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Abstract: Irrigation is one of the most water-intensive agricultural activities in the world, which has
been increasing over time. Choosing an optimal irrigation management plan depends on having
available data in the monitoring field. A smart agriculture system gathers data from several sources;
however, the data are not guaranteed to be free of discrepant values (i.e., outliers), which can
damage the precision of irrigation management. Furthermore, data from different sources must fit
into the same temporal window required for irrigation management and the data preprocessing
must be dynamic and automatic to benefit users of the irrigation management plan. In this
paper, we propose the Smart&Green framework to offer services for smart irrigation, such as data
monitoring, preprocessing, fusion, synchronization, storage, and irrigation management enriched
by the prediction of soil moisture. Outlier removal techniques allow for more precise irrigation
management. For fields without soil moisture sensors, the prediction model estimates the matric
potential using weather, crop, and irrigation information. We apply the predicted matric potential
approach to the Van Genutchen model to determine the moisture used in an irrigation management
scheme. We can save, on average, between 56.4% and 90% of the irrigation water needed by applying
the Zscore, MZscore and Chauvenet outlier removal techniques to the predicted data.

Keywords: IoT; smart agriculture; soil moisture prediction

1. Introduction

Agricultural activities presently use 70% of the withdrawn freshwater in the world [1]. Therefore,
it is of fundamental importance that we apply irrigation management, especially in semiarid regions
with a scarcity of rainfall. Irrigation management is a part of precision agriculture, in which the correct
amount of water artificially delivered to a field to satisfy the crop needs and the real production of the
users is analyzed [2].

The irrigation must supply the crop water needs at different developmental stages in a given
local. Irrigation management is used to detect when to irrigate, the amount of water needed, and the
irrigation frequency, based on the monitoring of crop evapotranspiration and soil moisture conditions.
Crop evapotranspiration measures the water consumption by crops, according to the developmental
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stage of the crop and the weather conditions [3]. The soil moisture impacts the amount of irrigation
water given to the crop, as irrigation management takes into account the level of water retention in the
soil. Therefore, precision agriculture can reduce water consumption in irrigation by considering the
groundwater available to the crop [2].

The choice of the best irrigation management plan depends on the data available from the
monitoring field. A smart agriculture system gathers and processes data for irrigation management
from several sources using computer science and information technology [4]. Users can provide
the features of different types of crop, soil, and irrigation system, as well as the readings of analog
tensiometers. Tensiometers are soil sensors that detect the matric potential, which are used to estimate
the moisture at different depths and monitoring points in a field. Automatic weather stations [5] can
provide public data through the Internet. Moreover, the field may have sensors and actuators which
can interact with each other as objects of the Internet of Things (IoT) in order to provide services
transparently to the users [6]. Such services are related to irrigation management for monitoring
(i.e., water, soil, and air) and prediction (weather and soil conditions).

However, data are not free of discrepant values (i.e., outliers), which can negatively affect the
precision of irrigation management. Furthermore, data from different sources must fit into the
same temporal window required for the irrigation management and the data preprocessing must be
dynamic and automatic for researchers, engineers, and owners or farmers to benefit from the irrigation
management plan. Data fusion is required to improve the quality of soil data in the case where several
sources provide the same type of data (e.g., moisture) from the field [7]. Data fusion also informs the
decision whether to start irrigation or not in irrigation management that makes use of other types of
data (such as weather or crop data).

In this paper, we propose the Smart&Green framework to offer services for smart irrigation,
such as data monitoring and control, preprocessing, fusion, synchronization, storage, and irrigation
management enriched by the prediction of soil moisture. The Smart&Green services are modular
components which facilitate the reuse and customization of code, which are challenges/limitations to
applying IoT in the smart agriculture context [8]. Our framework allows users to set the data sources:
The nearest weather station, the moisture sensors (analog or digital), the type of crop, and the features
of the irrigation system in the monitored field. Therefore, Smart&Green also contributes to the solution
of another challenge in applying IoT for the purpose of smart agriculture: The integration of the actual
infrastructure of the users (i.e., devices, machines, and software) [9].

Smart&Green recommends the best irrigation management plan, according to the configuration
of the monitored field. The framework also synchronizes weather and soil data, as well as the crop
stage for the chosen irrigation management plan. The Fusion service allows for the definition of outlier
removal criteria for the weather and soil data. The fusion service also applies the outlier removal
techniques Chauvenet, Z-Score, Modified Z-Score, and Generalized ESD before data aggregation,
in order to obtain general information about the soil conditions of a field. Our results show that it
makes irrigation management more precise, therefore saving water.

For fields without soil moisture sensors, the prediction module estimates the soil moisture to
make the amount of water irrigated more precise. In this work, we propose a computational model to
predict the matric potential based on weather data available at public stations [5], crop information,
and the amount of irrigation water used. As another contribution, we provide to the scientific
community a public data set containing the matric potential and irrigation data for cashew cultivation
in an experimental field. The matric potential is the critical variable in measuring the soil moisture.

The computational model reduces the cost of equipment and energy, as the model allows farms
to estimate the moisture without soil sensors for the same soil type. We evaluate the performance
of a set of popular machine learning techniques which have been widely applied to solve regression
problems. We measure the quality of the models without feature selection using the RMSE (Root Mean
Squared Error) and the MAE (Mean Absolute Error) as metrics. Our results show that the combination
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of predicted data and the outlier removal techniques can save an average between 56.4% and 90% of
irrigation water, estimated by water balance management.

The rest of the paper is structured as follows: In Section 2, a literary review of IoT platforms for
Smart Agriculture is presented. Section 3 describes the structure and services of the Smart&Green
framework. Section 4 relates the materials and method of the implementation of Smart&Green,
especially for the soil moisture prediction evaluation. The results are given in Section 5, and we
discuss our contributions in Section 6. Appendix A gives details about irrigation management using
Smart&Green, and we formalize the problem of soil moisture prediction in Appendix B.

2. Related Work

We carried out a systematic literature review to find the works which have answered the following
research questions:

1. What software exists for agricultural management that automates the process of gathering,
preprocessing, fusing, and synchronizing the data used in irrigation management?

2. Does the software implement the well-known irrigation management approaches of matric
potential (Equation (A2)) and water balance (Equation (A3))?

3. Does the software forecast the soil moisture?
4. Can users configure the software using information about their crops, irrigation system, soil

sensors, and weather stations close to the monitored field?

Most of the discovered papers have partially answered the research questions above. To our best
knowledge, there have been almost no Internet of Things (IoT) platforms introduced that provide the
services required for smart irrigation, such as the gathering, preprocessing, synchronization, and fusion
of data; the planning and execution of irrigation management; or soil moisture prediction.

Several studies have only addressed the gathering and visualization of weather and soil data
(Section 2.1). Some works focused on data preprocessing by applying outlier detection algorithms
(Section 2.2). Some approaches used specific methods to decide when to irrigate, whereas others have
implemented water balance and matric potential (Section 2.3). Soil moisture prediction using machine
learning techniques applied to crop data, satellite images, and irrigation management information
has been investigated (Section 2.4). In addition, IoT platforms have been studied, which should be
flexible enough to allow users to configure them for different monitoring cases in smart agriculture
(Section 2.5).

2.1. Data Gathering

In general, most of the sensor nodes used to monitor soil data (such as temperature, humidity,
and matric potential) and weather data (such as temperature and relative humidity) are operated
using open, low-cost hardware platforms such as the Arduino [10–14] or Raspberry Pi [15–17].
Zigbee [11,17–19], LoRa [16], Wifi [20], Bluetooth [14], GSM [12], and GPRS [21] are the predominant
wireless technologies used.

Our proposal allows users choose between the CoAP [22] and MQTT [23] protocols for sending
data to Smart&Green framework storage and later irrigation management. For devices that we can not
turn into a sensor node, such as analog tensiometers, our framework has a mobile application with
which users can gather data manually. The framework also allows users to choose, as a weather data
source, the Brazilian automatic weather station nearest to the monitored field, from which data can be
gathered via HTTP.

2.2. Data Preprocessing

Other approaches have processed soil data to detect outliers [24,25] and treat data using noise
filtering techniques [26]. One system applied an EKF (Extended Kalman Filter) to the soil moisture
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data before the execution of irrigation management, in order to avoid the actuators inappropriately
starting the irrigation [27].

The pattern recognition of water consumption by a crop radicular system, presented in [28],
is an outlier detection technique based on a time-series analysis of soil moisture gathered at several
depths before, during, and after irrigation. This technique allows for the identification of sensors with
poor operation, which indicates the need for calibration or change.

Our proposed framework allows users to define criteria for outlier removal for each type of
weather and soil data used in irrigation management. Our framework also gives the option to execute
such algorithms as Chauvenet, Z-Score, Modified Z-Score, and Generalized ESD (Extreme Studentized
Deviation) to remove outliers and fuse soil moisture data, in the case when a field has several soil
sensors monitoring at different depths.

2.3. Irrigation Management

Other works have automatically started irrigation by implementing algorithms for analyzing the
data gathered by a wireless sensor node. In one study, an algorithm based on decision trees used the
soil temperature and moisture to determine the irrigation time and the needed amount of water [29].
Crisp rules (IF-THEN) were used to compare threshold values with the soil moisture gathered by
sensors, in order to decide whether to turn on the sprinklers of an irrigation system, in [30,31].

Decision support platforms for the execution of traditional irrigation management, such as
the matric potential (Equation (A2)) and water balance (Equation (A3)), have been introduced.
These systems allow agronomists and farm owners to manage Internet of Things (IoT) components
for field monitoring. The matric potential management uses soil data gathered by sensor nodes and
images captured by unmanned aerial vehicles to correctly estimate the irrigation water need [32].

Web systems have been used for the planning and execution of irrigation management. Beyond the
visualization of soil moisture and weather data gathered by wireless sensor nodes, these systems
use crisp rules for data analysis and, when it is necessary, the systems send messages to their users
in order to notify about irrigation times [33] or activate the irrigation system automatically [34,35].
In other approaches, the system takes the rainfall forecast (available on the Internet) into account when
deciding whether to activate the irrigation system [36]. A wireless sensor network can also plan and
execute irrigation management [37]. In this case, the sensor nodes gather and analyze soil moisture
data and turn the irrigation system on until the moisture achieves the field capacity.

A SCADA (Supervisory Control and Data Acquisition) system can automatically carry out the data
gathering, planning, and execution of the water balance management (see Equations (A3) and (A4)).
The soil sensor nodes are also actuators, which control the irrigation and send data continually to
a management system. The system receives data from a weather station on the farm to estimate the
reference evapotranspiration ETo. The system also utilizes the curve of the crop coefficient kc, choosing
its value according to the current developmental stage of the crop [38].

The water balance and matric potential approaches often must take data synchronization into
account. Therefore, some applications have synchronized the data of previously registered crops,
as well as soil and weather data, to precisely determine the irrigation water need for the current
developmental stage of the crop [39–42].

The existing systems described in this section are not flexible enough to allow users to set the
features of a monitored field, such as the type of crop, the type and number of soil sensors, and irrigation
system parameters used. The systems usually work with a predefined configuration and infrastructure.
Therefore, code reuse is impracticable for the irrigation management of agricultural fields which do not
fit to the existing system configuration. Our proposal allows users to register relevant information for
irrigation management: Different types of crops, soil features, irrigation systems, data sources (weather
or soil), and outlier removal criteria. In this work, the framework plans the irrigation management
using the matric potential (Equation (A2)) and water balance (Equation (A3)) approaches.
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Furthermore, none of the systems could forecast the moisture levels in fields without soil sensors.
Our proposal implements computational models to predict soil moisture based on weather data, crop
information, and irrigation water need (IWN) (see Appendix B). In this work, we include the predicted
data in the water balance management, obtaining between 56.4% and 90% of IWN savings over six
months (Section 5.3).

2.4. Soil Moisture Prediction

In [43], the Linear Regression, Decision Tree, Random Forest, and Gradient Boosting with
Regression Tree (GBRT) machine learning (ML) techniques were applied to weather and soil sensor
data (moisture and drought stress) to predict the best irrigation plan for a jojoba crop. The GBRT
model outperformed the others and, so, the decision support service incorporated it as a module of
the system. A model based on support vector regression (SVR) and k-means ML techniques which
used weather data and forecasts, as well the soil data (temperature and moisture), to forecast the soil
moisture has also been investigated [44].

In [45], an integrated system to monitor drought in northern China using satellite images (NOAA,
MODIS, and FY3A), weather stations, and soil data has been discussed. The drought forecasting
used the matric potential at the depth of the crop root, the water balance model, depletion indices,
and measurements of crop stress to estimate the soil moisture and the water quantity needed for
an extended period.

In this work, we apply weather data, crop information, and the amount of irrigation water used
in a computational model, in order to estimate the daily matric potential of the most superficial soil
layer (Appendix B), which signals when the crop needs irrigation [2]. We apply the predicted value in
the Van Genutchen model (Equation (A1)) to obtain the soil moisture used in irrigation management
(Equations (A2) and (A3)) for fields without soil moisture sensors (i.e., Field 1 of Figure A1).

We present two different approaches: Local and global prediction models. In the local method,
we create a prediction model for each monitoring point in an experimental field (Section 4.2). In the
global approach, we create a single model which can be generalized to any monitoring point. We have
evaluated the performance of a set of popular ML techniques which have been widely applied
to solve regression problems: Linear Regression [46], Decision Stump [47], M5 Model Trees and
Rules [48,49], Random Tree, Random Forest [50], RepTree, and GBRT [51,52]. Our results show that
GBRT outperforms the other evaluated techniques in both approaches.

2.5. IoT Platforms for Smart Agriculture

SWAMP (Smart Water Management Platform), introduced in [53], is one of the related methods
which is most similar to our proposal. SWAMP has components to allow for the implementation of
different IoT applications for irrigation management, based on the crop and soil moisture approaches.
Users can customize the services for the gathering (MQTT or LoRa), processing, and synchronization
of data with different types of crops, weather, and country. Therefore, different field configurations
can reuse these services for data analysis and storage, highlighting the excellent flexibility of SWAMP.
However, their techniques for the processing and the fusion of data have not been detailed, and no
application or service for the prediction of soil moisture has been provided.

The Agro-IoT framework, introduced in [54], is also related to our proposal, which provides
users real-time data gathering, aggregation (fusion), and analysis in the context of smart farming.
Agro-IoT reuses several components to implement IoT applications, according to the needs of the
monitored field. Agro-IoT provides similar services to our proposed method; that is, it also provides
the management of devices (i.e., registration of sensors and actuators) and event detection through
data analysis. However, it does not contain modules for data synchronization and outlier removal or
soil moisture prediction.
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3. Proposal

In this paper, we propose Smart&Green: An Internet of Things (IoT) framework for the smart
agriculture domain. A framework consists of “a specific implementation of a skeleton of infrastructure used
for the conception of a work” [55]. Work is any activity performed by users or software. In this proposal,
the work consists of the planning of irrigation management (Appendix A). In fields where there are
no soil moisture sensors, a computational model can estimate the soil moisture for the same soil type
using weather, crop, and irrigation data. Agronomists, researchers, and farmers conduct irrigation
management through software which uses Smart&Green. Figure 1 presents the conceptual architecture
of Smart&Green, divided into four layers: Application, Services, Communication, and Physical.

Figure 1. Conceptual architecture of the Smart&Green IoT Framework for Smart Agriculture.

In software engineering, a framework can also be “a mini architecture that can be reused and that
provides behavior and a generic structure for a family of software abstractions in a context that specifies the
collaboration and use of them into a given domain” [56]. Therefore, given the smart agriculture domain and
the context of smart irrigation, the Smart&Green framework specifies the structure of a set of concrete
and abstract classes to implement modules for the gathering, storage, synchronization, and fusion of
data, as well as mathematical models (Appendix A) which describe irrigation management. Irrigation
management determines the behaviors of the classes and modules. As a mini architecture, the proposed
framework can be reused with different smart agriculture software with the generic functionalities of
irrigation management.

3.1. Application Layer

The application layer provides facilities for the automatization of irrigation management
(Appendix A) and soil moisture prediction. Through this layer, users of an agriculture management
system can insert information about the farm infrastructure: The types of crops and irrigation system
to each monitored field, the monitored soil layers, and the weather stations closest to the farm.
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3.1.1. Irrigation Management Automatization

The Matric Potential and Water Balance modules implement well-known irrigation management
methods (Appendix A). These modules use information registered by users as well as that from
weather and soil data sources. Smart&Green selects the best irrigation management based on the data
available. The principal functions of the Register Module are as follows:

1. User register: Smart&Green framework allows two types of users: Specialist and regular. Specialist
users can provide agronomic information, such as different types of crops, soil, and irrigation
system features. They can also register outlier removal criteria for weather and soil data and
choose algorithms for the fusion service. Regular users can register farms and fields.

2. Farm Register: Users provide information about the farm, such as address and geographical
co-ordinates (i.e., latitude and altitude) for the Smart&Green framework, and select the weather
station closest to the farm.

3. Crop register: A specialist user can create types of crops using information such as a description,
the curve of the crop coefficient, and the critical moisture condition.

4. System Irrigation Register: A specialist user inserts the type of irrigation systems, such as
“micro-sprinkler”.

5. Weather Station Register: Smart&Green automatically selects the weather station closest to the farm
using the geographical co-ordinates. Users can confirm this or choose another one.

6. Soil Sensor Register: The user can insert the types of soil sensors used. Smart&Green already has
analog and digital tensiometers.

7. Field Register: Users set the field configuration features (Figure A1), such as the type of crop,
irrigation system, soil, and if there are soil monitoring points. The developmental stage of the crop
represents the number of days since the initial cultivation. Effective precipitation (mm/h) and
efficiency of the irrigation system are necessary for irrigation management, in order to compute
the irrigation time. In the case of monitoring points, users can register the type of soil moisture
sensor (analog or digital) and the depth z monitored for each monitoring point in the field.

8. Field Communication register: In the case where the monitored fields have sensor nodes that
automatically gather soil data, users can define the type of communication to send the data to the
framework. Users set the IP address and specific configuration (CoAP or MQTT).

9. Outlier Removal Criteria Register: Specialist users can create a threshold for minimum and
maximum values of each type of weather and soil moisture data used in irrigation management.

The Smart&Green framework suggests an irrigation management plan, according to the data of
a registered field. For fields without soil moisture sensors (Field 1 of Figure A1), Smart&Green indicates
the water balance without soil moisture data (i.e., without the term ∆A in Equation (A3)) or the water
balance with the soil moisture data created by the soil moisture prediction module (Section 3.1.2).
For fields with soil moisture sensors (see Fields 2 and 3 of Figure A1), the framework calculates the
matric potential (Equation (A2)) or water balance using the soil moisture data.

3.1.2. Soil Moisture Prediction

In this work, we address a large field (over 7500 m2) to produce one type of crop on a large scale,
in which the soil is monitored by a hundred tensiometers (i.e., soil moisture sensors) at three different
depths. To investigate this scenario, we present the local and global approaches, which can be used to
learn a prediction function f̂ (Appendix B).

The local approach creates a different prediction function f̂i for each tensiometer at the superficial
soil layer of the field. For this, it uses the observations recorded by a tensiometer bi and a weather
station ms, as well the water amount wi given to the crop and the crop coefficient kc related to the
current life stage of the crop. The local approach defines the prediction f̂ in terms of n different
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functions f̂i for local predictions. However, if a field has a large number of tensiometers, a large
number of distinctive prediction models must be trained.

The global approach creates only one prediction function f̂i using the information from all
tensiometers. Therefore, the global prediction model might not fit some individual tensiometers.

The Smart&Green framework implements the prediction model as a modular service (Figure 2)
to complement the irrigation management of fields without soil moisture sensors (e.g., field 1 in
Figure A1). The framework automatically retrieves and stores the meteorological data set Mms

published on the Internet by weather stations. We defined Mms in Appendix B.

Figure 2. Smart&Green Module for soil moisture prediction.

The framework daily preprocesses the Mms data to remove possible outliers. The module of soil
moisture prediction estimates the matric potential ψp of a field, based on (M′ms, W, kc) (Appendix B).
The irrigation management module computes the current soil moisture θc by applying ψp on the Van
Genutchen [57] model, following Equation (A1). Then, the obtained θc is applied to Equation (A2)
or (A3) to calculate the irrigation water need (IWN).

In the Internet of Things (IoT) context, the framework sends the IWN value to an actuator to
start the irrigation system. The irrigation system stops when the field receives the amount of water
specified by the IWN. Although this present work does not handle an automatic irrigation system,
this issue is a concern for the full implementation of an IoT system for smart farms.

3.2. Service Layer

The Service layer supports the Application layer by storing data provided by Smart&Green users
and synchronizing crop, weather station, and soil data when required by any irrigation management
module. The Service layer also carries out fusion tasks for data of soil moisture sensors (e.g., fields 2
and 3 of Figure A1) or the soil moisture prediction.

The Storage service provides centralized data persistence for the monitoring of weather, crop,
and soil data in the fields. The Synchronization service selects the crop coefficient kc which is
appropriate to the current development stage of the crop and retrieves the weather data Mms for
the period needed for irrigation management. The service also requests the Communication layer for
new data from the Internet, if needed.

In the case of soil data, the Synchronization service selects data from all monitoring points
BTc in the field, taking into account the period of irrigation management. If there are no data
available, the service requests new data from the user (field 2 of Figure A1) or the Communication
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layer (Field 3 of Figure A1). Finally, the Synchronization service makes the data set composed of
{kc,current, Mms,period, BTc,period} available.

The Irrigation Management Modules use the Fusion service if there is a field with monitoring
points, each with one or more soil moisture sensors (e.g., tensiometers) at different depths z (e.g.,
fields 2 and 3 of Figure A1). The Fusion service can also treat data created in soil moisture prediction
when irrigation management is required for fields without soil moisture sensors. Data fusion consists
of processing the data to detect and remove outliers (DRO) and submitting data to a co-operative
function (CF), according to a multilevel data fusion architecture [58].

DRO tasks apply criteria and algorithms defined by specialist users to immediately detect and
remove outliers. The Register module of the Application layer allows for the creation of threshold
values for soil data. DRO algorithms are specific to the soil layer monitored. According to [58],
the Z-score is more efficient for data series at the most superficial soil layer (e.g., z = 15 cm). In contrast,
the Generalized ESD (Extreme Studentized Deviate) algorithm works well with data at depth of
z = 45 cm. The Smart&Green framework has implementations of the Chauvenet, Z-Score, Modified
Z-Score, and Generalized ESD algorithms.

A co-operative function (CF) [59] aggregates one type of data gathered at different monitoring
points of a field. Smart&Green uses the mean function as the CF to aggregate soil moisture data at the
same depth. For example, Field 2 of Figure A1 has six monitoring points at two depths. Therefore,
the framework calculates the mean of each set of six samples gathered at a given depth z. After fusion,
the data are ready for irrigation management at the Application layer, which decides whether irrigation
should be started.

3.3. Communication Layer

The Communication Layer has a set of software to gather weather and soil data through network
protocols. This includes a weather client, four soil clients, three soil servers, and a gateway (see
Figure 3). The weather client consists of an HTTP client which downloads weather station data from
the Internet and stores them. Smart&Green offers an API to gather data from Brazilian automatic
weather stations [5].

Figure 3. Interaction between the Communication Layer and the Physical and Services Layers.
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The soil client gathers the matric potential data ψm if the field has tensiometers installed. If the
tensiometers are analog, users have to manually collect the ψm data, using a mobile application that
sends it to the framework via HTTP. If the tensiometers are digital, they are integrated into sensor
nodes that send the data to a gateway near the field. The gateway hosts CoAP and MQTT clients,
which forward the ψm data to the servers of the framework.

4. Materials and Method

In this section, we list the principal software components used in the implementation of our
proposed framework (Section 4.1). We describe what we use for soil moisture prediction, in terms of
(1) the weather, crop, and soil moisture information; (2) the criteria for outlier detection and removal;
and (3) the tested machine learning techniques (see Section 4.2).

4.1. Smart & Green Framework Implementation

We implemented the Smart&Green framework using the Python 3 Language. In the Application
layer (Section 3.1), irrigation management by the water balance module uses PyETo [60] to calculate the
reference evapotranspiration for a crop, with reference to the Penman-Monteith Model [61]. The crop
evapotranspiration measures the water consumption by crops, according to the developmental stage
of the crop and weather conditions [3]. The Service Layer uses the MySQL database [62] to support the
Storage service. The PyAstronomy library [63] provides the implementation of the Generalized ESD
(Extreme Studentized Deviate) algorithm for the Fusion Service.

The aiocoap package [64] supports the implementation of the CoAP client and server of the
Communication layer (Section 3.3). The MQTT client uses the Eclipse Paho MQTT client library [65],
and we used Mosquito as the MQTT server [66]. Our API for the acquisition of weather data operates
by scraping the web page of the automatic Brazilian weather stations [5] using the libraries requests [67]
and beautifulsoup4 [68], as well the frameworks Django [69] and Django rest [70]. We implemented
the mobile application for soil moisture gathering from fields with analog tensiometers (e.g., field 2 of
Figure A1) in the Javascript language through the Firebase platform [71], React Native framework [72],
Realm [73], and React Native Firebase [74] libraries. We also provide a web interface for the
Smart&Green Framework developed using Django [69]. Smart&Green was run on a machine with
2 GB of RAM, 20 GB of hard disk storage, and the Ubuntu 18.04LTS OS.

For farm fields with sensor nodes, such as field 3 of Figure A1, we used an Arduino Pro Mini and
three Irrometer Watermark 200SS [75] digital tensiometers to implement a sensor node which gathers
soil moisture data at 15, 45, and 75 cm. The watermark measures the soil water tension (i.e., matric
potential), which ranges from 0 to 200 CBar/KPa. The sensor nodes use four AA alkaline batteries of
1.5 v as the power source. We modify the Arduino removing the voltage controller and LEDs to the
node has a longer operating life. Sensor nodes send soil data through an nRF24L01 with an external
anthem and power amplifier. The nRF24L01 is a single-chip radio transceiver for the 2.4–2.5 GHz ISM
band. After data transmission, the sensor node hibernates for an hour to save power [58]. We used
a Raspberry Pi 3 with the Raspbian OS as the gateway to receive soil moisture data and send them by
the CoAP or MQTT client to storage.

4.2. Soil Moisture Prediction

4.2.1. Raw Data Set

We obtained a data set of soil moisture from an experimental cashew field with other tropical
raw materials in the city of Paraibapa, Brazil [76]. The field had approximately 250 cashew trees with
nine monitoring spots. Each spot had three tensiometers that allowed manual reading of the matric
potential at depths of 15, 45, and 75 cm. Figure 4 shows the details of the analog tensiometers (soil
moisture sensors), which provided the data set from 2016, 2017, and 2018, with 234, 245, and 138 daily
samples, respectively. It is worth mentioning that, in 2016, the field had salvation irrigation in which
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we gave 5 liters of water for each bud whenever the installed tensiometer at a depth of 15 cm read
a matric potential of 60 kPa. Salvation irrigation prevents plants from dying.

(a) Tensiometers at 15, 45, and 75 cm depths near a
cashew bud.

(b) Cashew buds.

Figure 4. Details of the Experimental Field.

The meteorological data set was obtained from a Brazilian national weather station at Itapipoca
city, Ceara (altitude 102 m; latitude 03◦29′ S; longitude 39◦35′ W). However, we decide to use the
pluviometer sensor data of the field, as the rainfall sensor of the weather station had missing values
over an extended period. Table 1 presents the acronyms, the description of the variables, and the
measurement data units used in our prediction problem. We release the aggregated data set to the
scientific community to ensure the reproducibility of our results and promote research developments
in this field (see Supplementary Materials).

Table 1. Raw dataset structure.

Acronym Description Unit

Tx–y Tensiomenter reading at y depth in a point of monitoring x kPa
Wx The water amount given to the crop field in a point of monitoring x through irrigation L

T_max maximum temperature of air ◦C
T_min minimum temperature of air ◦C

RH_max maximum relative humidity %
RH_min minimum relative humidity %

Rn net radiation MJm2d−1

U2 wind speed m/s
P atmospheric pressure kPa

Ri_f rainfall gathered by the pluviometer sensor mm
Kc crop coefficient

We apply the matric potential ψm (kPa), and the constants in Table 2 to Van Genutchen Model
(Equation (A1)) give the soil moisture θ in cm3 of water/cm3 of soil. We obtained in the laboratory the
constants which describe the soil type of the experimental field. The irrigation managements use θ to
estimate the irrigation water need (Equations (A2) and (A3)).
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Table 2. Van Genutchen Constants for the Experimental Field.

θr θs α n

0.14010 0.38839 0.022504 20.524

We also analyzed the soil particle composition of the experimental field. The soil has a medium
sandy texture in the layer from 0 to 30 cm (805 g kg−1 of sand, 76 g kg−1 of clay and 119 g kg−1 of silt)
and the medium texture in the other layers, presenting the characteristics of a red-yellow Argisol [77].
The maximum organic matter content was 6.4 g dm−3; the pH varied from 5.6 to 6.3 between the
layers; the capacity of cations exchange, from 31.3 to 64.8, and the sum of maximum bases was 62% in
the most superficial layer.

4.2.2. Outlier Detection and Removal

First, the instances that presented Tmax, Tmin < 20, Tmax, Tmin > 39, RHmax, RHmin < 20, and Ri >
250 were removed, as these feature ranges are uncommon in the city of Paraibapa. After that, the mean
µ and the standard deviation σ were computed for the variables P, Rn, and U2 for each month.
Afterward, we filtered out data instances with anomalies; that is, the instances with distance to µ

greater or equal than 3× σ were removed, as performed in [78].

4.2.3. Machine Learning Methods

We decided to build the prediction model using algorithms which have been widely applied to
solve regression problems: Linear Regression [46], Decision Stump [47], M5 Model Trees and Rules
(M5P) [48,49], Random Tree, Random Forest [50], and RepTree. Weka [79] provided all of these.
Another widely used algorithm is the Gradient Boosting Regression Tree (GBRT) [51,52] method and
its implementation XGBoost [80].

Linear regression is a linear model of the relationship between a scalar response (in this work,
the matric potential ψm) and one or more explanatory variables (see Table 1). The linear model consists
of linear predictor functions which use the data to estimate the unknown parameters [46]. Decision
stump models a one-level decision tree. The tree has one root (an internal node) which connects the
leaves (terminal nodes). The model uses the value of one single feature to make predictions [47].

M5P produces a tree with a multilinear regression model for each node. A greedy algorithm
removes the insignificant features in the model fitted to each node. Then, the terminal node computes
new predicted values, considering the predicted values of other intermediate nodes between the
terminal node and the root node [48,49].

Random Tree (RT) uses if-then conditions for answering questions in a sequential order to achieve
a specific result. The depth of the tree consists of the number of questions needed to reach a prediction
value. Random Forest (RF) is a collection of decision trees that can use a random subset of the features.
Therefore, the number of trees impacts the number of features used and limits the number of errors
due to bias or variance [50].

RepTree is a fast decision tree algorithm in Weka which uses information gain/variance to build
a regression tree. Reduced-error pruning takes into account the method backfitting [79]. GBRT is a
predictive model based on a weak learner, a loss function, and an additive model. The weak learner is
a decision tree that can be modified to achieve better results. The additive model adds weak learners
to correct for the residual errors of all previous trees. The loss function consists of the mean squared
error for regression problems [51,52].

We set some hyperparameters required by RT, RF, RepTree, and GBRT with the default values
of Weka [79] and XGboost [80]. We set the maximum tree depth (max_depth) to 3 for GBRT and to
without restriction for the RT, RF, and RepTree methods. The number of trees (n_estimators) was
100 for all methods. Finally, GBRT required a third hyperparameter, the learning rate (learning_rate),
which we set to 0.1.
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The training and test sets included, respectively, 80% and 20% of the data from each soil moisture
sensor at a depth of 15 cm. Overall, for each possible combination, we generated a model and
picked the model which gave the lowest MAE (Mean Absolute Error) and RMSE (Root Mean Square
Error)—metrics which have been widely used to measure the quality of a prediction model (see
Equations (A6) and (A7) in Appendix B).

5. Results

First, we employed the outlier removal techniques of Fusion Service (Section 3.2) on the real
soil moisture data in order to analyze the influence of these techniques on irrigation management
(Section 3.1.1) in the Smart&Green framework (Section 5.1). Then, we analyzed the MAE and RMSE of
the machine learning techniques tested with the local and global approaches (Section 3.1.2) proposed
for the Smart&Green soil moisture prediction module (Section 5.2). Finally, we applied the soil moisture
data created by the best prediction models for irrigation management to analyze the water savings
(Section 5.3).

5.1. Impact of Outlier Removal Techniques on Real Moisture Data by Irrigation Management

From the raw data set (Section 4.2), we selected data from from April to October/2017, since
there was no salvation irrigation in the experimental field, which could affect the irrigation water need
(IWN) estimated by water balance and matric potential management. Then, we set Fusion Service
(Section 3.2) to use an outlier removal technique to process the matric potential ψc provided by the nine
tensiometers (soil moisture sensors) at 15 cm of depth in the experimental field (Section 4.2). Second,
the Fusion Service aggregated ψc data using the co-operative function mean. After this, the modules
of water balance and potential matric (Section 3.1) applied the aggregated ψc to Van Genutchen
Model (Equation (A1)) to estimate the current soil moisture θc at the crop root zone (z = 30 cm) and
compute IWN.

Water balance management (Equation (A3)) can depend only on the crop evapotranspiration ETc

(Equation (A4)) and rainfall R to estimate the IWN of a crop. Therefore, we can only use weather data
and the crop coefficient (Table 1) to plan water balance for n days. However, the IWN estimation is
more precise when we can incorporate the current soil moisture data θcz since the water storage in
the crop root zone can contribute to the crop water supply. We set water balance to estimates IWN
every three days (n = 3) over six months (26 samples of n intervals), and the results in Table 3 indicate
that the use of θcz saved an average of 90.4% of the IWN estimated, as compared to that using only
weather and crop data.

Table 3. Percentage of water saved over six months by irrigation management using real soil
moisture data.

Irrigation Management Outlier Removal Technique Mean (%) Confidence Interval (90%)

Water Balance None 90.4 (81.6, 99.1)
Water Balance Zscore 89.3 (80.4, 98.3)
Water Balance MZscore 89.3 (80.4, 98.3)
Water Balance GESD 90.4 (81.6, 99.1)
Water Balance Chauvenet 90.4 (81.6, 99.1)

Matric Potential Zscore 20.7 (13.7, 27.6)
Matric Potential MZscore 14.1 (8.1, 20.1)
Matric Potential GESD 4.3 (0.8, 7.9)
Matric Potential Chauvenet 5.4 (1.5, 9.3)

The preprocessing of real data with Zscore and MZscore techniques optimized the tradeoff reasonably
between IWN saving and healthy crop development, since these outlier removal techniques decreased
this result to 89.3%. Zscore and MZscore data treatment led to an increment of the moisture θc values
(Figure 5a), and, consequently, a reduction of the term ∆A of water balance (Equation (A3)). GESD and
Chauvenet did not affect the moisture θc data enough (Figure 5b), as well as IWN saving (Table 3).
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(a) Zscore and MZscore (b) GESD and Chauvenet

Figure 5. Real Moisture Data used in Water Balance—the points outside of the dashed lines are the
current moisture data θcz modified by an outlier removal technique.

The matric potential approach depends exclusively on the soil moisture data (Equation (A2)),
and we planned this irrigation management to estimate the daily IWN over six months (121 samples of
days) using the current moisture θc data at the shallowest crop root zone (e.g., z = 30 cm). In the matric
potential approach, irrigation occurs only when θc is minor or equal to the critical moisture condition
θcr, which is the ideal moisture for irrigation and signals when the crop productivity is starting to
decline. Table 3 presents the IWN saving of matric potential management that used an outlier removal
technique when compared to the one that did not use them. Figure 6 shows that there were several
days where θc was equal to θcr (day 1 to 13). However, all outlier remotion techniques treated various
outliers that reduced the current moisture (e.g., 14th and 15th; 18th and 19th; 26th days), improving
the water savings, on average, by 4.3% to 20.7% (Table 3). Zscore and MZscore (Figure 6a) contributed
more to the tradeoff between IWN saving and healthy crop development because they increased the
current moisture θc above the critical condition θcr in more days(e.g., the 40th to 43th; 64th; 104th days)
than GESD and Chauvenet (Figure 6b).

(a) Zscore and MZscore

(b) GESD and Chauvenet

Figure 6. Real Moisture Data used in Matric Potential — the points outside of the dashed lines are soil
moisture θc modified by an outlier removal technique. Irrigation occurs when θc reaches the critical
condition θcr (red line).
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5.2. Performance of Models for Soil Moisture Prediction

The main goal of this analysis is to evaluate and establish the best machine learning (ML)
technique among those tested for each approach (local and global prediction models). In this context,
we considered analog soil sensors (tensiometers) distributed throughout a large field (Figure 4).
We compared the following ML techniques: Linear Regression, Decision Stump, M5P, Random Tree,
Random Forest, RepTree, and Gradient Boosting. Through the metrics MAE (Mean Absolute Error)
and RMSE (Root Mean Square Error), we evaluated the local and global approaches for the estimation
of the matric potential ψm—the primary variable for soil moisture prediction (Appendix B). Finally,
we used the 99% confidence intervals to determine the best-performing model.

Table 4 presents the MAE and RMSE retrieved by the local approach for each prediction algorithm.
The results of the local approach are the mean of the MAE and RMSE achieved by the nine models
built for each monitoring point of the experimental field. Considering all the analyzed errors, Gradient
Boosting outperformed all the other techniques, followed by Random Forest. Both approaches
presented acceptable errors, according to a specialist agronomic engineer.

Table 4. Evaluation of ML techniques using the Local Approach: Mean of MAE and RMSE, 99%
confidence interval. The best performers are highlighted in bold.

Algorithm MAE Conf. Interval MAE RMSE Conf. Interval RMSE

Linear Regression 0.1408 (0.1318, 0.1498) 0.1730 (0.1642, 0.1818)
Decision Stump 0.1798 (0.1632, 0.1965) 0.2196 (0.2031, 0.2360)

M5P 0.1288 (0.1159, 0.1416) 0.1722 (0.1576, 0.1868)
Random Tree 0.1443 (0.1319, 0.1567) 0.2120 (0.1877, 0.2363)

Random Forest 0.1189 (0.1025, 0.1352) 0.1551 (0.1393, 0.1709)
RepTree 0.1227 (0.1119, 0.1336) 0.1684 (0.1566, 0.1801)

Gradient Boosting 0.0752 (0.0683, 0.0822) 0.1038 (0.0939, 0.1137)

Table 5 presents the MAE and RMSE retrieved by the global approach for each algorithm. Again,
the Gradient Boosting algorithm achieved the best results, compared to all other evaluated models.
It can be noticed that the MAE and RSME of the Gradient Boosting model did not vary as much as the
other evaluated models; this means the global model generalizes well for any data from any sensor in
the field. The Local Gradient Boosting approach outperformed the global one. However, even though
the global model error had an average MAE error increase of 58.9% and average RMSE error increase
of 45.7%, the errors were still acceptable, according to the specialist agronomic engineer.

We also analyzed the relevance of the features of Table 1, in the context of the local and global
approaches. We employed Gradient Boosting as, according to the results of this section, it has proved
to be the best ML technique for our purposes. XGboost [80] estimates the relevance of each feature by
counting the number of times it is used in a split node of any decision tree in the Gradient Boosting
forest. Figure 7 presents the results. The more an attribute is used in a decision tree, the higher its
relative importance is. The most-used variables in both approaches were U2, P, Tmax, RHmin, Rn,
and kc.

Table 5. Evaluation of ML techniques using the Global Approach: Mean of MAE and RMSE, 99%
confidence interval. The best performers are highlighted in bold.

Algorithm MAE Conf. Interval MAE RMSE Conf. Interval RMSE

Linear Regression 0.1628 (0.1510, 0.1746) 0.1993 (0.1881, 0.2110)
Decision Stump 0.1938 (0.1812, 0.2063) 0.2335 (0.2220, 0.2450)

M5P 0.1461 (0.1348, 0.1573) 0.1824 (0.1706, 0.1942)
Random Tree 0.1494 (0.1413, 0.1574) 0.2094 (0.2004, 0.2183)

Random Forest 0.1406 (0.1317, 0.1494) 0.1873 (0.1769, 0.1977)
RepTree 0.1438 (0.1362, 0.1515) 0.1832 (0.1740, 0.1924)

Gradient Boosting 0.1382 (0.1382, 0.1382) 0.1717 (0.1717, 0.1717)
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(a) Local Approach (b) Global Approach

Figure 7. Analysis of the relevance of features by gradient boosting prediction approach.

5.3. Analysis of Water Savings through the Use of Predicted Data of Soil Moisture

We used the local and global models based on Gradient Boosting to predict the matric potential
ψm for a field without soil moisture sensors over six months. The local approach estimated daily ψp

at a depth of 15 cm, as the field had nine monitoring points. Therefore, we could apply the outlier
removal techniques to treat this data set of nine daily values. The global approach estimated one daily
value for the ψp at a depth of 15 cm in the field. In this case, there was no need for preprocessing the
data using the outlier removal techniques. We use ψp to compute predicted soil moisture data for the
crop root zone (z = 30 cm) through the Van Genutchen Model (Equation (A1)).

For water balance (Equation (A3)), executed every three days (n = 3) for six months (26 samples
of n), we compared the benefits of our computational models by analyzing how much they saved,
in terms of the irrigation water need (IWN) estimated using only weather and crop data. Table 6 shows
that the use of global approach data saved an average of 56.4% and that the local approach without
data preprocessing saved 100% of the IWN on average.

The Zscore and MZscore methods tended to treat outliers by removing values that decreased the
current moisture θc (Figure 8a). Therefore, they reduced the result of the local predicted data by 90%
and 75.6%, respectively, for water balance. The employment of Chauvenet for the local approach data
also saved 90% of IWN on average since it almost achieved the performance of Zscore (Figure 8b).
The use of GESD did not affect the local approach predicted data (Figure 8b), such that it had almost
the same water savings as when no outlier removal technique was employed (Table 6). We consider
the global approach and local approach using Zscore, MZscore and Chauvenet techniques optimized
the tradeoff between IWN saving and healthy crop development, and they did not outweigh the IWN
savings of water balance that used real soil moisture θc (Table 3).

Table 6. Percentage of water saved in six months by irrigation management using predicted soil
moisture data.

Irrigation Prediction Outlier Removal Mean Confidence Interval
Management Approach Technique (%) (90%)

Water Balance Global None 56.4 (41.4, 71.5)
Water Balance Local None 100 (100, 100)
Water Balance Local Zscore 90.0 (85.7, 94.3)
Water Balance Local MZscore 75.6 (67.1, 84.2)
Water Balance Local GESD 100 (100, 100)
Water Balance Local Chauvenet 90.0 (85.7, 94.3)

Matric Potential Global None 53.1 (44.5, 61.7)
Matric Potential Local None 43.3 (34.7, 51.9)
Matric Potential Local Zscore 95.6 (92.1, 99.2)
Matric Potential Local MZscore 97.8 (95.3, 100)
Matric Potential Local GESD 43.3 (34.7, 51.9)
Matric Potential Local Chauvenet 62.9 (54.6, 71.3)
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(a) Zscore and MZscore (b) GESD and Chauvenet

Figure 8. Predicted Moisture Data used in Water Balance—the points outside of the dashed lines are
soil moisture data θc modified by an outlier removal technique.

For the matric potential (Equation (A2)) executed daily, irrigation occurs when the current
moisture θc is minor or equal to the critical moisture condition θcr, which is the ideal moisture for
irrigation, signaling when the crop productivity is starting to decline. To compare the results of using
the predicted data we used, as a baseline, the IWN estimated by the matric potential using real moisture
data without an outlier removal technique. The use of the global approach data saved an average of
53.1% when compared to the IWN baseline, and the use of local approach data without preprocessing
saved 100% (Table 6). The Zscore, MZscore, and Chauvenet techniques tended to remove the outliers
that decreased the moisture values, setting the current moisture higher than the critical condition
(Figure 9). GESD kept the performance of matric potential management that used the local approach
data. However, we do not recommend the use of predicted data with the matric potential management,
as the rise of IWN saving outweighed the results related to the use of real moisture data in this same
irrigation management example (Table 3).

(a) Zscore and MZscore

(b) GESD and Chauvenet

Figure 9. Predicted Moisture Data used in Matric Potential — the points outside of the dashed lines are
current soil moisture θc data modified by an outlier removal technique. Irrigation occurs when θc is
minor or equal to the critical moisture condition θcr (red line).
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6. Conclusions

Smart Agriculture presently lacks an Internet of Things (IoT) platform for the gathering,
preprocessing, and storage of data used in irrigation management, which also allows for the reuse of
code to different sets of crops, soil, irrigation system, and weather data sources. In this paper, we have
proposed the Smart&Green IoT framework which executes an irrigation management plan using the
water balance and potential matric approaches according to the crop, as well as irrigation system
information provided by users and the weather and soil moisture data available close to the monitored
fields. Smart&Green can be used to preprocess soil moisture data with outlier removal criteria and
techniques of Zscore, MZscore, GESD, and Chauvenet to provide a more precise irrigation water need
(IWN) in irrigation management.

For large fields without soil moisture sensors, we have considered the problem of predicting the
soil moisture by analyzing the weather data, crop coefficients, and amount of irrigation water. We have
formally introduced the problem of soil prediction and designed a methodology which uses training
models according to two different approaches: Local and global. These approaches determine the
implementation of prediction models based on supervised machine learning techniques.

The local approach trains a model for each soil sensor in the field, achieving high performance.
However, this approach can lead to a high cost of data management if there are a large number of
sensors, as it requires the training and maintainence of a large number of distinctive prediction models.
On the other hand, the global approach trains a single prediction model over the observations of all
the sensors. Our results show that gradient boosting with regression trees (GBRT) outperformed the
other evaluated techniques in both approaches. The local approach had the best results with gradient
boost, although the results using the global prediction model were also acceptable.

Furthermore, we have designed a module to support irrigation management with our prediction
models, based on GBRT. We evaluated irrigation management using the water balance and matric
potential approaches with real and predicted data of soil moisture, as well as the impact of preprocessing
data with outlier removal techniques. The real data was part of a data set collected from an experimental
field for research in the city of Paraipaba, Brazil, in which cashews and other raw materials were grown.
We also report that the dataset will be made publicly available to ensure the reproducibility of our results
and promote research developments in this field (see Supplementary Materials).

The use of real soil moisture data from the data set in the water balance approach saved as
much as 90.4% of the IWN obtained for the water balance when using only weather and crop data.
Zscore and MZscore applied to the real moisture data saved 89.3% of IWN, optimizing the tradeoff
between IWN saving and healthy crop development. For the matric potential approach, Zscore and
MZscore obtained (on average) 20.7% and 14.1% of the IWN savings obtained by matric potential
without the use of any outlier removal technique. Considerating a field without soil moisture sensors,
we obtained a reduction between 56.4% and 90% of the water balance IWN based on only weather
and crop data, when we use our global and local approaches to predict the soil moisture data. Zscore,
MZscore, and Chauvenet preprocess the predicted data to optimize the tradeoff without outweighing
the performance of water balance using real moisture data. We do not recommend the use of predicted
data in the matric potential approach, as the computational models (with errors) outperform mostly
the same approach using real data in terms of water savings, according to our results.

Supplementary Materials: The raw data set is available at: http://smartgreen.great.ufc.br/publications.
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Appendix A. Irrigation Management

Figure A1 represents some examples of configurations composed of a crop, soil, weather,
and an irrigation system. The house is next to the entrance of the farm and has a connection to
the Internet. The house also hosts devices that connect sensor nodes in the field to the Internet.
Automatic weather stations make weather data available on the Internet.

In this work, we address fields with one type of crop whose soil has analog (Field 2) or digital
tensiometers (Field 3) monitoring the moisture at more than one depth z. Tensiometers installed
at different points b of the field gather readings of the matric potential ψm. Mathematical models
use ψm to measure the soil moisture θ as the level of water retention in the type of soil. We use the
Van Genuchten Model [57] to express θ as the volume of water by the volume of soil (cm3/cm3),
as Equation (A1) shows:

θ(ψm) = θr +
θs − θr

[1 + (α× |ψm|)n]1−
1
n

, (A1)

where θr is the residual water content, θs is the saturated water content, α is related to the inverse of
the air entry suction, and n is a measure of the pore-size distribution in the soil (e.g., Table 2 has these
Van Genutchen constants for the experimental field soil).

The management of matric potential estimates the irrigation water need (IWN) for a field with
soil sensors (e.g., Field 3 of Figure A1) taking into account the soil moisture at the monitored depths zi,
as Equation (A2) shows:

IWN =
(θ f c,z1 − θcr,z1)× z1 + (θ f c,z2 − θc,z2)× z2 + (θ f c,z3 − θc,z3)× z3

E f
, (A2)

where:

• zi represent the thickness of soil along the profile (monitored depth);
• θ f c represents the field capacity at a depth z after the drainage of water excess, which is a constant

obtained by a laboratory soil analysis;
• θcr is the ideal moisture for irrigation, signaling when the crop productivity starts to decline;
• θc is the current soil moisture. In matric potential management, we initialize the irrigation by

θc,z1 ≤ θcr; and
• E f is the efficiency of the irrigation system used in the field.

Water balance management computes the IWN for an interval of n days, comparing the inputs and
outputs of water in the soil by using the daily crop evapotranspiration ETc, the rainfall R, and ∆A =

(θ f c − θc)z which represents the soil moisture at the crop root zone z through Equation (A3).

IWN =
∑n

i=1(ETc,i − Ri)− ∆A
E f

. (A3)

The value E f is the efficiency of the irrigation system placed in the field. The crop evapotranspiration
ETc represents the water consumption by a type of crop at its current life development stage, which is
given by:

ETc = ETo × kc. (A4)

The Penman-Monteith model [61] estimates the reference evapotranspiration ETo using weather
data. Each type of crop, without hydrological restriction, has a specific coefficient curve in which the
crop coefficient kc varies from 0 to 1.5 with the number days since the planting of the crop.
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Figure A1. Different field configurations.

Appendix B. The Problem of Soil Moisture Prediction

Let B = {b1, . . . , bn} be the set of tensiometers monitoring the soil moisture of a field at n different
points. A tensiometer bj gathers the sample (ψj,15, ψj,45, ψj,75), which consists of the matric potential
ψ readings at 15, 45, and 75 cm depths, respectively, at a point j. Let W = {w1, . . . , wn} be the set of
water amount given to the crop at n different points by an irrigation system. Irrigation management
calculates W using the Equations (A2) and (A3), for example.

The weather data are required, as the climatic conditions affect a crop’s need for soil water and
rainfall can increase the soil moisture. Therefore, we assume that there is a weather station ms close to the
field which provides the meteorological data set Mms = {Tmin, Tmax, RHmin, RHmax, Rn, U2, P, Ri}, where:

• Tmin and Tmax are the minimum and maximum air temperature, respectively;
• RHmin and RHmax are the minimum and maximum relative humidity, respectively;
• Rn is the net radiation;
• U2 is the wind speed;
• P is the atmospheric pressure; and
• Ri is the rainfall.

Within a daily time interval, there are several observations about the weather and field. We denote
by O the collection of observations, which consists of (t, B, Mms, W, kc), recorded within a time t over
a day. The irrigation scheduling methods presented in Appendix A decide to start precise irrigation
when the current moisture θc,z1 is low at the superficial layer of soil (z1 = 15 cm). Therefore, the matric
potential ψi,15 is analyzed daily to achieve θc,z1 using the Van Genutchen model (Equation (A1)). In this
work, we wish to monitor the level of soil moisture without soil sensors (i.e., tensiometers).

Let y(i, Mms, wi, kc) be a function that, given the monitoring point i, the meteorological variables
Mms, the irrigation water amount wi at the point i, and the crop coefficient kc returns ψi,15 (the matric
potential at a depth of 15 cm). Then, y(i, Mms, wi, kc) = ψi,15. We define the problem of soil moisture
prediction as the problem of finding an accurate function f for predicting y(i, Mms, wi, kc), given all
the observations recorded in O.
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Definition A1. The problem of soil moisture prediction requires finding a predictive function f̂ over the class
of all possible predictive functions H, such that

f̂ = argmin∆( f ), (A5)

where f ∈ H and ∆ is a loss function assessing the quality of a candidate predictive function f over the
observations in O. In this work, we use the Root Mean Squared Error (RMSE) and the Mean Absolute Error
(MAE) loss functions, defined as:

∆RMSE( f ) =

√√√√ 1
|O′| ∑

(i,Mms ,wi ,kc)∈O′
( f (i, Mms, wi, kc)− y(i, Mms, wi, kc))2, and (A6)

∆MAE( f ) =
1
|O′| ∑

(i,Mms ,wi ,kc)∈O′
| f (i, Mms, wi, kc)− y(i, Mms, wi, kc)|, (A7)

where O’ is the set of observations used to assess the quality of the prediction and f (i, Mms, wi, kc) is the estimate
returned by function f for y(i, Mms, wi, kc). The smaller the value yielded by the above loss functions, the better
the predictive performance of f .

We employ Machine Learning (ML) techniques to address the problem of soil moisture prediction.
More specifically, we aim at learning, from the observations in O, some function f̂ that minimizes the
error measured by ∆. We train the prediction models on a data set containing examples built from
past sensor observations (see Section 4.2). The ML techniques for regression tasks used in this work
are: Linear Regression [46], Decision Stump [47], M5 Model Trees and Rules [48,49], Random Tree,
Random Forest [50], RepTree, and Gradient Boosting Regression Tree [51,52].
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