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Abstract: Mobile robots are becoming more and more widely used in industry and life, so the
navigation of robots in dynamic environments has become an urgent problem to be solved. Dynamic
path planning has, therefore, received more attention. This paper proposes a real-time dynamic path
planning method for mobile robots that can avoid both static and dynamic obstacles. The proposed
intelligent optimization method can not only get a better path but also has outstanding advantages
in planning time. The algorithm used in the proposed method is a hybrid algorithm based on the
beetle antennae search (BAS) algorithm and the artificial potential field (APF) algorithm, termed
the BAS-APF method. By establishing a potential field, the convergence speed is accelerated, and
the defect that the APF is easily trapped in the local minimum value is also avoided. At the same
time, by setting a security scope to make the path closer to the available path in the real environment,
the effectiveness and superiority of the proposed method are verified through simulative results.

Keywords: hybrid optimization algorithm; mobile robot; real-time path planning; dynamic obstacle
avoidance; beetle antennae search algorithm (BAS)

1. Introduction

In recent decades, path planning has had important applications in many areas, such as
mobile robots [1–6], unmanned aerial vehicle (UVA) [7,8], game artificial intelligence (AI) automatic
pathfinding [9], etc. [10–13]. In particular, mobile robots have been put into practical use in many
industries. For example, [14] introduced the practical application of sweeping robots for daily
household cleaning, [15] proposed a robotic automatic battery sorting system for improving battery
sorting efficiency, and [16] introduced many applications of mobile robots in agriculture: tilling,
seeding, harvesting, etc.

For mobile robots, path planning consists of finding a feasible path to the target point in
the workspace [17–23]. There are many related research results for this research direction [24–28].
For example, some traditional methods are: artificial potential field (APF), probabilistic roadmap
method (PRM), and rapidly-exploring random trees (RRT) [29–31]. The paper presented in [32]
used a hybrid algorithm of A* and RRT for indoor navigation of unmanned aerial vehicle. In [33],
they proposed a bidirectional RRT based on potentially guidance to quickly plan paths in a messy
environment. Most of these methods have certain advantages in terms of speed, but the path
obtained lacks optimization. Some heuristic algorithms, such as A*, D*, are widely used in
industry [34–36]. Xin et al. [37] proposed an improved A* algorithm, which extends the neighborhood
propagation of the standard A* algorithm. In [38], the modified A* algorithm is used to plan the
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path of the mobile robot. The connection between the path points of the A* algorithm is mainly
modified. But these methods are mainly used in globally-known environments. There are also some
intelligent optimization algorithms, such as ACO algorithm, genetic algorithm, and PSO algorithm,
which also has corresponding results [39–42]. In [43], by combining artificial bee colony algorithm
and evolutionary programming algorithm, they proposed a new path planning algorithm applied
to path planning in two-dimensional static environment. In [44], they designed a non-dominated
sorting genetic algorithm for multi-objective path planning in static environments. In [45], a heuristic
PSO algorithm is proposed, which improves the PSO planning deficiency to a certain extent but only
verifies the effectiveness of the algorithm in static environment. However, due to the characteristics of
the group intelligence algorithm, the heuristic PSO algorithm is not particularly ideal in terms of time.

As can be seen from the above introduction, it is still necessary to study real-time dynamic path
planning. It can also be seen that the research trend of path planning in recent years is also realized by
a mixture of various algorithms to obtain better results.

The structure of this paper is organized as follows. Section 2 includes the definitions and formula
descriptions for real-time path planning problems. In Section 3, we introduce the design ideas
and implementation steps of the proposed beetle antennae search (BAS)-APF method in stages.
Demonstration of the effectiveness of the algorithm through some numerical simulations for maps
with dynamic obstacles is shown in Section 4. Finally, the conclusions are presented in Section 5.
The main contributions of this paper are listed below.

• A novel hybrid intelligent optimization method, named BAS-APF, is proposed and applied
to mobile robot dynamic path planning. The proposed method is divided into two phases.
First, a feasible path from the current point to the end point is initialized based on the proposed
algorithm. Then, path tracking is performed, and the path is optimized during path tracking
without affecting the real-time performance of the algorithm.

• The proposed method has a good performance in both the planning time and the path length.
And the advantages in planning speed are outstanding.

• The proposed method is simulative in our pre-set simulation environment maps and the real
map collected by sensors, and its effectiveness and superiority are verified by comparison with
other algorithms.

2. Problem Formulation

This section describes the definition of the path planning problem discussed in this article, some
of the symbols used, and a brief introduction to the design basis of the proposed method. The method
we proposed is called the BAS-APF. Therefore, as a background, as well as a brief introduction to the
BAS algorithm and the APF algorithm, given below.

BAS is a relatively novel intelligent optimization algorithm. The design idea is inspired by the
foraging behavior of beetles in nature. By optimizing the beetle’s foraging process and the concept of
pheromone, an optimization algorithm with faster optimization is proposed [46].

APF is a classic obstacle avoidance method. The basic idea is to abstract the motion of the robot
in the surrounding environment into the motion in the artificial potential field and guide the robot
movement through the force of the potential field. But this method easily falls into local extremum.

The above is a brief introduction to the basic algorithm of the proposed method. The following is
a brief introduction and definition of the problem to be solved in this paper. The specific discussion in
this paper is the real-time path planning problem in dynamic environment. For this problem, we need
to plan a safe path from the start point to the end point as quickly as possible. The next points are
taken into consideration for the hybrid BAS-APF path planning method.

• xsta and xtar represents the start and target points of the plan, respectively.
• Express the configuration space in this paper as a set of Z ⊂ Rn, n ∈ N and n ≥ 2, where n is

the dimension of the configuration space. Zobs ⊂ Z is a set of obstacle areas in our configuration
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space. Zfre ⊂ Z is a set of passable areas in our configuration space that can be obtained according
to Formula (1). Another thing to note is that the dynamic obstacles used in this paper, the value of
Z will change in real time:

Zfre = Z \ Zobs. (1)

• The path obtained by the planning defined as P is a set of points {p1, p2, p3...pmax}, where pi is
the i-th path point.

• Path planning can be defined as: setting the function to be optimized f (·) of the sampling point,
and let f (·)→ 0+ during the planning process.

• The path optimization process can be defined as: setting the cost function g(·) of the path and
obtaining min.g(·) during each optimization process.

In general, we evaluate the path based on some criteria, such as path length, planning time,
etc. Therefore, we only need to minimize g(·), while ensuring the planned time t. In addition, this
article is mainly focused on two-dimensional environment, but this method is applicable to the case of
higher dimensions.

3. Methodology

In this paper, we proposed a novel hybrid BAS-APF method for real-time path planning.
This method can be applied to mobile robot path planning in both static and dynamic environments.
The entire method flow is shown in Figure 1.

The proposed method is used to generate a safe path from a preset starting point to a target
point. Our approach aims to solve the real-time path planning problem of mobile robots in dynamic
environments. The map information of the environment needs to be processed after being collected
from the sensor. Some of the map files used in this paper are in our own preset simulation map, and the
other part is obtained after the real environment is collected and processed by the sensor. Below, we
have a detailed introduction to the proposed method.
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Figure 1. The schematic diagram of the proposed beetle antennae search (BAS)-artificial potential field
(APF) method applied to mobile robot path planning in both static and dynamic environments.

3.1. Proposed BAS-APF Method

Path planning in a dynamic environment places high demands on the real-time and security of
the planning algorithm. For these two requirements, we first avoid collisions by setting up a layered
detector and a well-designed cost function. At the same time, in order to meet the requirements of
real-time, the proposed method first gives the initial path, and then gradually optimizes and updates
the path during the tracking process of the mobile robot.
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The proposed method can be divided into two phases as a whole. The first phase is to generate
the initial path, and the second phase is to trace the trajectory of the initial path and optimize the
iterative update.

3.1.1. Initial Path Generation

First, according to the pre-setting starting point xsta, the detection range τ, the direction vector d
and the Formulas (2) and (3), select two candidate points xl, xr within the perimeter detection range.
xsta is the initial position of the longicorn in BAS algorithm. d is the direction that beetle will expore.

d =
rands (k, 1)
‖rands (k, 1)‖2

, (2)

where rands(·) is a random function, each time a k-dimensional direction vector d is randomly selected,
and k is the dimension of the space to be planned.

xl = x + dτηi−1,
xr = x− dτηi−1,

(3)

where xl and xr are the coordinates of the candidate points. τ is the size of the detection range, and η is
the attenuation rate of the detection range. As the number of iterations increases, the detection range
of the agent will gradually shrink, which can also reduce the possibility of falling into local extremum
to some extent.

Then, according to Formula (12), the cost function of current point, we calculate f (xl) and f (xr)

to select a better candidate point, respectively. And according to the Formula (4) and (5), the mobile
robot moves one step in the direction of the better point. xnex is the position that the robot will move
next, and its formula is as follows:

xnex = x + sχnsign( f (xl)− f (xr))d, (4)

where s represents the current step size, χ represents the step decay rate, and sign(·) is a symbolic
function that extracts the sign of a real number.

sign (x) =


1, x > 0,
0, x = 0,
−1, x < 0.

(5)

Add the coordinates to the alternate path after getting xnex. The candidate path is evaluated
according to the evaluation Formula (6). If the evaluation value is better, the current path is replaced;
otherwise, the candidate point is re-selected. Iterate through the above process until the target point
is reached:

g(p) =
N

∑
i=1

(pi − pi−1)
2, (6)

where N is the number of path points, and i is the i-th path point. The above steps can already achieve
path planning from the start point to the end point, but it may fall into local extremes, resulting in slow
planning. Therefore, we speed up planning by designing appropriate cost functions and introducing
artificial potential fields. A spline curve is also introduced to fit the path to achieve a smooth path effect.

3.1.2. Add Artificial Potential Field Function

Artificial potential field (APF) is a trajectory planning method based on artificial space field.
The basic idea is as follows: First, the robot is regarded as a point in the space to be planned, and the
artificial potential field fills the entire space to be planned. The construction method of the artificial
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potential field can cause the robot to be attracted to the target point away from the obstacle space.
If the potential field is constructed reasonably, the artificial potential field will reach a global minimum
at the end point. However, it is difficult to construct such a potential field, and even if such a potential
field is constructed, it is not common to all environments. The implementation of the entire artificial
potential field can be seen more intuitively through Figure 2.
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Starting Point

Dynamic obstacles

Static obstacles
Target Point

(a) Original map (b) Artificial potential field

Figure 2. Original map and artificial potential field (APF) visualization.

Next, we will explain the construction methods of the gravitational field and the repulsive field in
the artificial potential field. The gravitational field needs to satisfy the increase in the distance between
the current point and the target point, so the easiest way is to set a function that increases linearly with
distance. However, this is a defect in the potential field; that is, when the current point is too far from
the target point, the gravity is too large. Therefore, an additional quadratic form function is set, and
the threshold is set to counteract the effect of the linearly increasing gravitational pull. The specific
gravitational field Formula (7) is as follows.

Uatt =


1
2

εd2
g, if dg<dgra,

εdgradg −
1
2

εd2
gra, if dg>dgra,

(7)

where ε is the gravitational factor that determines the gravitational pull of the current point, and dg is
the distance from the current point to the target point. dgra is the distance threshold of the gravitational
field. The calculation of gravitation is to obtain the gradient information of the gravitational field and
take the negative gradient. See Formula (8) for specific gravity settings,

Fatt =


−εdg, if dg<dgra,

−εdgra +
εdgra

dg
, if dg>dgra.

(8)

Then, we need to build a repulsive field. The repulsive field needs to ensure that the farther
away from the obstacle, the smaller the repulsive force, and the distance threshold drep is set in order
to prevent repelling interference from distant obstacles. When the current point distance obstacle
is greater than the threshold, the obstacle does not generate a repulsive force to the current point.
The specific repulsive field structure is shown in Formula (9).
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Urep =


1
2

µ(
1
dr
− 1

drep
)2, if dr<drep,

0, if dr>drep,
(9)

where µ is the repulsion factor, dr is the distance from the current point to the obstacle, and drep is the
distance threshold for the repulsion. Similarly, we can get a specific repulsion value by grading the
repulsion field. The specific form is as in Formula (10),

Frep =


µ(

1
dr
− 1

drep
)2 1

d2
r

, if dr<drep,

0, if dr>drep.
(10)

Finally, according to the Formula (11), we combined it with attraction and repulsive force to
obtain a complete force to guide the robot to the target point.

F = Fatt + Frep. (11)

3.1.3. Design Cost Function

In the path planning process, due to the scope of the sensor, there may be cases where the agent is
trapped at a local minimum and cannot reach the target point. This situation is called a local extremum
problem. As shown in Figure 3a, in this example, the robot is stuck at a local minimum and cannot
reach the target point. We avoid this problem by designing a suitable cost function. By layering the
scope of the robot’s detection, we add the corresponding penalty to the cost function according to the
location of the obstacle, which helps to escape the local minimum. See Figure 3 for specific effects.
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Figure 3. Avoid instances of local extremum.
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The green squares in Figure 3 represent sampling points, and the blue squares represent path
points. Figure 3a is an example of local extremum avoidance when the detection range of the agent
is not layered, and the agent is more likely to fall into local extremum. In Figure 3b, we layer the
detection range of the agent. Comparing the two sub-figures, it is found that layering the detection
range is beneficial to improve the local extremum avoidance ability of the proposed method.

The specific cost function is shown in Formula (12). We divide the detection range of the agent
into two layers. When the agent detects obstacles O in the internal detection range, it adds a penalty
factor α to the cost function. When the outer layer of the detection range has an obstacle, the reward
coefficient β is added to the cost function. When there is no obstacle within the detection range,
the resultant force of the potential field is directly used as the cost function value.

f (x) =


α(x− xtar)

2 + F(x), if O ∈ Din,

β(x− xtar)
2 + F(x), if O ∈ D,

F(x), if O /∈ D,

(12)

where α, β is the reward coefficient and penalty factor, F(x) is the potential field force of the current
point, Din is the inner detection range, and D is the detection range.

3.1.4. Spline Curve

The initial path we get may be too tortuous. Therefore, we have adopted a more common curve
fitting method: B-spline curve [47]. The B-spline curve can achieve the effect of modifying the local
path without changing the shape of the entire path [48–50]. Ni,p is a normalized B-spline basis function
defined by the following Cox-deBoor recursive Formula (13),(14).

Ni,0 (u) =

{
1, if ui+1 ≤ u < ui+1,

0, if ; otherwise,
(13)

where Ni,0 (·) is piecewise constant 1 or zero.

Ni,p (u) =
u− ui

ui+p − ui
Ni,p−1 (u) +

ui+p+1 − u
ui+p+1 − ui

Ni+1,p−1 (u) , (14)

where Ni,p (·) is the i-th B-spline basis function of degree p. The ui represents the i-th item in a set of
non-decreasing numbers [u0, u1, ..., umax].

In summary, the entire path planning process is now complete, and the pseudo code that generates
the initial path can be viewed in Algorithm 1. It is worth noting that we input the map environment
information to simulate the overall simulation environment, but the global environment information is
not used in the planning process. That is to say, in every step of path planning, the whole environment
information is not used; only the environment information around the robot is used. The content of
the next subsection is the tracking optimization process for the initial path.
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Algorithm 1: BAS-APF design process

Input: xsta, xtar, Map;
Output: Path P;
Set some related parameters: step size s, detection range τ, iteration number n, gravitation
factor ε, repulsion factor µ, convergence threshold dthr, current best objective function
value gbes;

xn = xsta ;
for i = 1:n do

Randomly generated d according to Formula (2);
Calculate candidate point coordinates xl and xr according to Formula (3);
Calculate cost function value fl and fr of xl and xr according to Formula (12);
Compare fl and fr to select a better point to join Candidate Path Pcan;
Calculate the evaluation value of the Pcan;
if g(Pcan)<gbes then

Add xn to P;
Continue;

else
Continue;

if Distance between xn and xtar < dthr then
xn join P;
break;

return P;

3.2. Real-Time Path Tracking

The whole process of path tracking is roughly as shown in Algorithm 2. First, in order to speed
up planning and reduce the amount of computation, the proposed method does not re-plan the path at
each step of the tracking but, instead, constructs the detector during the tracking process. The detector
has a radius that is twice the step size. Algorithm 1 is called to re-plan the subsequent path only
if there is an obstacle in the probe’s detection range. At the same time, we also set limits on the
number of re-planned algorithm iterations, so although the obtained path may not be globally optimal,
it guarantees the real-time performance of the algorithm.

Algorithm 2: Real-time path tracking

Input: Initial path, Map;
Output: Final path;
Set the detection range, get the number of path points in the initial path pn;
for pn >2 do

if There are obstacles in the xnow detection range then
P = Call Algorithm 1;
xnow = Pnex(x, y);

else
xnow = Pnex(x, y);

pn = pn-1;

return Final path;

The above is the complete process of the proposed method.
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4. Simulations

In order to verify the effectiveness of the proposed method, we performed a series of simulations
in MATLAB. In this section, we selected a few representative maps to visualize the results: one is
our pre-set simulation map. The other two were obtained by modeling the real room environment.
The length of the following maps is in centimeters. At the same time, comparison simulations with
several other algorithms were also carried out. By comparing the simulative results, the superiority
of the algorithm is verified. In addition, we also made a visual process diagram of the pathfinding
process of the BAS-APF method, which can visually see the entire path optimization process.

4.1. Simulation Map Results Using Virtual Map

This section mainly shows the simulation results of the proposed method on the simulated map
and the visualization of the planning process. In addition, a comparison of the selection criteria of
the comparison algorithm and the results of the single path planning is also introduced. The preset
simulation map (Map 1) resolution is 600 × 600, and the map contains multiple static obstacles and
two regularly moving dynamic obstacles. Taking Figure 4 as an example, in an environment of
600 cm × 600 cm, dynamic obstacles move 5 cm in each step of the robot, with 130 steps in total,
i.e., 650 cm in total, with a total planning time of 0.287 s. The obstacles move with the velocity being
22.65 m/s, and the white hollow square is the trajectory of the obstacles.
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(a) Planning process with n = 50
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Figure 4. The process of exploring a path on a simulative map with dynamic obstacles.
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A visual representation of the proposed method on Map 1 is shown in Figure 4, where the blue
open squares indicate the determined path points, and the red open squares indicate the path points
to be determined. The black area represents the obstacle, and the white hollow square represents the
movement trajectory of the dynamic obstacle. Each square represents one step of the robot’s movement,
and n represents the number of iteration steps.

Regarding the choice of comparison algorithm, we make a decision based on the following
considerations. Firstly, because our proposed method refers to the idea of APF algorithm, in order to
highlight the superiority of hybrid algorithm, we choose APF as one of the comparison algorithms.
In addition, since the BAS algorithm is an intelligent optimization algorithm, we chose a classic
intelligent optimization algorithm: ACO algorithm as a comparison algorithm. Based on the
comprehensive consideration of the comparison algorithm, we also selected a sampling-based
algorithm: RRT. The superiority of the BAS-APF method is verified by comparison with multiple
different types of comparison algorithms.

In Figure 5, we show the results of four different contrast algorithms on a simulated map. It is
worth mentioning that the number of iterations of ACO is 1000, and the number of ants is 50. The blue
dot represents the starting point and the red dot represents the ending point. By comparing the four
subgraphs, we find that the final path obtained by our proposed algorithm is smoother and shorter,
and the final path is not too close to the obstacle, and the safety factor is higher.

0 100 200 300 400 500 600

X

0

100

200

300

400

500

600

Y   

Target Point

Starting 

Point

Obstacles

Path

(a) Path tracking using ACO
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(b) Path tracking using APF
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Figure 5. Simulation results of simulation map.
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4.2. Simulated Results Using Real Map

Considering the practical applicability of the algorithm, in this section, we have selected two
processed actual maps for simulation. Since this paper mainly verifies the obstacle avoidance ability
of the proposed method in the dynamic environment, we added two dynamic obstacles that move
regularly along the horizontal direction in the first real map (Map 2). And the size of Map 2 is 637× 355.
Similarly, the second real map (Map 3) adds two dynamic obstacles that move regularly in the vertical
direction. The specification of Map 3 is 597 × 375.

Figure 6 shows the planning process of our algorithm on Map 2. At the same time, in order to
better reflect the entire tracking process, we select the process screenshot of the re-planning. It can
be seen that, since in Figure 6a,b, there are no obstacles in the surrounding area. In order to improve
the tracking speed, no re-planning is performed. In Figure 6a,d, there are dynamic obstacles in the
peripheral area where collisions may occur. The algorithm re-plans and successfully avoids obstacles
in reaching the end point.
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(a) Planning process with n = 25
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(b) Planning process with n = 50
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(d) Planning process with n = 100

Figure 6. The process of exploring a path on the map with horizontally dynamic obstacles.

Similarly, Figure 7 shows the tracking process on Map 3 in its entirety. It can be seen from the two
figures that the algorithm has good adaptability in different environments and can plan a safe path,
while dynamically avoiding obstacles.

In order to more intuitively reflect the superiority of BAS-APF algorithm, we also conducted a
comparison simulation on Map 2 and Map 3. Figure 8 shows the tracking results of the BAS-APF and
comparison algorithm in Map 2. As can be seen from the figure, the path obtained by ACO algorithm
is too close to the obstacle, and the path obtained by APF is smooth, but there are too many useless
turns. The path obtained by RRT algorithm is too tortuous, and there is also a case where a useless
return path is taken. The path obtained by BAS-APF takes into account the balance between path
length and path smoothness.
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(b) Planning process with n = 30
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Figure 7. The process of exploring a path on a map with vertical dynamic obstacles.
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(d) Path tracking using BAS-APF

Figure 8. Comparative simulation results on a map with horizontal dynamic obstacles.

Similarly, in Figure 9, we show the results of planning for multiple planning algorithms under
a map with vertically moving dynamic obstacles. In Figure 9a, the path planned by ACO is almost
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attached to the obstacle, which lacks practical application value. In Figure 9c, it can be seen that the
path obtained by APF is cluttered. The path obtained by the RRT shown in sub-figure rrtMap 3 is
found to have a large angle occasionally, which will affect the tracking speed of the robot during
the actual tracking process. The final path obtained by our proposed algorithm, shown in Figure 9d,
maintains a certain distance from the obstacle, while maintaining a certain degree of smoothness.
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Figure 9. Comparative simulation results on a map with vertical dynamic obstacles.

4.3. Comparisons with Other Algorithms

This section mainly shows the comparison of the results of our method and comparison algorithms
in batch simulations. The batch simulations in this paper refers to the average of 200 simulative results.
We have shown the single-planning results of the comparison algorithm in Sections 4.1 and 4.2. In order
to make a more rigorous and scientific comparison of the proposed method and other comparison
algorithms, we conducted batch simulations on each of the three maps and summarized the numerical
results. Like most researchers, we chose path length and planning time as a measure of the superiority
of the algorithm. Table 1 expresses the comparison results of the path lengths of the various algorithms.
By comparison, it is found that, although the advantage is not particularly obvious, the proposed
method has the shortest path on all maps. Table 2 exhibits the comparison results of planning time for
all algorithms. And the BAS-APF method has obvious advantages in planning time.

Table 1. Summary of comparison results of various algorithm path length.

Map
Algorithm

BAS-APF APF RRT ACO

Map 1 989.8 1060.4 1028.6 1457
Map 2 762.2 1104.2 938.8 842.9
Map 3 666.5 1203 670.9 801.3
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Table 2. Summary of comparison results of various algorithm planning time.

Map
Algorithm

BAS-APF APF RRT ACO

Map 1 0.287 1.75 1.9 8.27
Map 2 0.276 0.871 3.31 11.24
Map 3 0.244 0.804 1.79 5.14

From the above two tables, we can see that BAS-APF method has certain advantages in terms of
path length and planning time, and the advantage in planning time is significant. In order to more
intuitively demonstrate the advantages of the proposed method, we visualized the results.

The results of the comparison are shown in detail in Figures 10 and 11. Figure 10 is a comparison
result of path lengths on respective maps. It can be seen that the performance of other algorithms is
not stable, and the proposed method is more stable and optimal. Figure 11 displays the comparison of
the planning time of each algorithm on the simulative map. The comparison of the three sub-figures in
Figure 11 illustrates that our proposed method has significant advantages in planning time.
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Figure 10. Comparison of path lengths on simulative maps.
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Figure 11. Comparison of planning time on simulative maps.

5. Conclusion and Future Work

This paper is concerned with the path planning problem of mobile robots in dynamic
environments. We proposed a new two-stage hybrid method called BAS-APF to solve this problem.
It could find a safe and feasible path, while ensuring real-time performance in a dynamic environment.
Based on the real-time requirements of dynamic programming, the algorithm weighs path optimization
and planning time, and it achieved good results in both aspects. In addition, we verified the
effectiveness and robustness of the BAS-APF method through simulations. Moreover, the superiority
of the proposed method was further verified by comparing it with several different types of classical
path planning algorithms. The experiment test with real robots in real environments is not considered
at the current state of this work. On the one hand, this is because the conditions of our laboratory are
really limited, and the price of mobile robots is expensive, which we cannot afford, for the time being.
On the other hand, the focus of this paper was mainly the research of algorithm, not the construction
of the physical platform of mobile robot.

In the future, we intend to continue work on the following two aspects: One is that we would
like to use real environment and real mobile robots for experiment tests in future work and realize
the optimization on the accuracy of obstacle avoidance, so as to improve our algorithm and reflect
the advantages of the proposed algorithm in the real environment. The other is to extend it to
multi-objective planning so that it can simultaneously plan multiple mobile robots.

Author Contributions: Conceptualization, Q.W., Z.C., L.W. and H.L.; methodology, Q.W., Z.C., L.W. and H.L.;
software, Q.W. and D.C.; validation, Q.W. and S.L.; formal analysis, Q.W., Z.C., L.W. and H.L.; investigation, Q.W.,
Z.C., L.W. and H.L.; resources, Q.W., Z.C., L.W. and H.L.; data curation, Q.W. and S.L.; writing—original draft
preparation, Q.W.; writing—review and editing, Q.W., Z.C., L.W., H.L. and Z.J.; visualization, Q.W., Z.C., L.W. and



Sensors 2020, 20, 188 16 of 18

H.L.; supervision, Q.W., Z.C., L.W. and H.L.; project administration, Q.W., Z.C., L.W. and H.L.; funding acquisition,
Z.C., L.W. and H.L. and D.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (with numbers 61906054
61401385 and 61702146), by Hong Kong Research Grants Council Early Career Scheme (with number 25214015),
by Departmental General Research Fund of Hong Kong Polytechnic University (with number G.61.37.UA7L), and
also by PolyU Central Research Grant (with number G-YBMU).

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, D.; Li, S.; Lin, F.; Wu, Q. New Super-Twisting Zeroing Neural-Dynamics Model for Tracking Control
of Parallel Robots: A Finite-Time and Robust Solution. IEEE Trans. Cybern. 2019. [CrossRef]

2. Jin, L.; Li, S. Distributed task allocation of multiple robots: A control perspective. IEEE Trans. Syst. Man
Cybern. Syst. 2018, 48, 693–701. [CrossRef]

3. Chen, D.; Zhang, Y.; Li, S. Tracking Control of Robot Manipulators with Unknown Models:
A Jacobian-Matrix-Adaption Method. IEEE Trans. Ind. Inform. 2018, 14, 3044–3053. [CrossRef]

4. Sariff, N.; Buniyamin, N. An Overview of Autonomous Mobile Robot Path Planning Algorithms.
In Proceedings of the 2006 4th Student Conference on Research and Development, Selangor, Malaysia,
27–28 June 2006; pp. 183–188.

5. Montiel, O.; Orozco-Rosas, U.; Sepúlveda, R. Path planning for mobile robots using Bacterial Potential Field
for avoiding static and dynamic obstacles. Expert Syst. Appl. 2015, 42, 5177–5191. [CrossRef]

6. Chen, D.; Li, S.; Li, W.; Wu, Q. A Multi-Level Simultaneous Minimization Scheme Applied to Jerk Bounded
Redundant Robot Manipulators. IEEE Trans. Autom. Sci. Eng. 2019. [CrossRef]

7. Wu, Q.; Shen, X.; Jin, Y. Intelligent beetle antennae search for UAV sensing and avoidance of obstacles.
Sensors 2019, 19, 1758. [CrossRef] [PubMed]

8. Roberge, V.; Tarbouchi, M.; Labonté, G. Comparison of parallel genetic algorithm and particle swarm
optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 2013, 9, 132–141. [CrossRef]

9. Chen, Y.; Luo, G.; Mei, Y. UAV path planning using artificial potential field method updated by optimal
control theory. Int. J. Syst. Sci. 2016, 47, 1407–1420. [CrossRef]

10. Chen, D.; Li, S.; Wu, Q. Rejecting Chaotic Disturbances Using a Super-Exponential-Zeroing Neurodynamic
Approach for Synchronization of Chaotic Sensor Systems. Sensors 2019, 19, 74. [CrossRef]

11. Li, S.; He, J.; Li, Y.; Rafique, M.U. Distributed recurrent neural networks for cooperative control of
manipulators: A game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 415–426.
[CrossRef]

12. Wu, Q.; Lin, H.; Jin, Y. A new fallback beetle antennae search algorithm for path planning of mobile robots
with collision-free capability. Soft Comput. 2019. [CrossRef]

13. Chen, D.; Li, S.; Wu, Q.; Luo, X. Super-twisting ZNN for coordinated motion control of multiple robot
manipulators with external disturbances suppression. Neurocomputing 2019. [CrossRef]

14. Vourchteang, S.; Sugawara, T. Area partitioning method with learning of dirty areas and obstacles in
environments for cooperative sweeping robots. In Proceedings of the 2015 IIAI 4th International Congress
on Advanced Applied Informatics, Okayama, Japan, 12–16 July 2015; pp. 523–529.

15. Zhang, G.Q.; Li, L.M.; Choi, S. Robotic automated battery sorting system. In Proceedings of the 2012 IEEE
International Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA,
23–24 April 2012; pp. 117–120.

16. Aravind, K.R.; Raja, P.; Pérez, R.M. Task-based agricultural mobile robots in arable farming: A review. Span. J.
Agric. Res. 2017, 15, 1–16. [CrossRef]

17. Tsardoulias, E.G.; Iliakopoulou, A. A review of global path planning methods for occupancy grid maps
regardless of obstacle density. J. Intell. Robot. Syst. 2016, 84, 829–858. [CrossRef]

18. Jin, L.; Zhang, Y.; Li, S.; Zhang, Y. Modified ZNN for time-varying quadratic programming with inherent
tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans.
Ind. Electron. 2016, 63, 6978–6988. [CrossRef]

http://dx.doi.org/10.1109/TCYB.2019.2930662
http://dx.doi.org/10.1109/TSMC.2016.2627579
http://dx.doi.org/10.1109/TII.2017.2766455
http://dx.doi.org/10.1016/j.eswa.2015.02.033
http://dx.doi.org/10.1109/TASE.2019.2931810
http://dx.doi.org/10.3390/s19081758
http://www.ncbi.nlm.nih.gov/pubmed/31013782
http://dx.doi.org/10.1109/TII.2012.2198665
http://dx.doi.org/10.1080/00207721.2014.929191
http://dx.doi.org/10.3390/s19010074
http://dx.doi.org/10.1109/TNNLS.2016.2516565
http://dx.doi.org/10.1007/s00500-019-04067-3
http://dx.doi.org/10.1016/j.neucom.2019.08.085
http://dx.doi.org/10.5424/sjar/2017151-9573
http://dx.doi.org/10.1007/s10846-016-0362-z
http://dx.doi.org/10.1109/TIE.2016.2590379


Sensors 2020, 20, 188 17 of 18

19. Chen, D.; Li, S.; Wu, Q.; Luo, X. New Disturbance Rejection Constraint for Redundant Robot Manipulators:
An Optimization Perspective. IEEE Trans. Ind. Inform. 2019. [CrossRef]

20. Chen, D.; Li, S. A recurrent neural network applied to optimal motion control of mobile robots with physical
constraints. Appl. Soft Comput. 2019. [CrossRef]

21. Jauwairia, N.; Malik, F.I.U.; Yasar, A.; Osman, H.; Mushtaq, K.; Muhammad, M.S. RRT*-SMART: A Rapid
Convergence Implementation of RRT*. Int. J. Adv. Robot. Syst. 2013. [CrossRef]

22. Noreen, I.; Khan, A.; Asghar, K.; Habib, Z. A Path-Planning Performance Comparison of RRT*-AB with
MEA* in a 2-Dimensional Environment. Symmetry 2019, 11, 945. [CrossRef]

23. Iram, N.; Amna, K.; Zulfiqar, H. A Comparison of RRT, RRT* and RRT*-Smart Path Planning Algorithms.
IJCSNS Int. J. Comput. Sci. Netw. Secur. 2016, 16, 20.

24. Raja, P.; Pugazhenthi, S. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320.
[CrossRef]

25. Li, S.; Zhang, Y.; Jin, L. Kinematic control of redundant manipulators using neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 2017, 28, 2243–2254. [CrossRef]

26. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey.
Robot. Auton. Syst. 2016, 86, 13–28. [CrossRef]

27. Chen, D.; Zhang, Y. A hybrid multi-objective scheme applied to redundant robot manipulators. IEEE Trans.
Autom. Sci. Eng. 2017, 14, 1337–1350. [CrossRef]

28. Guo, D.; Xu, F.; Yan, L. New Pseudoinverse-Based Path-Planning Scheme With PID Characteristic for
Redundant Robot Manipulators in the Presence of Noise. IEEE Trans. Control Syst. 2017, 26, 2008–2019.
[CrossRef]

29. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning, 1998. Available online:
http://janowiec.cs.iastate.edu/papers/rrt.ps (accessed on 11 November 2019).

30. Warren, C.W. Global path planning using artificial potential fields. In Proceedings of the 1989 International
Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; pp. 316–321.

31. Wang, Z.; Cai, J. Probabilistic roadmap method for path-planning in radioactive environment of nuclear
facilities. Prog. Nucl. Energy 2018, 109, 113–120. [CrossRef]

32. Zammit, C.; Van Kampen, E.J. Comparison between A* and RRT algorithms for UAV path planning.
In Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA,
8–12 January 2018; p. 1846.

33. Tahir, Z.; Qureshi, A.H.; Ayaz, Y. Potentially guided bidirectionalized RRT* for fast optimal path planning in
cluttered environments. Robot. Auton. Syst. 2018, 108, 13–27. [CrossRef]

34. Ferguson, D.; Stentz, A. Using interpolation to improve path planning: The Field D* algorithm. J. Field Robot.
2006, 23, 79–101. [CrossRef]

35. Sudhakara, P.; Ganapathy, V. Trajectory planning of a mobile robot using enhanced A-star algorithm. Indian J.
Sci. Technol. 2016, 9, 1–10. [CrossRef]

36. Loong, W.Y.; Long, L.Z.; Hun, L.C. A star path following mobile robot. In Proceedings of the 2011 4th
International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia, 17–19 May 2011; pp. 1–7.

37. Xin, Y.; Liang, H.; Du, M. An improved A* algorithm for searching infinite neighbourhoods. Robot 2014,
36, 627–633.
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