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Abstract: The acceptance of a food product by the consumer depends, as the most important
factor, on its sensory properties. Therefore, it is clear that the food industry needs to know the
perceptions of sensory attributes to know the acceptability of a product. There exist procedures that
systematically allows measurement of these property perceptions that are performed by professional
panels. However, systematic evaluations of attributes by these tasting panels, which avoid the
subjective character for an individual taster, have a high economic, temporal and organizational
cost. The process is only applied in a sampled way so that its result cannot be used on a sound
and complete quality system. In this paper, we present a method that allows making use of a
non-destructive measurement of physical–chemical properties of the target product to obtain an
estimation of the sensory description given by QDA-based procedure. More concisely, we propose
that through Artificial Neural Networks (ANNs), we will obtain a reliable prediction that will relate
the near-infrared (NIR) spectrum of a complete set of cheese samples with a complete image of the
sensory attributes that describe taste, texture, aspect, smell and other relevant sensations.

Keywords: ANN; food sensory prediction; food quality estimation

1. Introduction

With the development of modern society and economy, the food industry needs to guarantee and
monitor its product quality to achieve successful commercialization. One way to evaluate the quality
and acceptability of a product is the development of a sensory analysis carried out by a panel of judges
who are trained using techniques such as QDA (Quantitative Descriptive Analysis), in such a way that
the sensory characteristics of the food will be measured. The company, and more concisely its quality
manager, will set a specific sensory profiling and the panel will assess the sensory attributes of a food,
such as aspect, smell, taste, texture and so on.

Only through the senses, panel members can faithfully determine the sensory attributes of a food
(sensory measurement). To guarantee that production process works properly, it would be necessary
to regularly perform these sensory measurements inside a powerful quality control policy that would
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allow detection of the sensory defects when they appear. Unfortunately, these measurements are
labor-intensive and would entail high economic, perhaps unaffordable, costs. Also, in many cases,
these measurements may become subjective due to the state of the judges (tiredness, sensory fatigue,
etc.), and consequently the value of the provided information will be strongly reduced.

An alternative solution would be to obtain trustworthy estimations of these human valuations
using physico–chemical data from the food product captured by sensors (instrumental measurements).
As [1,2] propose in pioneering fashion, automated quality control procedures can be incorporated into
the food processing process. As evident advantages of this approach, the economic, temporal and
organizational costs are reduced, so that the devices availability are greater that the human being ones.
The reproducibility and objectivity of the results would be obviously increased [3,4].

As an instrumental analytical technique, Near-Infrared Spectroscopy (NIRS) is well known in
material sensing. Its major benefit is that it is a non-destructive technique, so if needed (not often)
a simple sample preparation must be performed. In fact, it can yield an on-line response for
analysis during manufacturing, being rapid, non-invasive, very flexible and robust. NIRS technology
applications can be found in medical and biomedical studies, and in forestry, pharmaceutical and
petroleum industries [5]. Also, NIRS is used for on/in-line quality monitoring, and safety and
authenticity in the agri-food [6], liquid food [7] and meat [8–10] sectors, among others.

However, in order to replace human-based sensory panels by artificial systems, it is essential
to guarantee accurate predictions. For modeling the relationship between instrumental data
and sensory descriptions, classical statistical methods of multivariate analysis, such as MLR
(Multiple Linear Regression) and PLSR (Partial Least-Squares Regression) have been considered.
However, these methods are based on the linear behavior of variables, so when these variables
show non-linear behavior, a situation that normally occurs in data obtained from sensory tests [2,4],
the results will not be acceptable. When NIRS technology is used as an instrumental measurement,
PCA (Principal Component Analysis) can be applied to reduce the dimensionality of the problem.

To take into consideration these facts, there are approaches widely applied in the food industry
for classification and calibration tasks based on NIRS, such as Artificial Neural Networks (ANNs) [6].
This is because they are computer-based modeling techniques that are perfectly suited to discover
non-linear trends among variables, especially when these ones are unknown. They can work with
signals that contains chaotic and noisy data [11,12]. ANNs allow the design of accurate estimation
models that are beyond the reach of classic linear approaches, so they will be considered for our
research proposal. ANNs constitute a powerful tool for tasks as predictions due to their powerful
learning capabilities that allow the extraction of information for complex datasets. The most commonly
used ANN architectures [6] are Multi-Layer Perceptron (MLP), Radial Basis Function, for supervised
paradigms and Kohonen Self-Organizing Map for unsupervised paradigm, i.e., when the desired
classification is not available.

Within the field of food technology, Neural Networks have been very useful and widely used
tools in food safety or food quality analysis [13,14]. More related to the proposed work, ref. [15]
uses the chromatographic fingerprint obtained by an electronic nose to predict the physical, chemical,
functional and sensory properties of different food products during the different stages of processing
and distribution. The synergy of NIRS and Neural Networks has been explored in technology of pork
meat [16,17], of wheat flour [18], of wine [19] and other commercial beverages [20]. More specifically,
the fatty acid composition of vegetable oils is determined in [21]. The production season and the
cows feeding regime in butter production are discriminated in [22]. Also, in a work very closely
related to that presented in this paper, an ANN was successfully used in [23] to establish the model for
determining the drying time and the percentage of milk mixture (cow, goat and sheep) in cheeses of
variable composition from data on fatty acids and NIRS. As a summary, it can be stated that most of
the work is aimed at classifying and predicting the composition and processing conditions of different
food products.
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In this paper, we present a study on the use of ANNs for the estimation of 19 sensory characteristics
of samples of controlled-processing cheese. As instrumental measurements we use the NIR spectrum
in the range 1100 to 2000 nm. The NIR information was coupled with 19 sensory attributes to predict
aspect, taste, smell, texture, and other sensations linked to cheese quality. The training and the
prediction ability of the ANN performance is based on all the data provided by a panel of judges
trained in the QDA methodology.

2. Material and Methods

The global schema of the proposed system to make the prediction of the sensory attributes of a
cheese sample can be observed at the Figure 1. The system has as input, the NIRS data of the sample
and as output, its sensory properties, described by 19 variables. The following sections will outline
the main elements of our proposal, together with the material and methods used. First, the material
used will be described: a complete set of samples, which were taken from a wide range of cheeses
made from sheep’s, cow’s and goat’s milk in different percentages. The sensory analysis of the samples
carried out by a panel of experts in QDA methodology is then described. As an instrumental technique,
NIR spectroscopy was applied to each of the cheese samples to extract their spectral information. Next,
the two main techniques that we have considered will be presented, i.e., Principal Component Analysis
(PCA) to perform a reduction of the dimensionality of the input data, and Artificial Neural Networks
(ANNs) to make numerical predictions for each of the sensory properties.

Figure 1. Global scheme of the prediction of 19 sensory parameters for each cheese sample. PC1, PC2
and PC3 denote the three principal components of Principal Components Analysis (PCA) on NIR
spectra. Sensory characteristic i refers to each of the 19 sensory parameters of the cheese to be estimated.

2.1. Cheese Samples

Various types of cheese were produced in a controlled manner in the pilot plant of the Food
Technology Area at the University of Salamanca. Two production processes were carried out:
112 cheeses in the winter season and 112 in the summer with milk collected directly from farms
located in Zamora (Spain). In a prescribed way, cheeses of 16 different formulations, between 0%
and 100%, of raw milk from cow, sheep and goat were made [24]. After a classic initial production
process, several pieces of each formulation were taken, initially with a diameter of 10 cm and a
thickness of 5 cm. The aging process was performed at a pilot plant with controlled climatic conditions
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(15 ◦C and 70% HR). In this way, a period of seven (7) months of aging (from 0.2 to 6 months) was
considered to take into account this characteristic in the sensory analysis procedure. In this work,
cheese samples of each of the 16 formulations from winter and summer milks and two (2) aging
periods (4 and 6 months) were considered to perform spectral (NIR) and sensory analytical testing,
with a total of 64 different samples.

2.2. Sensory Analyses

In [25], the sensory task is described in detail and rigorously, including the conditions of
the activities performed. In the present work, we only use the complete data provided by [25].
Therefore, only the most significant details needed to understand the data used in our work will be
described below.

A panel of 8 judges was trained in the application of the QDA methodology over 18 sessions.
During the training, the panelists agreed on the benchmarks, terminology definitions and evaluation
techniques in the sensory profile of the cheese. Sensory properties related to aspect, taste, smell,
texture and other sensations were considered. Specifically, there were 19 attributes evaluated (Table 1),
framed within: aspect (homogeneity, color, holes), taste (salty, rancid, intensity, sour, buttery),
smell (rancid, lactic acid, intensity), texture (chewiness, creaminess, fatty feeling, granularity, hardness)
and other sensations (hot, remains in throat, retronasal).

Table 1. Sensory parameters applied by the taster panel and their main statistical descriptions for the
total sample dataset considering judges’ individual scores.

Property Mean Deviation Minimum Maximum

Aspect-Homogeneity 4.5 1 1.5 7
Aspect-Color 4.1 1 1.5 7
Aspect-Holes 3.4 1.3 1 7
Taste-Salty 2.9 1 1 6
Taste-Rancid 2.8 1 1 6
Taste-Intensity 4 1 1 7
Taste-Buttery 1.7 0.8 0 4
Taste-Sour 3.2 1 1 6
Smell-LacticAcid 2.6 0.9 0.5 6
Smell-Rancid 2.4 1 1 6
Smell-Intensity 3.7 1.1 1 6
Texture-Chewiness 3.2 0.9 1 6
Texture-Creaminess 2.2 0.9 0 4.5
Texture-Fatty Feeling 2.9 0.9 1 5.5
Texture-Granularity 3.5 1.2 1 7
Texture-Hardness 3.2 1 1 6.5
Other-Hot 2.9 1.1 1 7
Other-Remains 2.9 1 1 7
Other-RetroNasal 3.1 1 1 6

To quantify the intensity of each attribute, 8-point scale was used, with ‘0’ corresponding to the
absence of the parameters, ‘1’ referring to the minimum intensity and ‘7’ to the maximum intensity
for each of the parameters. This type of scale was selected because it had given good results in other
previous works, when it was used to evaluate the characteristics of the cheeses [26]. To avoid scaling
problems, the tasters’ scores for each characteristic have been normalized inside the interval from
−1 to 1, based on the maximum and minimum values of the opinions made by the judges.
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2.3. NIR Spectroscopy

NIR spectra were acquired by a Foss NIR 5000 with a standard 1.5 m 210/7210 bundle fiber-optic
probe (Ref no. R6539-A). The probe employs a remote-reflectance system and has a window of quartz
with a 5 cm ×5 cm surface [27]. NIR spectra were recorded by directly applying the fiber-optic probe
to slices at least 1 cm thick at room temperature (20–23 ◦C). Therefore, this instrumental measurement
did not require any sample preparation.

For each sample, 32 scans were performed, which were averaged to give a spectrum represented
as values of log(1/R) (R means reflectance) as a function of the wavelength in the range between
1100–2000 nm with a nominal spectral resolution of 2 nm. To minimize sampling error, all samples
were analyzed in triplicate. Prior to each recording, the probe window was cleaned to minimize
cross-contamination. In NIRS spectra, we obtain the reflectance measured against the wavelength in
the near-infrared region, providing chemical-physical data about the food product. These parameters
characterize, although not directly, the sensory properties of food as perceived by consumers. As a
result, spectral information can be used to determine the sensory attributes of cheese.

2.4. Principal Component Analysis

NIR spectroscopy constitutes a technology that generates a huge amount of data about organic
materials. PCA is useful to translate the concrete information to a set of combinations, named principal
components (PC), that explain the variability of the dataset.

As has been exposed, 64 samples of cheese were used for this work. At previous section,
the wavelength interval used for NIR was presented, so for each sample, 450 variables are considered,
i.e., log(1/R) for each wavelength. The complete set of NIR data for all 64 samples will be taken into
account. Our goal is to reduce the dimensionality of the variables, so the ANN model will be feasible.
Instead of inputting 450 variables into the ANN, we tried to find a few representative ones of the
spectral information: the PCs that explain the variability of the dataset.

2.5. Artificial Neural Networks

The mathematical tool used to predict the sensory characteristics of cheese samples is based on
ANNs, which fall into the non-linear modeling methods.

ANNs are made up of process elements (artificial neurons) distributed in layers linked by
weighted interconnections. The MLP (Multi-Layer Perceptron network) architecture has been
successfully used to make accurate estimates in our work and, as it has been mentioned previously,
in multiple works in the field of food technology [13]. It has three layers. External data are entered
in the input layer, in our case the information is related to the NIR spectra of the cheese samples,
processed by PCA. Once the data are processed by the neurons in this layer, they spread to the middle
layer. The neurons in the hidden layer produce intermediate results that are provided to the output
layer to calculate the ANN response. For each sensory attribute, an ANN model will be constructed:
in the input layer, the PCs data of the cheese sample are entered and in the output layer the prediction
of a sensory attribute of the cheese sample is obtained. Therefore, each ANN model will be designed
using the JavaNNS (Java Neural Network Simulator) application and the model will be developed
within the application as a Multi-Layer Perceptron network (MLP).

The parallel processing of the different neurons allows large volumes of data to be processed.
The information processed in each layer is propagated as a wave of data between the three layers,
from left to right, through the existing connections between the neurons in each layer. Each pair of
neurons in different layers is connected by a weight that indicates the degree of interaction between
the neurons. The output of a neuron depends on an excitation function (linear or not) of the neuron
and is the sum of the input values, weighted by the connection weights.

The ANN can adapt to the environment, through examples, by adjusting the weights that ponder
the connections of the neurons. One of the learning paradigms of the network is supervised learning,
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where the desired behavior is taught through training examples, in our case the sensory score dataset
provided by trained panelists as output, and the spectral dataset as input. The ANN processes the input
data that belongs to the training dataset, and compares the outputs produced with those expected.
The network iteratively adapts the weights (initially they have a random value) of its connections to
minimize a function of the error between the result of the ANN and the expected result of the training
dataset. At the training stage, a backpropagation algorithm will be used where the calculated error is
propagated backward through the network layers.

A training data instance will be a (xi, yi) pair, where xi will be related, using PCA, with the NIR
measurement for a cheese sample and yi will be sensory score given for a human tester. Therefore,
the training dataset will be constituted by several pairs (xi, yi).

Finally, at the validation stage, an attempt will be made to assess the capacity of the trained
network to generalize. For this purpose, a set of samples is used, a validation dataset, which is
representative and not used during the training stage. In this way, we try to avoid over-training the
network, so that it will have the capacity for generalization. A five-fold training procedure will be
applied, where a split is made with a selection of 20% instances for validation (randomly selected) and
80% for training, with five (5) training experiments performed. In this way, the size of the training set,
in addition to the network architecture, has influence on its generalization capacity, so it must have a
sufficient number of samples and it will be related to the number of neurons in the hidden layer.

2.6. Metrics to Evaluate the ANN Model

Once the ANN has been trained, an prediction model will be available, making it necessary to
evaluate its performance. In this study, a set of indexes and plots will be computed to evaluate the
neural model performance for an unknown set of N samples (validation dataset):

• The root mean squared error of prediction (RMSEP)

RMSEP =

√
∑N

i=1 (yi − ŷi)
2

N

being yi, ŷi the judges’ real score and the prediction (artificial score) of an attribute of the sample
i-th, respectively.

• The squared correlation coefficient R2 defined as

R2 = 1− SSE
SST

where SSE is the Sum of Squared Error between the model predictions (ŷi) and the target values
yi, i.e., the mean of the judges’ individual scores for each sample

SSE =
N

∑
i=1

(ŷi − yi)
2

and SST is the Total Sum of Squares defined as the sum of the squares of the difference of the
judges’ scores and its mean ȳi

SST =
N

∑
i=1

(yi − ȳi)
2

Consequently, a perfect fit is given when R2 = 1 and there is no fit when R2 = 0.
• Model residuals plot, i.e., residual defined as the difference between predicted and measured

value (εi = ŷi − yi).
• Scatter plot of predicted values and judges’ individual score mean for each sample.
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3. Results

In the following, the results that are concerned in our work will be exposed. First, the data that
will be used to train and to assess the ANN from the tasting panel will be presented. Then, NIR spectra
obtained from cheese samples are presented. PCA will be applied to this dataset, i.e., the spectra,
to obtain a set of principal components that will be used as input to the ANN. Finally, the analysis of
ANN performance over the validation dataset will be shown.

3.1. Measurements of Taster Evaluation Results

In the sensory evaluation phase, the panelists graded the cheeses according to the list of
descriptions defined during the panel training. In particular, the 10-member panel met in 4 tasting
sessions to evaluate the cheeses. These 4 sessions correspond to cheeses with 4 and 6 months of
maturation and made with winter and summer milk. In each session, cheeses of the 16 formulations
were tasted and the 19 attributes described previously were evaluated by the judges. However,
scores of 2 members were discarded as strongly disagreeing. In total, for each of the attributes, a score
dataset of 512 items is available.

Table 1 includes the 19 sensory attributes evaluated by the panelists and the main statistical results
(mean, average, minimum and maximum) relating to the tasting activity. These statistical results have
been calculated from a set of 512 individual scores, corresponding to the sensory evaluation of cheese
of the 16 different formulations in 4 tasting sessions by the 8 judges

3.2. NIRS Measurements

In each tasting session, the spectrum for the complete set of cheeses was recorded and in Figure 2
the results can be observed. The trends of spectra were quite similar. The entire wavelength range of
1100–2000 nm was applied to develop the PCA-ANN prediction models. The spectra curves have an
increasing global trend with 4 strong local peaks at wavelengths around 1210, 1450, 1730 and 1930 nm
and 3 local valleys around wavelengths of 1280, 1650 and 1850 nm. We consider that no pre-processing
of the spectrum data is necessary to avoid any loss of information. Therefore, the complete and original
dataset will be used with Principal Component Analysis.

Figure 2. NIR measurements (spectra) for the whole sample set in the wavelength range 1100–2000 nm.
Four colors are used to distinguish the spectra according to the aging and seasons of the cheese
(4 months/Winter-Green, 6 months/Winter-Magenta, 4 months/Summer-Yellow, 6 months/Summer-Cyan).
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3.3. Principal Component Analysis

Our goal was a dimensional reduction for the spectral information so that a significant reduction
for the number of input variables is reached. As the NIR spectrum extends from 1100 to 2000 nm
with a spectral resolution of 2 nm, it produces 451 values. Applying the PCA technique, three (3)
principal components that can explain the 99.98% of spectral variability are obtained. PC1, PC2 and
PC3 explain most of the variability of the spectrum data: 86%, 12% and 1% respectively. Loadings of
each component are constituted by 450 values, i.e., its relationship with the considered 450 variables
(each one related with the reflectance at a given wavelength), so loadings of component would be seen
as function of the wavelength.

Figure 3 (loadings plot) shows the weights for each the wavelength (variable) when the main
components are calculated: the three PCs summarizing the information retained in the whole spectral
dataset. This situation can be also observed graphically in Figure 4 (scores plot), where the main
variations appear along the first component axis, followed by variations in the second component.
Finally, at the third component minimal variations can be observed.

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Wave Length (nm)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

W
e

ig
h

t

PCA 1st Component: 85.58 % Explain

(a) First Component

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Wave Length (nm)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

W
e

ig
h

t

PCA 2nd Component: 11.92 % Explain

(b) Second Component

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Wave Length (nm)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

W
e

ig
h

t

PCA 3rd Component: 1.22% Explain

(c) Third Component

Figure 3. Loadings plot—Principal Components obtained by PCA from NIRS. The weights assigned to
each one describes the relative influence for each wavelength.

Figure 4. Scores plot—cheese spectral dataset represented in the Principal Components space. It can
be observed that the main variability is found along the first PC. In the third direction the variation is
quite small.
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3.4. ANN for the Sensory Prediction

At Figure 5, the topology of the ANN model can be observed, with three (3) layers connected by
feed-forward links. This model is constructed in the following way:

• An input layer of 3 processing elements (PE or neurons) that uses the linear function as an
activation way. The inputs will be composed by the three (3) principal components that are
obtained using PCA. In Section 3.3 the description of these components has been presented.

• A hidden layer constituted by 5 PEs. According to Kolmogorov’s theorem, a three layer ANN with
2n + 1 PE (where n is the number of inputs) in the hidden layer is enough to map any function,
so we would need 7 elements in this unique hidden layer. However, in our case, the size was
reduced to 5 neurons to avoid an overfitting risk. We have used the hyperbolic tangent function
as an activation function. As it is known, it is responsible that non-linear behaviors can be learnt.

• An output layer with one (1) PE that provides the artificial score of the modeled sensory
characteristic. It has a linear behavior.

Therefore, nineteen (19) Artificial Neural Networks have been trained: one for each sensory
characteristic. The training process described below has been developed independently for each ANN.

Each network instance uses a new initializing process for the values of the link weights. As a
metric of the training parameter performance, the mean squared error (MSE) on the training dataset
has been used, so the training algorithm is stopped as soon as this value no longer decreases. Also,
it must be avoided that the MSE can increase, i.e., due to an overfitting scenario in the ANN learning
process. In the backpropagation with momentum algorithm used, values µ = 0.05 for the momentum
and a learning rate δ = 0.00002 have been considered. As for each network the process has been
developed independently.

Figure 5. Schematic representation of neural model for the prediction.

At the end of this phase, a NIRS-based prediction model is available for each sensory attribute p,
where for the sensory attribute value yp

i of the sample i-th, a prediction ŷi
p is obtained with an error ε

p
i

ŷi
p = f p(xi) = yp

i + ε
p
i (1)

where f p will be considered to be a function for each attribute p, being p ∈ 1 . . . 19; xi is related to
spectral data of the sample i-th and to the three (3) PCA components that can be obtained from the
NIR spectra for the complete set of cheese samples. The prediction model that will be considered the
most accurate will be the model that minimizes a function of the error (εp

i ). In this way, ref. [28] defines
“accuracy” as closeness to the panelist judgement (reference data).

For the training and validation of each of the 19 ANNs, a 512-item score dataset has been available:
64 samples that are tasted by 8 judges. Therefore, for each parameter, we have 512 pair (xi, yi), with (8)
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different values yi for each sample. This set has been split into 80% of the items for the training phase
and 20% for the validation phase of each ANN, as explained previously. This number of items in the
training dataset and in the validation dataset has been sufficient to guarantee a reliable ANN model,
as we will check when evaluating the performance of the resulting ANNs.

3.5. Evaluating the Performance of Sensory Attribute Predictions

In our work, a set of indexes and plots, as explained in the “Materials and Method” section,
has been computed to assess the performance of each neural model in the validation dataset
(unknown samples).

As it can be observed in Figure 6, RMSEP can be found between a value (0.34) for taste intensity,
fatty feeling and chewiness and a value (0.59) for granularity, except for holes. These low values
that are based on the error function, lead to the conclusion that the ANN model is very accurate, not so
much for holes.

Figure 6. The root mean squared error of prediction for the whole set of parameters for unknown samples.

The Figure 7 shows that for the squared correlation coefficient R2 obtained for each one of the 19
trained networks, with exceptions, the obtained values are between 0.73 and 0.87. As a clear conclusion,
it supposes a high level of adjustment. As can be seen, the networks that achieve a better fit correspond
to those that predict the intensity of taste, chewiness and fatty feeling (texture) with values of 0.87,
0.86 and 0.87. In the opposite, the lower values of R2 are obtained in the attributes: rancid (smell),
salty (taste) and remains in throat with values 0.73, 0.73 and 0.74, except for buttery and holes.

Figure 7. Squared correlation coefficient of prediction for the whole set of parameters for unknown samples.
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To illustrate the predictive capacity of each ANN, the artificial scores provided for each parameter
are presented (Figure 8—scatter plot) on the same graph with the mean judges’ scores for the prediction
dataset. It can be observed that ANN predictions are mostly inside an acceptable interval around the
expected value for the set of taster evaluations, pointing out that the expected value is defined by the
mean per sample of the individual judgements. This interval is marked within each figure by red color
lines, defined by the deviation in judges’ scores for each attribute, with the data collected in Table 1.
Therefore, ANN prediction behavior is similar than taster.
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Figure 8. Scatter plot for PCA-ANN prediction results vs tasters’ scores for all sensory attributes for the
prediction dataset. The performance over the attribute span is observed for the whole set of attributes
in the prediction stage. The green line is the expected score and the red lines mark the interval defined
with the deviation of the tasters’ scores for the total set of samples.
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As another way to review the assessment of the prediction capacity of the ANNs developed in
this paper, a set of plots of the obtained residuals is presented, i.e., the difference between the total
mean of the assessments made by the judges and the value estimated by the ANN for each sample of
the validation set. At Figure 9, only the results for the attributes with the highest and lowest values of
R2 are shown. The values of residuals for the all characteristics are mostly within the range (−0.5, 0.5)
around the estimation value, with mean values of residuals between 0.24 (chewiness) and 0.39 (salty),
which clearly means that the estimation value is correctly adjusted to the human tasters assessment.
It must be remembered that these valuations are quantified with integer values between 1 and 7
(Table 1).

(a) Residual for taste intensity (b) Residual for chewiness (c) Residual for fatty feeling

(d) Residual for rancid smell (e) Residual for salty taste (f) Residual for remains in throat

Figure 9. Residual for the predictions for different atributes.

4. Discussion

The obtained results can be considered sufficiently successful. There are few studies dedicated
to the application of ANNs to model the relationship between sensory analysis and instrumental
measurements. As one of the preliminary works, in [29] ANNs were applied to the determination
of mathematical relationships linking human sensory judgements to physical measurements of
external color for tomato and peach. The involved parameters, concerning the perception of fruit
color, are directly related to the instrumental measures, instead of our case where the experimental
measurement is not directly related to any of the sensory parameters, because there is no direct
property measurement (holes for example). Other related work, ref. [11], tries to rationalize the use
of concentrates in fruit drinks production, so they constructed an ANN model to make predictions
about the taste intensity of blackcurrant concentrates using gas chromatography as an instrumental
measurements of these flavor component but, evidently, these ones are directly related with the
perception (flavor intensity). Anyway, as in our work, they show that ANN performance is better that
PLS or PCR methods. Another application of ANN that is related with sensory properties can be found
at [30] that makes predictions about the formulating process for food products (such as beverages)
based on their chemical composition. The correlation between sensory and instrumental data was
studied using ANNs but combined with classical methods of data analysis based on linear models.
It shows the capabilities of ANN, especially when the number of involved variables grows.

More directly related with our proposal, in [31] MLP was applied to evaluate the sensory texture
properties of cooked sausages, but, first the dataset size is reduced, and the instrumental measurements
(mechanical laboratory tests) are directly related with the sensory properties. We must indicate that
in our case the relationship between sensory parameters and NIRS is not so direct. Also, in the same
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way, ref. [4] makes use of MLP to make predictions of the texture attributes of light cheesecurds
perceived by trained judges based on instrumental texture measurements. At [12] a relationship
between chemical parameters, such FFA (Free Fatty Acids) or PV (Peroxide Values), with sensory
panel results to distinguish the olive oil quality (extra virgin or no extra virgin) is proposed. It is a
classification problem, in the same way our group obtained good results with our same cheeses in a
previous work [23]. More recently [32] classifies strawberry purees using spectral information and
Deep Neural Networks and [33] also performs classifications tasks. Thus, many studies focus only
on classifying food according to quality criteria or on determining only one attribute by means of a
non-online instrumental measure, but not on the determination, using NIRS, of all the attributes with
numerical values that the panelists have evaluated.

The spectral data were incorporated into the ANNs by means of Principal Component Analysis.
With the first three components, 99.98% of the spectral variability can be explained: 86%, 12% and
1%, respectively. From a comparative point of view, the weight of the third component PC3 may
be negligible compared to the weight of PC1 and PC2. However, we have also included the third
component as an input in the ANN, since we think that in a non-linear behavior this small weight can
be significant, and the third component can incorporate useful information.

For the preparation of the ANN, we have had 19 data sets with 512 items in each: the scores of
19 sensory parameters given by 8 judges for 64 different cheese samples. Therefore, we have used
512 pairs (spectral data input, attribute score output) with (8) different values of attribute score output
for each sample. In our preliminary experiments for the training of each ANN, we only considered the
mean of the tasters’ scores for each sample and the results were very poor. Later, when we considered
the entire dataset (512 items), with the individual scores of each judge, the training of each ANN was
possible, and the results improved significantly. The individual data provided by taster (with the
individual noise) played a positive role in the realized training experiment, no resampling activity is
needed, nor repeating the samples to adjust the probability distribution of the data.

In any case, we must realize that two parameters (holes and buttery) have acceptable behavior,
but it is worse than the rest. It must be considered that holes present largest deviation than the rest and
buttery has reduced span in the taster reactions (Table 1). Anyway, research work must be performed
in the future to find the activities to enhance the prediction results for them.

Considering the same task and the same dataset, we then make a comparison with other
techniques to make the predictions. It can be observed that our results, obtained with ANNs on
unknown samples, are better than those obtained in [25]. Our proposal offers mean values for residuals
between 0.24 (chewiness) and 0.39 (salty) and [25] presents values between 0.9 for holes and 0.4 for
creaminess, chewiness and retronasal that in fact constituted good results.

We think that the reason is that MPLS (Modified Partial Least-Squares) that they used is a
procedure based on linear models, and it can be posed that the relationship between sensory parameters
and NIRS has a non-linear behavior. Our future work will be related to the considerations of
other varieties of cheeses to improve the usability of the approach. Also, the use of more complete
information as hyperspectral as [34] can be very useful in this kind of estimation. It could be interesting
to include the aging feature as a differentiation in the prediction . We think that it could be quite useful,
and it will be considered in future works.

5. Conclusions

The functional relationship of the numerical values of sensory attributes for food products with
the instrumental measurements obtained with current techniques, such as NIR, can be posed as
modeling task of a highly complex relationship. This is due to the fact that the mechanisms that relate
these datasets are multiple and each of them will be complicated (or unknown), so the model will
probably be not linear. In this sense, ANNs are the ideal modeling tool because their bases use this fact
(use of non-linear functions) as a key aspect of its working way.
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In this paper, a serious experimental work on the determination of sensory attributes has been
presented and it is supported by an acceptable volume of evidence on a well-defined population.
These data and the realization of experimental NIR scans on the food (cheese) samples will constitute
the data that will be used for the learning task. As a final tool, the obtained system based on PCA-ANN
allows reliable predictions of sensory attributes of the samples, with better results than MPLS on
the same experimental data sets. As a result, a very useful tool for quality control with a very
low computation cost is obtained. In addition, it must be considered that the proposed procedure
can be improved, including other varieties of cheese as well as the aging feature as a prediction,
at future works.
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