Black Queen cell virus and Sacbrood); bacteria (e.g., American foulbrood and European foulbrood); fungi
(e.g., Chalkbrood and Stonebrood); microsporidian parasite (e.g., Nosema apis and Nosema cearanae);
parasitic mites (e.g., Tracheal mites (Acarapis woodi), Varroa mites, and Varroa mites resistant to
fluvalinate and coumaphos); and insect pests (e.g., wax moth, and small hive beetle) [2–5].

A bee colony has defense mechanisms, but sometimes they are too weak. In this situation, insects
need help from a beekeeper. An essential part of beekeeping is the inspection of colonies for bee
diseases. Early signs of infection normally go unnoticed; they only become apparent when infection
is high. Early diagnosis of disease can prevent the losses of bee colonies across wider areas. Hence,
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beekeepers should be able to recognize bee diseases and parasites and to differentiate the serious
diseases from less important ones. Observation is a crucial part of beekeeping [6].

Varroosis is the most destructive disease of honey bees worldwide [5]. It is caused by
a Varroa destructor, an external parasite of adult insects and brood. This mite causes malformation
of the legs and wings. Adult bees affected with varroosis have shrunken abdomens. The Varroa
destructor mite can also act as a vector for viruses of the honey bee. Therefore, Varroa destructor
infestations often leave honey bee colonies weakened and more susceptible to other diseases. Mites
are spread to other colonies through drifting and robbing. Their high reproductive potential makes the
control of varroosis a considerable challenge for beekeepers. The Varroa destructor mite level may be
determined in a hive by monitoring natural mite fall, drone brood sampling or by using the ether roll
test. Detection by close examination of the brood or testing of the adult bees is not an easy task—it is
strongly subjective, time consuming and requires experience. Therefore, methods based on objective
and reliable measurements would be very useful in apiculture [7–11]. One possibility relies on:

• the detection of specific parameters being indicators of varroosis;
• the qualitative and quantitative analysis of air inside beehive.

The gaseous mixture inside a hive presents strong temporal variability, while being unique and
complex from the chemical perspective. Usually, the gas surrounding a honeybee colony is a mixture
of compounds emitted by the bees themselves (e.g., pheromones, other chemicals released to repel
pests and predators, metabolites, etc.), substances originating from hive stores (e.g., honey, nectar,
larvae, beeswax, pollen and propolis), and volatile compounds from the materials out of which hives
are constructed (wood, paint, plastic, etc.). The beehive atmosphere also contains compounds from
vehicles, farms, industries and households, which are emitted in the vicinity of the hive. Sometimes
bee diseases influence the indoor air surrounding a honey bee colony. For example, foulbrood is
a source of a characteristic odor and experienced beekeepers with a good sense of smell can detect the
disease upon opening a hive. In the case of the notorious varroa mites, it is known that they can change
their surface chemicals to match the developmental stage of their hosts. The potential change of the
chemical properties of the indoor air could be the basis for detection of varroosis. In the literature,
it is difficult to find information about the direct influence of Varroa destructor mites on the chemical
composition of the air surrounding bees inside the hive.

Today, there are a number of well-established methods that are capable of identifying and quantitating
the specific chemical species in complex gas mixtures. Infrared analyzers, Fourier-transform infrared
spectrometers (FT-IR spectrometers), or gas chromatographs with appropriate detectors (usually flame
ionization detector (FID) or tuned mass spectrometer (MS) or other mass-selective detector) offer a low
detection limit, good accuracy, sensitivity, and repeatability. In apiculture, these instruments have limited
application, as they are prohibitively expensive and thus impractical. The measurement process in this
instrumentation is time-consuming, labor-intensive and requires trained and experienced personnel. Usually,
these types of equipment cannot be used in field conditions. In addition, there are not any known chemical
compounds to be used as indicators of varroosis.

Shortcomings of the currently available instrumentation mean that new measurement strategies
are required. These could be based on a sensor technology. According to the current IUPAC
(International Union of Pure and Applied Chemistry) definition: “a chemical sensor is a device that
transforms chemical information, ranging from the concentration of a specific sample component to
total composition analysis, into an analytically useful signal” [12].

The method of the multicomponent gas mixture analysis is an important issue in sensor technology.
The measurements can be accomplished by adopting highly selective (specific) sensors or using devices
that are called and described as an electronic nose. The gas sensors produced nowadays do not allow
the identification and determination of the concentration of chemicals related to varroosis. In our
opinion, totally selective sensors based on key–lock interactions will not be constructed in the near
future. Therefore, we propose to use the electronic nose for detection of varroosis.
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The concept of the electronic nose (E-nose) was introduced in 1982 by Persaud and Dodd [13].
A formal definition of this device was published by Gardner and Bartlett in 1994. It states: “an electronic
nose is an instrument which comprises an array of electronic chemical sensors with partial sensitivity
and an appropriate pattern recognition system capable of recognizing simple or complex odors” [14].
The sensing elements are selected in such a way that they possibly respond to a wide range of volatiles.
The sensor array function is to generate a unique signature for each gas sample. The collective response
of partially selective gas sensors provides patterns, which can be translated into qualitative and
quantitative information regarding the composition of a gas mixture.

Chemical sensor arrays coupled with a pattern recognition unit have been demonstrated to be
highly effective tools for the discrimination of gas mixtures. Commercial E-noses began appearing
in the mid-1990s. Nowadays, most applications concern foods, drinks, cosmetics, biomedical uses,
pharmaceuticals, and the military industry, as well as environmental monitoring (characterization
of odors). In the last two decades, the possibility of applying E-noses in agriculture has become
an issue of increasing interest. The research effort is focused on sectors such as agronomy, biochemical
processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture,
pesticide detection, plant physiology, and pathology. The most common applications of electronic
noses in agriculture are related to:

• the monitoring of food quality [15–17];
• the identification of insect infestation and soil volatile fingerprints.

For example, early detection and classification of pathogenic fungal disease in post-harvest
strawberry fruit by electronic nose is presented in the paper [18]. The work [19] reviews electronic
noses as a fast and noninvasive approach for the diagnosis of insects and diseases that attack vegetables
and fruit trees. The particular focus is on bacterial, fungal, and viral infections, and insect damage.
The E-nose has successfully detected the different soil volatile fingerprints in each depth level and
insect pests [20]. Lan et al. reported the identification of insect by using the E-nose [21]. Electronic
noses were also proposed for the detection of:

• cotton damaged by Nezara viridula [22];
• insect infestation in wheat [23]; and
• insect infestation in paddy field [24].

New fields of E-nose applications are still sought for. Our work is focused on this research area.
Generally speaking, electronic noses for diseases diagnosis are in their early stage of development.
Many problems regarding sensor performance, sampling, and detection in field conditions, as well as
scaling up measurements are challenges and have to be solved.

The aim of this study is to show that a device based on the electronic nose concept can be used
for detection of varroosis infestation. It was assumed that the ability to identify early stages of insect
invasion has to be ensured. It should be noted that achieving this goal is challenging as chemical
indicators of varroosis are unknown. Additionally, the measurement equipment has to be inexpensive,
easy to use, and work in field conditions.

The rest of the paper is structured as follows. Section 2 focuses on the materials and methods
applied in the study. The device based on gas sensors is described, as well as the measurement procedure
applied during beehive monitoring. The investigated object—bee colonies—are presented. Emphasis is
put on the principle of colony categorization in respect to Varroa destructor infestation. The classification
approach applied to detect varroosis based on gas sensors responses is characterized. Several issued
are considered: data set balance, feature vector determination, classifier, and performance assessment
metrics. Finally, the scope of statistical analysis of classification results is indicated. Section 3 presents
the exemplary measurement data and the statistical analysis of the classification results. The influence
of the selected factors on the performance of the varroosis detection method is examined. The factors
are: (1) number and kind of sensors used as the source of the measurement data, (2) classifier, (3) choice
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of bee colonies, and (4) balance of the classification data set. Section 4 is dedicated to the discussion of
the obtained results. Final conclusions are formulated in Section 5.

2. Materials and Methods

Three principal issues in our work concern: the equipment and procedure of gas sampling from
the inside of the hive; the gas sensor array; and the pattern recognition unit with multivariate data
processing tools.

The conditions occurring inside a hive and honey bee behavior mean that a measurement device
should be located outside a beehive. Hence dynamic sampling was proposed. The insertion of the
sampling probe to the hive should be minimally intrusive, in order to avoid modifying the bees’
environment. In addition, the sampling procedure and materials used to perform this operation cannot
change the chemical composition of a gas sample.

The measurement potential of the sensor array depends on the number of gas sensors as well as
physical and chemical properties of these devices. It is difficult to determine precisely these factors, as
measurement conditions change greatly. It is difficult to take into account all circumstances. Hence,
a high flexibility in choosing the sensing element is recommended. The large number of gas sensors
can increase the discrimination abilities of the instrument and the value of the obtained information.
This is an important advantage, as the air inside a beehive is a multicomponent gas mixture. However,
too large a number of gas sensors has a negative impact on the pattern recognition process, e.g., it is
a source of redundancy. This also effects the energy consumption of the instrument, as well as the
size and weight. Alternative construction variants may be considered if number of sensors is small.
Based on our earlier experience, we decided to use six chemical sensing elements. This number should
ensure the suitability of the instrument performance in many various situations.

The commercial gas sensors available for E-nose systems can be divided, according to the working
mechanism, into five different categories. Usually the principle of operation is based on the conductivity,
gravimetric, electrochemical, thermal, or optical properties of the sensing material. Several criteria
were taken into account at the stage of selection of gas sensors. These devices have to respond
with different sensitivity not only to one target gas but to many other substances, especially volatile
organic compounds and water vapour. They should present cost-effectiveness, reliability, availability,
fast response, and recovery time, on-site operation, data acquisition in real time, high sensitivity,
detection limit at the level of ppm. In this study, we decided to use semiconductor metal oxide sensors
(MOS), because they fulfil many requirements mentioned above. Additionally, they are small and can
be elements of integrated circuits. The resistance responses of semiconductor gas sensors to the tested
gases are induced through the oxidation reactions of the reducing gases adsorbed on the sensing layer.
Many gases may be oxidized on the surface of the semiconductor. Hence, this type of gas sensors yield
nonspecific responses to multicomponent gas mixtures.

The resistance responses of individual sensors to the same gas are diverse. They are converted into
electrical signals. After a collection and processing of signals, the feature vector is formed and used to
solve a given classification problem. In other words, instead of qualitative and quantitative information,
classes of air quality are determined. Categories are distinguished by the level of infestation was used
as the reference, which was determined by other methods.

2.1. Measurement Device Based on Gas Sensors

A prototype multisensor detector of air quality was used in the study. The construction was
developed in the Laboratory of Sensor Technique and Indoor Air Quality Studies at Wroclaw University
of Science and Technology, Poland. It was made by InSysPom, Poland. The detector is an autonomous,
multifunctional, and programmable device based on gas sensors. It allows for continuous measurements
of gas samples. Remote access to the recorded data is possible. The instrument is composed of several
functional modules: (1) multichannel recorder of gas sensor signals, model MCA-8, (2) communication
controller Beecom, (3) charging regulator for solar panel, Steca Solsum 6.6, (4) gel battery, HZY EV12-33,
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with the nominal power 36 Ah and voltage 12 V and battery level indicator, (5) photovoltaic solar
panel, CL050-12P, with the nominal power 50 W, (7) AC adapters, and (6) casing. Table 1 shows the
general view of the instrument (Figure 1a), the block diagram of multichannel recorder of gas sensor
signals, model MCA-8 (Figure 1b) and the block diagram of power supply (Figure 1c).Sensors 2019, 19, x 5 of 17 

 

  
(a) (b) 

 
(c) 

Figure 1. The instrument based on gas sensors. (a) General view, in casing; (b) Block diagram of 
multichannel recorder of gas sensor signals, model MCA-8; (c) Block diagram of power supply. 

The major functional unit of the device is the multichannel recorder of gas sensor signals MCA-
8, see Figure 1b. It includes the following six semiconductor Taguchi gas sensors (TGS): TGS832, 
TGS2602, TGS823, TGS826, TGS2603, and TGS2600. They are commercially available products offered 
by Figaro Engineering, Japan. All used sensors respond to wide range of volatile organic compounds, 
as disclosed in the products information sheets [25]. Sensors that belong to series TGS2xxx have a 
lower detection range from 1 ppm to several dozen ppm, as compared with sensors that represent 
series TGS8xx. Their detection ranges are from 10 ppm to more than 1000 ppm. 

Gas sensors were mounted in individual sensor chambers, made of aluminum. Chambers were 
located inside the aluminum block. The volume of chambers designed for TGS8xx sensors was about 
12 cm3 and volume of chambers for TGS2xxx sensors was about 4 cm3. 

The sensitivity of chemiresistors depends on the temperature of the gas-sensing layer. For that 
reason, the gas sensor heater temperature was stabilized individually for each sensor. It was based on 
the duty cycle of the pulse-width modulation (PWM) signal, which controls the power applied to the 
sensor heater. The range of this parameter was 0% to 100%, and 100% was recommended by the 
producer. The last setting was used as default when the instrument operates in a stand-by mode i.e., 
when it does not perform measurements. Additionally, the gas sensor device was equipped with the 
setup, which controls the temperature of the aluminum block, where sensors chambers are located. 
The idea was to improve sensors performance by securing constant temperature of the test gas in 
their surroundings. The setup consisted of the heater and the fan. Ambient air was used for cooling. 

The electronic circuits for measuring sensor resistance and driving sensor heaters were 
fabricated according to sensors technical sheets. The applied analog-to-digital conversion (ADC) 
resolution was 12 bit oversampled to 16 bit successive approximation register (SAR). 

The device was dedicated to operate continuously and perform measurements in the dynamic 
mode. A miniature diaphragm pump DP0102, manufactured by NITTO KOHKI was used to enforce 
the gas flow. The pump was mounted inside the MCA-8. According to technical specifications, the 
maximum free gas flow rate for the pump was 5 L/min. The gas flow rate in the system could be 
adjusted. The power applied to the pump was controlled for this purpose.  

The instrument was fitted with eight gas inlet ports, which could be individually connected to 
gas sensors chambers by means of a set of valves. This solution allowed for an intermittent gas 
sampling from eight locations. 
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multichannel recorder of gas sensor signals, model MCA-8; (c) Block diagram of power supply.

The major functional unit of the device is the multichannel recorder of gas sensor signals MCA-8,
see Figure 1b. It includes the following six semiconductor Taguchi gas sensors (TGS): TGS832, TGS2602,
TGS823, TGS826, TGS2603, and TGS2600. They are commercially available products offered by Figaro
Engineering, Japan. All used sensors respond to wide range of volatile organic compounds, as disclosed
in the products information sheets [25]. Sensors that belong to series TGS2xxx have a lower detection
range from 1 ppm to several dozen ppm, as compared with sensors that represent series TGS8xx.
Their detection ranges are from 10 ppm to more than 1000 ppm.

Gas sensors were mounted in individual sensor chambers, made of aluminum. Chambers were
located inside the aluminum block. The volume of chambers designed for TGS8xx sensors was about
12 cm3 and volume of chambers for TGS2xxx sensors was about 4 cm3.

The sensitivity of chemiresistors depends on the temperature of the gas-sensing layer. For that
reason, the gas sensor heater temperature was stabilized individually for each sensor. It was based
on the duty cycle of the pulse-width modulation (PWM) signal, which controls the power applied to
the sensor heater. The range of this parameter was 0% to 100%, and 100% was recommended by the
producer. The last setting was used as default when the instrument operates in a stand-by mode i.e.,
when it does not perform measurements. Additionally, the gas sensor device was equipped with the
setup, which controls the temperature of the aluminum block, where sensors chambers are located.
The idea was to improve sensors performance by securing constant temperature of the test gas in their
surroundings. The setup consisted of the heater and the fan. Ambient air was used for cooling.

The electronic circuits for measuring sensor resistance and driving sensor heaters were fabricated
according to sensors technical sheets. The applied analog-to-digital conversion (ADC) resolution was
12 bit oversampled to 16 bit successive approximation register (SAR).

The device was dedicated to operate continuously and perform measurements in the dynamic
mode. A miniature diaphragm pump DP0102, manufactured by NITTO KOHKI was used to enforce
the gas flow. The pump was mounted inside the MCA-8. According to technical specifications,
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the maximum free gas flow rate for the pump was 5 L/min. The gas flow rate in the system could be
adjusted. The power applied to the pump was controlled for this purpose.

The instrument was fitted with eight gas inlet ports, which could be individually connected to gas
sensors chambers by means of a set of valves. This solution allowed for an intermittent gas sampling
from eight locations.

As default, the measurement data was recorded on the instrument’s secure digital (SD) card, with
a temporal resolution of 1 s. Optionally, the remote data transfer could be realized using Global System
for Mobile Communications (GSM) (5 s resolution).

The operation of the gas sensor device is programmable. The user has to define the following
parameters: duration of gas intake through individual inlet ports, pump operation rate, as well as the
power of gas sensors heaters. The program is executed from the SD card upon insertion. The instrument
may be also operated in an interactive mode using a PC-based software.

Three powering options are available: main power supply, battery and photovoltaic solar panel
(see Figure 1c). The last two solutions were aimed to secure the autonomous operation of the device in
field conditions. The casing protected the instrument against meteorological conditions.

2.2. Bee Colonies

One of the established, manual methods to assess Varroa destructor infestation of a bee colony is
the flotation method. This method was used as the reference for the method based on gas sensing.
The flotation method involves the collection of a bee sample from the colony. Dead bees are shaken
with a detergent or alcohol, then rinsed on a sieve [26,27]. Ultimately, the mites found in a sample of
bees are counted. Their number is divided by the number of bees and expressed as the percentage.
The obtained parameter represents in this work Varroa destructor infestation rate of a bee colony. It was
assumed that the results of Varroa destructor infestation assessment by flotation provide a reliable
indication of the advancement of bee colony disease. The results obtained by flotation were utilized to
examine the possibility of determining Varroa destructor infestation based on semiconductor gas sensor
array measurements. The evaluation of the gas sensor method was adequate to the extent that the
assumption was fulfilled.

Eighteen bee colonies were qualified for the experiment. The only criterion of selection was
the Varroa destructor infestation rate, which was determined using a flotation method. There were
two groups of bee colonies, A and B. Each group included nine colonies. Three of the colonies had
a Varroa destructor infestation rate at the level of 0%, which is below the detection limit of a flotation
method. The other six colonies were infested and their infestation rates were from 1.3% to 24.76% in
group A and from 1.13% to 6.50% in group B, as shown in Table 1.

Table 1. Bee colonies examined in the study, their Varroa destructor infestation rates and the number of
valid measurement results. Two identical measurement devices were used, one instrument per one
group of bee colonies (A and B).

Bee Colonies Group A Bee Colonies Group B

ID Varroa Destructor
Infestation Rate (%)

Number of Valid
Measurement Results ID Varroa Destructor

Infestation Rate (%)
Number of Valid

Measurement Results

1A 24.76 45 1B 2.36 29
2A 0.00 47 2B 0.00 6
3A 3.45 6 3B 6.50 23
4A 2.20 123 4B 2.04 22
5A 0.00 33 5B 0.00 19
6A 1.30 31 6B 1.16 14
7A 2.21 70 7B 3.40 50
8A 0.00 66 8B 0.00 39
9A 2.00 45 9B 1.13 92
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The status of bee colonies was additionally characterized in terms of the number of bees, amount
of brood, amount of bee food and other selected parameters. These parameters were highly variable in
both groups of bee colonies. In view of the objective of this work, their role was purely descriptive.
We examined the possibility of detecting Varroa destructor infestation irrespective of the variation of
other parameters of bee colonies.

2.3. Measurements

The air in beehives, which were inhabited by honey bee colonies listed in Table 1, was measured
using the gas sensor device. In total, eighteen beehives were examined during the study.

During measurements, the gas sensor device was connected to bee hives by means of polyethylene
(PE) tubing. One inlet port was used per one hive. The gas sampling points were located in central,
upper part of beehives, between brood combs (see Figure 2b). In this location, the varroosis should be
best reflected in the quality of beehive air. Sampling probes (Figure 2a) were meant to prevent clogging
by bees. One additional device inlet port was dedicated to the delivery of ambient air for sensors
regeneration. Ambient air was prepared for this purpose by passing it through a dedicated filter
filled with charcoal. Inlet ports of the device were protected by particle filters. During measurements,
the gas flow rate in the system was 0.5 L/min. Sensors were driven at a fixed voltage of 5 V and applied
to heaters.
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Two identical measurement devices were used in our study. An individual device was dedicated
to examine one group of bee colonies, as shown in Table 1. Each group of colonies was divided in
subgroups of three elements. The beehives from one subgroup were connected simultaneously to
one sensor device. The three colonies were examined one by one, in sequence. Once completed,
the measurement sequence was repeated. A single measurement of a bee colony consists of two phases:
(1) the exposure of gas sensors to beehive air (600 s), (2) the exposure of gas sensors to the cleaned air
(900 s). Multiple measurements were done for all of the bee colonies.

Field experiments were conducted in May 2019. The measurements of two groups of bee colonies
were done in parallel and in the same location. Hence, the meteorological conditions encountered
during the experiment were the same for both groups of bee colonies. Table 1 shows the number of
measurements that successfully passed the data validation procedure. As shown, bee colonies were
represented by various numbers of measurements, between 6 and 123. In most cases, several dozens of
measurements per colony were available for further analysis.

The validation was done offline once per one to two days. In that process, the data associated with
each single measurement was labelled as valid or invalid. Additionally, the recommendations were
made to adjust the measurement set-up, if needed. Data losses were mostly associated with unfavorable
meteorological conditions. The experiment was run in the early spring of 2019. Unfortunately, at night
temperatures oftentimes dropped down several degrees. Water vapor condensation inside PE tubing
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was observed as well as the moisturization of the gas lines. Measurements had to be interrupted in
order to dismantle the measurement setup and dry it.

The data validation was heuristic. Our domain-specific knowledge and measurement experience
was utilized to separate valid and invalid data. Two major criteria were used: (1) The characteristic
shape of gas sensor signal recorded during single measurement had to be preserved. (2) The similarity
to the sensor signals recorded during repeated measurements of the same beehive had to be maintained.

2.4. Classification

2.4.1. Categories of Bee Colonies

This work is focused on the detection of Varroa destructor infestation of bee colonies based on the
classification of responses of the gas sensor array to beehive air. Two categories of bee colonies were
distinguished: ‘not infested’ and ‘infested’. The colonies assignment was based on the infestation rate,
which was estimated using the flotation method. We arbitrarily assumed that in the category ‘not
infested’, the infestation rate of bee colonies was 0%, while in the category ‘infested’, the infestation
level was greater than 0%. In practice, the range from 1.3% to 24.76% was taken for group A and from
1.16% to 6.50% for group B. The classification was studied separately for the two groups of bee colonies.

2.4.2. Data Preprocessing

The gas sensor signal recorded during a single measurement of the bee colony consisted of two
parts, which corresponded to two phases of the measurement. When exposed to beehive air, gas sensor
responses increased and afterwards they reached the quasi-steady state, representing the equilibrium
with beehive air. When gas sensors were exposed to the regeneration air, their responses decreased,
but the initial pre-exposure value was not always retrieved. In order to establish the common baseline
for gas sensor signals recorded during different measurements, differential baseline correction was
applied. This consisted of subtracting a predefined value from the signal. The value was the average
gas sensor response during the last 30 s of regeneration phase, before the exposure to the gas sample.

2.4.3. Feature and Feature Vector

A feature was defined as the response of the individual gas sensor, associated with the selected
time of exposure to beehive air. The following times of exposure were considered: 5 s, 15 s, 25 s, . . . ,
115 s. These 12 time points represented the first two minutes of the gas sensors exposure to beehive air.
If the discriminative potential of this part of signal is confirmed, varroosis detection may be based on
a relatively short measurement.

The feature vector was composed of features selected from the responses of various semiconductor
gas sensors included in gas sensor array. Various feature vectors were considered in the study. We
used vectors composed of features selected from:

• The signal of an individual sensor; 1 × 12 features in one vector; six feature vectors (six single sensors);
• The signals of two sensors; 2 × 12 features in one vector; 15 feature vectors (15 combinations of

two sensors out of six);
• The signals of three sensors; 3 × 12 features in one vector; 20 feature vectors (20 combinations of

three sensors out of six);
• The signals of four sensors; 4 × 12 features in one vector; 15 feature vectors; (15 combinations of

four sensors out of six);
• The signals of five sensors; 5 × 12 features in one vector; 6 feature vectors; (six combinations of

five sensors out of six);
• The signals of six sensors; 6 × 12 features in one vector; one feature vector; (one set of six sensors).

An individual classifier was built for each feature vector.
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2.4.4. Oversampling

The measurement data collected for two groups of bee colonies, A and B, were imbalanced in terms
of category representation. Not infested bee colonies were represented by 45.63% of measurements
in the data associated with group A, and only by 27.83% of measurements in the data set associated
with group B. The problem of imbalanced measurement data sets may be inherent in the considered
application. Therefore, we examined the importance of this factor for the performance of the varroosis
detection method. Imbalanced and balanced data sets were used as inputs of classification models.
Balanced data sets corresponding to imbalanced data sets were formed of measurements associated
with bee colony groups A and B, respectively. The oversampling of the underrepresented category
was applied to attain this goal [28]. In the balanced data set, the same number of data vectors
represented each category. To reach the balance, the number of data vectors in the ‘not infested’
category was increased while the number of data vectors in the category ‘infested’ has not been
changed. The oversampling procedure consisted of a random drawing with a replacement under the
assumption of uniform probability distribution.

2.4.5. Classifier

Two classification methods were used: the k-nearest neighbors algorithm (k-NN) and support-vector
machine (SVM). The k-NN algorithm [29,30] was chosen for its simplicity. It is easy to program and
it may be successfully embedded in the data processing unit of the measurement device. K-NN is
a nonparametric, nonlinear and distance-based method. The class assignment is based on the smallest
distance between the test vector and training vectors, which represent various classes. Multiple distance
measures may be utilized; however, in this study Euclidean distance was applied. In the case of k-NN,
there is no strict learning phase. Training vectors are retained in the memory and they are called each time
a new vector is classified. The test vector is assigned to the class which most frequently occurs among k
training vectors, nearest to it. k is the only parameter of the method—it is chosen arbitrarily or by the trial
and error method, which allows the avoidance of the lengthy process of classifier optimization. We chose
k = 3. Highly nonlinear decision boundaries may be represented using the k-NN technique.

SVM was chosen as a presumably better classifier [31]. The algorithm realizes a very efficient
supervised classification. Namely a set of data vectors with known class assignment is needed in order
to train a classification model, which can later be used for classification of test data vectors. At the
training stage, the SVM constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional
space, which separate distinct classes of data. The original data, which has a defined dimensionality
is mapped into this high- or infinite-dimensional space in order to attain, or at least approach linear
separability of classes. The constructed hyperplane is meant to have the largest functional margin i.e.,
the largest possible distance to the nearest training-data point of any class. This assures relatively high
generalization. In principle, SVM is dedicated to solve two-class classification problems.

2.4.6. Classification Performance Indicators

The detection of bee colony infestation using the gas sensor array was addressed as the two-class
classification problem. The evaluation of classification performance was based on a confusion matrix,
as shown in Table 2. If classification serves the medical diagnostics, the elements of the confusion
matrix have an established interpretation. Traditionally, negative (N) means the true lack of the
disease, and positive (P) represents its true presence. As the detection of bee colony infestation with
the Varroa destructor mite is the diagnostic task, the relevant terminology was adopted in this work.
Negative (N) refers to ‘not infested’ bee colonies and Positive (P) refers to the ‘infested’ colonies.
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Table 2. Confusion matrix [28].

Predicted Negative Predicted Positive

Actual Negative True negative (TN) False positive (FP)
Actual Positive False negative (FN) True positive (TP)

The performance of classification was examined using true positive rate (TPR = TP/TP + FN) i.e.,
sensitivity, true negative rate (TNR = TN/TN + FP) i.e., specificity and false positive rate (FPR = 1 −
TNR). TPR and TNR allow the identification of the correct class assignments with reference to the
true categories. The information about both rates is very important when the costs of false positive
detections and false negative detections are unspecified.

In this work, equal costs of false positive and false negative detections were assumed. However,
such assumptions may be questioned. In fact, when the true positive rate decreases, an increasing
number of infested bee colonies are classified as healthy ones. Classification of ill colonies as healthy
is unfavored because the colonies which shall undergo medical treatment may be left without it or
receive too small of doses. On the other hand, when the false positive rate increases, the increasing
number of healthy bee colonies are classified as infested with Varroa destructor. The classification of
healthy colonies as ill ones may generate excessive costs, due to the consumption of unnecessary
medical treatment. This also raises the issue of the consequences of excessive exposure of a bee colony
to medicines, including losses of revenue due to setting the productive colony aside for treatment.

Ten-fold cross-validation was applied to examine the performance of classification. The validation
procedure was repeated 30 times for each classification model.

2.5. Statistical Analysis

The results of classification were statistically analyzed in respect of factors which could have
an influence on the classification performance, and ultimately on the performance of the varroosis
detection method. The factors were:

• classifier (SVM and k-NN);
• group of bee colonies for which the measurements were performed and then applied for

classification model training (group A and group B);
• balance of the classification data set (balance: equal representation of categories, and imbalance:

representation of categories as in the validated measurement data sets);
• combination of gas sensors which was used as the source of data for classification (all possible

subsets of six sensors included in the gas sensor array were considered, we grouped them by size,
i.e., one, two, three, four, five, and six-element combinations).

The classification option was defined by the particular combination of these factors.
The examination of factors, which influence the classification performance, was based on the

analysis of TPR and TNR, which were chosen as the indicators of classification performance. TPR and
TNR, computed for different classification options, were compared. The applied statistical tools were
the one-way analysis of variance and multiple comparisons, based on the Tukey–Kramer test.

MathWorks software was used for data preprocessing and analysis. In particular, Statistics and
Machine Learning Toolbox was applied to realize the classification and to examine its performance.

3. Results

Figure 3 presents signals recorded by gas sensor array during measurements of air in two
beehives occupied by exemplary colonies of honey bees. One colony was not infested by Varroa
destructor—infestation rate 0% (colony A1, Table 1), and the other was heavily infested—infestation
rate of 25.76% (colony A2, Table 1).
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As shown in Figure 3, gas sensor signals recorded during measurements of air in the beehive
occupied by the infested bee colony (Figure 3b) were higher, as compared with the not infested
colony (Figure 3a). However, there was also an overlap between results of measurements of two
bee colonies that were done with the same sensor. All individual panels in Figure 3 reveal that gas
sensor signals recorded during multiple measurements of one beehive displayed a considerable spread.
The presented example is representative and it reflects the regularities that were generally observed in
our measurements.Sensors 2019, 19, x 11 of 17 
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Figure 3. Gas sensor signals recorded during measurements of beehives occupied by two exemplary
bee colonies. (a) Colony A1—not infested by Varroa destructor (see Table 1); (b) colony A2—infested at
the rate of 25.76% (see Table 1). Differential baseline correction was applied.

Table 3 displays TPR and TNR. They represent the performance of classification of bee colonies
infestation by Varroa destructor, based on gas sensor array measurements. The considered classification
options were indicated by three elements: type of classifier (SVM and k-NN), group of bee colonies,
which were monitored and provided data for classifier training (A and B), and balance in the
classification data set (balance and imbalance). For a particular classification option, we averaged
TPRs and TNRs obtained using different combinations of sensors as the source of classification data.
As shown in Table 3, the best results of classification were obtained using SVM and balanced data sets.
This result is indicated by the highest values of TPR and TNR. It refers to both groups of bee colonies,
A and B.

Table 4 displays p-values resulting from of the analysis of variance, which examined the statistical
significance of the kind of classifier as a factor that influences classification performance. As shown,
this factor significantly influenced TPR as well as TNR and its impact on TPR was stronger. The statistical
significance of the kind of classifier was confirmed at the significance level α = 0.01. The comparison
of Tables 3 and 4 indicates the statistically significant domination of SVM.

Table 5 displays p-values resulting from of the analysis of variance, which examined the statistical
significance of the balance in classification data set as a factor that influences the classification
performance. As shown, this factor significantly influenced TPR as well as TNR and its impact on TNR
was stronger. The statistical significance of the input data set balance was confirmed at the significance
level α = 0.01. The comparison of Tables 3 and 5 indicates the statistically significant domination of the
balanced data sets.

Table 6 displays p-values resulting from of the analysis of variance, which examined the statistical
significance of the selection of group of bee colonies, for which the measurement data was collected,
as a factor that influences classification performance. As shown, this factor significantly influenced
TPR as well as TNR, except for TNR in the case of imbalanced data sets. However, in this last case,
the TNR were unacceptably small (see Table 3). The statistical significance of the selection of group
of bee colonies was confirmed at the significance level α = 0.01. The comparison of Tables 3 and 6
indicates that statistically significantly better results were attained for group B of bee colonies.
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Table 3. True positive rate (TPR) and true negative rate (TNR) for various options of classification. For
each option of classification, we averaged the results obtained using different combinations of sensors
as the source of input data.

Option of
Classification

Group A of Bee Colonies Group B of Bee Colonies

Mean TPR Mean TNR Mean TPR Mean TNR

SVM, balanced 0.8701 0.9069 0.9362 0.9506
k-NN, balanced 0.7953 0.8924 0.8604 0.9513

SVM, imbalanced 0.9505 0.4993 0.9889 0.4507
k-NN, imbalanced 0.8886 0.5756 0.9543 0.5274

Table 4. p-values resulting from of the analysis of variance, which examined the significance of the
kind of classifier as a factor that influences classification performance.

Compared Options
of Classification

Group A of Bee Colonies Group B of Bee Colonies
p-Value for TPR p-Value for TNR p-Value for TPR p-Value for TNR

SVM, balanced vs.
k-NN, balanced 6.71 × 10−25 2.67 × 10−3 6.71 × 10−25 2.67 × 10−3

SVM, imbalanced vs.
k-NN, imbalanced 2.31 × 10−38 8.35 × 10−7 2.31 × 10−38 8.35 × 10−7

Table 5. p-values resulting from of the analysis of variance, which examined the significance of the
balance of classification data set as a factor that influences classification performance.

Compared Options
of Classification

Group A of Bee Colonies Group B of Bee Colonies
p-Value for TPR p-Value for TNR p-Value for TPR p-Value for TNR

SVM, balanced vs.
SVM, imbalanced 2.17 × 10−36 5.17 × 10−65 2.17 × 10−36 5.17 × 10−65

k-NN, balanced vs.
k-NN, imbalanced 8.65 × 10−39 4.83 × 10−62 8.65 × 10−39 4.83 × 10−62

Table 6. p-values resulting from of the analysis of variance, which examined the significance of
the group of bee colonies, for which the measurement data was collected as a factor that influences
classification performance.

Option of Classification
Compared Between Groups of

Bee Colonies
p-Value for TPR p-Value for TNR

SVM, balanced 2.47 × 10−19 2.87 × 10−17

k-NN, balanced 1.89 × 10−12 1.11 × 10−28

SVM, imbalanced 4.67 × 10−35 3.53 × 10−2

k-NN, imbalanced 4.58 × 10−31 2.06 × 10−3

We examined the combination of sensors, which delivers the measurement data for classification,
as a factor that influences the performance of varroosis detection. Figure 4 presents TPR and TNR for
various options of classification with reference to bee colony group A (Figure 4a) and group B (Figure 4b).
Options utilized data provided by different combinations of sensors, while the size of combination
was fixed. The plots in Figure 4 demonstrate that the performance of classification was related to the
number of sensors included in the combination. In general, both TPR and TNR increased with the
increasing number of sensors, which is synonymous with the classification performance improvement.

Table 7 displays p-values obtained from multiple comparisons, which examined the statistical
significance of the number of sensors as a factor that influences classification performance. The results
show that in the case of one sensor, the performance was significantly different (lower) than when using
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two, three, four, or five sensors. In the case of two sensors, the performance was significantly different
(lower), than when using three, four, or five sensors. Considering three sensors, the performance
was significantly different (lower) than in the case of four or five sensors for group A of bee colonies.
For group B, the differences were not statistically significant at the significance level α = 0.01.
The classification performance attained when using four or five sensors was not significantly different
for both groups of bee colonies. There is only one combination of six sensors (full array), so it was
excluded from multiple comparisons.

The detailed results of classification obtained with the best classifier (SVM), which operated on the
balanced data sets are shown in Figure 5, with reference to bee colonies group A (Figure 5a) and group
B (Figure 5b). The mutual relationship of TPR and FPR (1-TNR) was displayed for all combinations of
sensors employed as the sources of the classification data (including entire sensor array). The plots
allow us to see the distribution of TPRs, as well as FPRs, for sets of sensors that have the same size.
Performance overlaps between these sets are well demonstrated. As shown in Figure 5a, as well as in
Figure 5b, the complete gas sensor array offered very high classification performance. Although better
results could be attained using smaller sensor sets, the composition of the best performing sensor set
was case dependent.

In the coordinates of FPR and TPR, the best classifying solutions are located on the straight line
between (FPR = 1, TPR = 0) and (FPR = 0, TPR = 1), close to the last point, if costs of false positive and
false negative detections are equal. This line indicates the symmetry of FPRs and FNRs. In the case of
classification utilizing SVM and balanced data sets, the symmetry between these rates was very high,
see Figure 5. The comparison of plots in Figure 5a,b shows that the detection method performed better
in the case of measurement data collected for bee colonies from group B (Figure 5b).
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Figure 4. (a) True positive rate (TPR) and true negative rate (TNR) for classification options using the
measurement data collected for group A of bee colonies; (b) TPR and TNR for classification options using
the measurement data collected for group B of bee colonies. A mean ± standard deviation was shown for
each group of models utilizing various combinations of sensors as the source of input data, while the size
of combination was fixed. TPR is displayed with a blue line and TNR is displayed with a red line.
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Table 7. p-values resulting from multiple comparisons, which examined the significance of the number
of sensors used as sources of classification data, as a factor that influences classification performance.

Compared Numbers
of Sensors

Group A of Bee Colonies Group B of Bee Colonies
p-Value for TPR p-Value for TNR p-Value for TPR p-Value for TNR

1 vs. 2 0.002 0.000 0.000 0.130
1 vs. 3 0.003 0.000 0.000 0.000
1 vs. 4 0.000 0.000 0.000 0.000
1 vs. 5 0.000 0.000 0.000 0.001
2 vs. 3 0.997 0.005 0.000 0.052
2 vs. 4 0.000 0.010 0.000 0.000
2 vs. 5 0.000 0.000 0.000 0.060
3 vs. 4 0.000 1.000 0.927 0.059
3 vs. 5 0.000 0.146 0.099 0.932
4 vs. 5 0.770 0.170 0.348 0.761
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Figure 5. Relationship between the true positive rate and the false positive rate for classification of
bee colony infestation by Varroa destructor based on gas sensor array responses, using support-vector
machine and balanced data sets. Various combinations of sensors were considered, their size was n.
(a) Results based on the measurement data collected for bee colony group A. (b) Results based on the
measurement data collected for bee colony group B.

4. Discussion

This study was dedicated to a new method of varroosis detection. The presented method utilizes
a semiconductor gas sensor array and classifier. This method is based on the measurement of chemical
properties of beehive air. We assumed that gas sensors are capable of detecting beehive air quality
changes, which could be attributed to the occurrence of the disease. The proposed approach is new
and original, and was first announced in [10]. So far, the development of instrumental detection of
varroosis has been mainly based on optical methods [8].

The performance of a method utilizing gas sensors could be influenced by multiple factors that
are associated with the measurement technique itself, classification approach, as well as the studied
object. In this work, we focused on: (1) the number and kind of sensors used as the basis of detection,
(2) the kind of classifier, (3) the balance of the classification data set, and (4) the group of bee colonies
for which the measurement data was collected.

We found that the composition of the sensor set that delivers the data used for varroosis detection
is a factor that influences the performance of the method in a statistically significant manner (see Table 7,
as well as Figures 4 and 5). The obtained results provide a strong argument in favor of the application
of the gas sensor array as compared with single gas sensors for the detection of bee colony infestation
with Varroa destructor. Although sensor arrays generally perform better than single sensors, the rate of
improvement is case-specific and it may not be attractive in a particular case. Examples of efficient
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class separation, based on measurements done with single sensors, have been announced [32]. In this
study, the performance of single sensors was very low when compared with multisensor combinations,
as shown in Figure 4a,b and Figure 5a,b. In general, the use of a greater number of sensors offered
better performance of varroosis detection. Based on the obtained results, the complete gas sensor
array, composed of six TGS sensors, was not always the best source of information, see Figure 5a,b.
However, in our opinion, the number of sensors, which are physically mounted in the array, should not
be reduced. The results of the statistical analysis showed that at least four sensors have to be included
in the array for attaining high performance, which is significantly different than in case of one, two,
or three sensors (Table 7). However, individual combinations of five or four sensors offered different
performances. Moreover, the performance of a particular sensor set was dependent on the monitored
group of bee colonies, compare Figure 5a,b. In this situation, the reduction of number of sensors in the
array would not be recommended. Instead, multiple classifiers may be developed based on various
sensor subsets and included in a committee of classifiers. This proposal deserves further consideration.

Based on classification performance indicators, the comparison of two classifiers, SVM and k-NN,
revealed the domination of SVM, see Tables 3 and 4. This result was expected. SVM is widely
announced as a very effective classifier in many applications. Major performance differences were
observed in terms of TPRs, while when considering TNRs the two classifiers were similar (see Table 1).
Namely, SVM more effectively recognized healthy colonies as healthy. If the emphasis was on the
detection of infested colonies as infested (TPR), i.e., assuming asymmetry in false classification costs,
k-NN could still be considered as an option. Importantly, a balanced composition of the classification
data set has to be assured. This result is very important in view of the problem of choosing a classifier
for the direct implementation in the measurement device.

The results of the performed analysis indicated that the balance in the classification data set is
a statically significant factor, influencing the performance of varroosis detection (see Tables 3 and 5).
In the examined scenario, the measurement data applied for training classification models was acquired
during field experiments. Hence, to assure the balanced class representation, the number of bee colonies
representing different categories should be the same and the number of measurements performed for
each class, should be equal as well. However, field conditions are predictable to a limited extent. Hence,
even if the measurement experiment is properly designed, class representation may be imbalanced.
This work shows that in such cases, the balance should be reinstated, for example using oversampling.

Based on our study, the set of measurements results, which were used for training the classification
model, had an influence on the performance of the varroosis detection method. Namely, TPRs and TNRs
were significantly different when the classification was based on measurements of beehives occupied
by colonies from group A and B (see Tables 3 and 6). In our experiments, the measurement results were
influenced by: the selection of bee colonies, the organization and realization of measurements as well as
the measurement device. The least important factor was the measurement device, as twin instruments
were used in the study. Their construction was identical and they realized the same measurement
procedure. The organization of measurements could be meaningful, in particular, the number and
temporal distribution of multiple measurements of individual colonies. We currently examine the
importance of this factor in more detail. However, it is most likely that major differences in the
performance of the detection method were related to the selection of bee colonies, which represented
individual categories. In this experiment, colonies were not standardized. Another study is planned to
evaluate the role of this factor in a systematic manner.

5. Conclusions

The results of the study demonstrated that the approach based on gas sensor array measurements
and classification may be applied to detect varroosis, a common disease of honeybees. However, certain
conditions had to be fulfilled in order to assure high performance of the method. Our analysis showed
that, a single semiconductor gas sensor was insufficient as the source of the informative measurement
data. The detection of the disease has to be based on the responses of a gas sensor array, which consists
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of several semiconductor gas sensors. The performance of the method was heavily dependent on the
applied classifier. Based on the comparative analysis, which included SVM and k-NN, the former
algorithm was preferred. SVM achieved the highest true positive rate (0.93) and highest true negative
rate (0.95). The obtained results also indicated the importance of the balanced representation of
categories in the data set, which was used to train the classification model. The use of imbalanced data
set resulted in a small, basically unacceptable TNR. We also demonstrated that the performance of
varroosis detection may differ in a statistically significant manner between two exemplary groups of
bee colonies. This result emphasizes the fact that the adequate selection of bee colonies as well as the
proper design of the measurement experiment are crucial to attain a reliable classifications model and
realistic estimation of the performance of the proposed method of varroosis detection.
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