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Abstract: Effectively cleaning equipment is essential for the safe production of food but requires a 
significant amount of time and resources such as water, energy, and chemicals. To optimize the 
cleaning of food production equipment, there is the need for innovative technologies to monitor the 
removal of fouling from equipment surfaces. In this work, optical and ultrasonic sensors are used 
to monitor the fouling removal of food materials with different physicochemical properties from a 
benchtop rig. Tailored signal and image processing procedures are developed to monitor the 
cleaning process, and a neural network regression model is developed to predict the amount of 
fouling remaining on the surface. The results show that the three dissimilar food fouling materials 
investigated were removed from the test section via different cleaning mechanisms, and the neural 
network models were able to predict the area and volume of fouling present during cleaning with 
accuracies as high as 98% and 97%, respectively. This work demonstrates that sensors and machine 
learning methods can be effectively combined to monitor cleaning processes. 

Keywords: ultrasonic sensors; optical sensors; machine learning; regression; artificial neural 
networks; Clean-in-Place; digital manufacturing; industry 4.0; process optimisation 

 

1. Introduction 

The cleaning of surface fouling is important in many industries to ensure equipment, such as 
heat exchangers, are operating under optimal conditions. Cleaning is even more important within 
food and drink manufacturing, as it ensures that equipment is hygienic and eliminates the cross-
contamination of ingredients between production batches. The cleaning of equipment was 
historically performed manually by factory operators who would be required to disassemble 
equipment and spray internal surfaces with water and cleaning chemicals. Currently, most of the 
industrial cleaning of equipment is performed by automated systems named Clean-in-Place (CIP). 
These systems feature process tanks for cleaning fluids and pumps, pipework, and spray balls to 
perform the cleaning within processing equipment, without the need for disassembly. Clean-in-Place 
systems clean the equipment by a combination of mechanical flow, chemicals, temperature, and time, 
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and they generally feature several steps including initial rinse, detergent wash, post detergent rinse, 
and sterilant [1]. 

Although a significant improvement over manual cleaning, CIP comes at a cost. The economic 
cost of CIP is primarily associated with lost production time. Every minute spent cleaning equipment 
is time that the equipment cannot be used to manufacture product. As the food and drink 
manufacturing sector operates on tight profit margins, reducing production downtime is extremely 
desirable. In addition, there are financial costs associated with the use of cleaning chemicals, water, 
and energy use. The main environmental cost of cleaning is the vast amount of water and energy 
utilized. Statistics show that cleaning accounts for 30% of the energy used in dairy production [2] and 
35% of the water used in beer brewing [3]. Due to the costs associated with CIP, research has been 
performed to optimize the process. The vast majority of this work has focused on either studying the 
cleaning settings, such as fluid temperature and flow rate [4] or studying the actual mechanisms of 
surface fouling and cleaning [5]. 

1.1. Sensor Research in Cleaning 

Wide literature and industrial practice are available on industrial cleaning processes monitoring 
using different sensor technologies. Most research efforts are directed on either: (1) monitoring the 
cleaning fluid properties to determine if it contains soiling material or cleaning fluids, or (2) 
monitoring the internal surfaces of the processing equipment. Monitoring the properties of fluid in 
the systems has been performed using electrical and optical methods [6–8]. These techniques offer 
valuable insight but are not sensitive to fouling that is still adhered to a surface so can often produce 
misleading results on how clean the equipment actually is.  

A variety of different sensor methods have been utilized to monitor the presence of surface 
fouling with the main ones being electrical (e.g., [9–12]), optical (e.g., [13–17]), acoustic (e.g., 
[13,18,19]) and ultrasonic methods (e.g., [20–23]). Electrical methods utilize sets of probes and 
measure electrical properties such as resistance and conductance across pairs of probes. The presence 
of fouling affects heat transfer in pipes, which is detected by the electrical methods. Although a 
promising technique, the recorded signals can become noisy and difficult to interpret when turbulent 
flow is used, which is nearly always the case in CIP. Optical method utilizing either florescence [13] 
or fibre-optic [17] techniques have been used to monitor surface fouling removal. Optical techniques 
can often provide spatial information of the location and degree of fouling; however, lighting is 
required, which is extremely challenging in pipe work. Acoustic methods use mechanical 
instruments to excite a vibration in the equipment where the fouling is present. These vibrations are 
subsequently detected by a transducer (generally piezoelectric). Acoustic methods have been used to 
monitor the removal of materials, including dairy fouling [24] and shampoo residue [18] from a 
surface. In general, the presence of fouling will damp the vibrations detected by the transducers. 
However, it will be challenging to deploy these methods in industrial environments where other 
vibrations exist.  

Ultrasonic (US) sensor technologies employ high-frequency mechanical waves, which propagate 
in the system under inspection. The benefits of US sensors is that they are often significantly cheaper 
than other techniques and can perform non-destructive measurements in real time for a variety of 
different industrial applications [19]. The application of US techniques to monitor fouling was 
pioneered by Withers [13], who used two US transducers in a laboratory scale rig filled with a fluid 
and different measuring the thickness of diverse food and non-food fouling materials on the internal 
surfaces. [13]. Since then, research activities have been carried out utilizing US technologies for 
fouling detection and cleaning monitoring [19,21–23,25–27]. The majority of previous works 
employed single US sensors operating in reflection mode and has mainly focused on dairy fouling. 
The focus has often been on dairy fouling, as it is especially difficult to clean and a current challenge 
for the sector.  

These different sensor methods vary in terms of their cost, complexity, and operating parameters 
such as speed of data acquisition and spatial area monitored. It is clear that no single sensor method 
is suitable for monitoring all the different types of equipment used within food production, so a range 
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of different sensor and data analysis methods should be deployed to monitor the different 
components in a CIP system.  

With any sensor technique, there is a need for appropriate data analysis methods to link the 
recorded measurement to the system under inspection. Machine learning is an attractive data 
analysis method as the development of first-principle models, which are challenging for real-life 
applications, is not required. Supervised machine learning methods enable the development of 
models with a labelled dataset and have been used successfully to monitor surface fouling removal 
during cleaning processes [20–23]. All of this previous work has developed classification models to 
determine when the surface remains fouled or is clean using ultrasonic measurements. This previous 
work has focused on dairy and other fouling materials. The majority of this work has been performed 
on flat test sections, but examples exist [20] of the technique being used in pipes of circular cross-
sections. 

1.2. Signal and Image Processing 

Recorded US waves require appropriate signal processing to extract key information. Wavelet 
decomposition (WD) decomposes a single time domain signal instance (e.g., ultrasonic) into a two-
dimensional function, where each of the decomposed signals is a mixture of source signals [28]. It can 
be considered as a series of band pass filters, whose results could be regarded as different mixtures 
of independent source signals [29]. Compared to Fast Fourier Transformation, WD provides time and 
frequency combined information for more efficient feature extraction from a computational effort 
perspective. For this reason, such algorithms are very advantageous in real-time data processing, 
resulting in one of the most widespread and powerful methods of signal analysis [30]. A variant of 
this method, the wavelet packet transform (WPT), which is a generalization of the wavelet 
decomposition [31], is used in this work to process the ultrasonic signals and extract features used in 
the neural networks.  

With reference to CIP processes, the literature reports a number of image segmentation 
procedures for food fouling detection. A review reported in [14] compares Otsu, Iteration method, 
1D and 2D entropy. Fuzzy c-means (FCM) clustering [32,33] is a powerful clustering algorithm that 
allows each data point to belong to multiple clusters with varying degrees of membership. The main 
advantages are represented by its property of convergence and low complexity. Xiong et al. [34] 
utilized the FCM concept to perform image segmentation on RNAi Fluorescence Cellular Images 
setting the three-class concept to cluster the pixel values. The threshold is obtained by averaging the 
maximum in the class with the smallest centre and the minimum in the class with the middle centre. 
From an image histogram analysis perspective, the threshold results are to be located in 
correspondence of the demarcation line between the first and the second peak. 

Intelligent decision-making on the cleaning state is enabled by machine learning paradigms; in 
this respect, a commonly utilized technique is the Neural Network (NN) due to the high-performance 
capabilities in nonlinear modelling using parallel processing [35] pattern recognition (classification), 
time series prediction, and data regression.  

As regards classification purposes, the literature provides a variety of applications in cleaning 
processes, such as [20], in which ultrasonic measurements are used as input to a NN to monitor the 
fouling removal of food materials in plastic and metal cylindrical pipes. Moreover, [23] utilized 
acoustic features and fed them together with temperature and mass flow rate (both measured) into a 
NN to make the decision of fouling presence or absence.  

A time series prediction-based intelligent decision-making support system is developed in [14] 
utilizing nonlinear autoregressive models with exogenous inputs (NARX) Neural Network was 
adopted and configured, trained, and tested to predict the cleaning time based on the image 
processing results. 

Concerning the use of NN for regression purposes in cleaning processes, the available research 
is considerably limited, such as in applications to heat exchanger fouling assessment [36] during 
ultrasonic cleaning using Convolutional Neural Networks (CNN). 
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This research will monitor the cleaning of different food fouling materials in a bespoke benchtop 
rig using ultrasonic (US) and optical sensors. The US signals are analysed using wavelet methods, 
whilst novel image processing methods are developed to calculate the number of pixels in an image’s 
Region of Interest (ROI) that contain fouling and the total fouling volume. Results from both sensors 
are assessed to determine their capability in monitoring cleaning processes, and features extracted 
from the ultrasonic sensor measurements are used to develop a Neural Network regression model 
that can predict the amount of fouling present and be used to determine when the cleaning processes 
will be complete. This is the first time that US measurements have been used to develop regression 
ML models to predict the degree of fouling. It was decided to develop the regression models using 
the US measurements, as optical measurements would not be possible in processing equipment 
geometry such as closed pipework.  

2. Materials and Methods 

This section introduces the experimental and computational methodologies utilized for the 
design and realization of the cleaning tests along with the signal and image processing procedures 
adopted to estimate the remaining fouling during the cleaning process. 

2.1. Experimental Tests 

A benchtop experimental flow rig was constructed for the fouling removal experimental tests 
(Figure 1). The rig featured a 1.2 mm thickness stainless steel (SS 430) bottom plate where the fouling 
removal would be monitored. In order to allow for image acquisition during fouling removal during 
cleaning, the rig lateral and upper surfaces were made of transparent Perspex. The rig was 300 mm 
long with an internal width and height of 40 mm. Valves controlling mains water pressure were 
located at either end of the rig to allow fluids to flow through and perform the cleaning.  

Figure 1. Experimental setup with sensors. 

The fouling materials selected for the experimental tests were tomato paste, gravy, and 
concentrated malt extract. This range of different materials was utilized to investigate the different 
fouling and cleaning mechanisms [37,38]. Full details of the fouling materials are available in [27]. 

The particular choice of the fouling materials, namely tomato paste, gravy, and concentrated 
malt was made as they represent common materials from the food and drink manufacturing sector. 
In addition, they all have a different composition and therefore foul and clean from a surface 
differently. It has been shown in [39] that different materials yield different cleaning characteristics, 
and it is important to assess the potential of the developed sensing techniques for a range of 
industrially relevant scenarios. Such considerations highlight the need for more adaptive CIP systems 
in order to guarantee the removal of all fouling whilst avoiding over-cleaning. 
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The preparation of the gravy fouling included mixing 10 grams of granules and 10 mL of tap 
water in a beaker at 70 ℃ for 1 min with continuous stirring. The other fouling media did not require 
preparation. The fouling layer was obtained by applying 15 grams of the material on to the centre of 
the bottom plate of the rig (in correspondence of the US transducer, which was attached on the 
opposite side of the plate). Then, the fouling was manually spread using a spatula to form an even 
layer of 5 mm thickness. The cleaning experimental tests were initiated by opening the inlet valve on 
the rig to let it slowly fill with water. Then, data acquisition was started, and the outlet valve was 
opened. In this way, water flowed through the rig whilst removing the fouling material. Each 
cleaning test continued until the fouling appeared to be completely removed, which was determined 
via the camera images and visual observation. This was to ensure that enough data was recorded for 
both a range of fouled and clean conditions.  

The experimental rig was endowed with a US sensor, a camera, and a temperature sensor to 
acquire data during the cleaning tests. The sensor’s placement within the experimental rig is shown 
in Figure 1. The US sensor was a 5 MHz magnetic contact transducer (Olympus®, Tokyo, Japan). This 
was mounted to the bottom side of the rig by using a thin film of couplant fluid between the US 
sensor and the SS430 wall to enable transmission of US waves into the material. A Bayonet  
Neill–Concelman (BNC) cable was used to connect the US transducer to a US box (Lecoeur 
Electronique®, Chuelles, France). The US box performed the role of exciting the US transducer with 
an electrical voltage flat and recording and digitize the received US waves. A Logitech®( Lausanne, 
Switzerland) C270 3MP web camera was employed to acquire digital images, while the temperature 
was recorded with a RTD PT100 connected to a Pico Technology® (Cambridgeshire, UK) PT-104 data 
logger. The US box, PT-104 data logger, and camera were all connected to a laptop and controlled 
through specifically designed software developed in MATLAB®. During the cleaning experiments, 
US and temperature data were sampled at 0.25 Hz, while images were acquired every 20 s (0.05 Hz).  

By varying and combining the fouling material and the temperature, an experimental program 
was defined and reported in Table 1. Each test was repeated a number of times to increase the 
statistical reliability of the experimental campaign. 

Table 1. Experimental Programme. 

Fouling Material Temperature Repetitions 

Gravy 
12 °C 2 
45 °C 7 

Malt 12 °C 7 
45 °C 7 

Tomato 12 °C 7 
45 °C 7 

2.2. Data Processing and Features Extraction 

The estimation of the fouling surface and volume is carried out via intelligent regression based 
on features extracted from ultrasonic signals and information computed via image processing.  

The framework adopted for this paper is illustrated in Figure 2, and it is composed of three main 
parts: ultrasonic signal processing (yellow boxes), aimed at extracting significant information on the 
cleaning process; image processing (green boxes) aimed at computing the amount of fouling surface 
and volume in correspondence to the acquired images; and machine learning-based regression (red 
boxes) aimed at performing an estimation of surface and volume fouling during the cleaning process. 
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Figure 2. Data acquisition and processing flow chart. 

2.2.1. Signal Processing 

Due to the different sampling rate of the digital camera and the ultrasonic sensor, a pre-
processing phase was carried out on each signal instance to allow for further processing. 

Each raw US signal instance log ሺ𝑠ሻ includes four acquisitions distributed over a time span of 
37.5 μs, as shown in Figure 3. Therefore, the first pre-processing step consists of averaging the four 
signals and subsequently, in order to match the US signals and the image acquisition sampling rates, 
the four signal instances between each image acquisition log are averaged as per Equation (1), where 𝑛 ൌ 4  indicates the four acquisitions and 𝑚 ൌ 4  indicates the four signal instances recorded 
between each image acquisition. 

𝑠̅ ൌ 1𝑛 1𝑚෍෍𝑠௜௝௠
௝ୀଵ

௡
௜ୀଵ  (1) 

Then, such an averaged signal was subject to a segmentation procedure in order to remove the 
saturated signal portion corresponding to the first 6000 samplings. The result is a segmented signal 
made of 2400 samplings reported in Figure 3. 
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Figure 3. Ultrasonic (US) signal instance log. 

The WPT [40] of a sensor signal generates packets of coefficients computed via scaling and 
shifting from a selected mother wavelet function. In this way, at the first level of WPT, the original 
sensor signal S is split into two frequency band packets, which are called approximation cA1 and 
detail cD1. Likewise, at the second level, each approximation and detail packet are again split into 
further approximations and details cA2 and cD2, respectively, and the process is repeated until the 
required level for the application is reached [41], generating a "tree" of decomposition packets, as 
shown in Figure 4. 

 

Figure 4. Wavelet decomposition tree. 

In this paper, the WPT is utilized to process the US signal instances with the aim of extracting 
significant features on the cleaning state over time. In this respect, a three-level wavelet 
decomposition was performed on the segmented signal using the order 3 Daubechies mother wavelet 
[42]. In this way, the coarse scale approximation coefficients and the detail coefficients from the 
decomposition were extracted from each US signal. Figure 5 displays an example of signal instance 
and its related details and approximation coefficients. 
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Figure 5. Level 3 full decomposition. 

From the decomposition vector, the approximation coefficients were computed for all the signal 
instances. Subsequently, from the approximation coefficients, a feature extraction procedure was 
applied to compute a number of statistical features [43], namely mean, standard deviation, minimum, 
maximum, skewness, kurtosis, and energy. An example of the most significant features is reported 
for the various fouling materials in Figure 6 with the aim of showing the trends during the cleaning 
process. 
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Figure 6. Signal features examples for the gravy, malt, and tomato. 

The results in Figure 6 displays how three different statistical features (means, standard 
deviations, and energies) change during cleaning for the three different fouling materials. For all 
materials, the energies and standard deviations follow similar trends with an increase toward the end 
of the process when the test section becomes clean. Although the starting values for the standard 
deviations and energies are different for the three fouling materials, they all reach a similar end point 
once clean, which was approximately 350 for the standard deviations and 1.03 × 1010 for the energies. 
The results for the means showed a different trend of gradually increasing during the initial stage of 
the cleaning process before suddenly reducing at the end. The means for the tomato did not show 
this trend, indicating that one statistical method may not be appropriate for monitoring the processes. 
It is not surprising to see that the largest change in the US statistical features was only at the end of 
the process, as previous work has shown that US reflection methods are only sensitive to the area of 
fouling covering the area on the test section opposite the transducer location and not the thickness of 
this fouling. 

2.2.2. Image Processing 

The quantification of the surface fouling and fouling volume required for the training dataset 
was carried out via image processing on the images acquired during the cleaning process. 

The idea is to manipulate the images to highlight relevant information about the fouling. An 
initial pre-processing step for all the digital images is the channel separation. In this respect, the raw 
image in Figure 7a was acquired in Red–Green–Blue (RGB) space, consisting of three different layers, 
i.e., the red, green, and blue, separately shown in Figure 7b–d. 
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The raw RGB image was subject to a transformation procedure to be mapped into Hue–
Saturation–Value (HSV) values [44]. The image channel breakdown is reported in Figure 7 with 
reference to a Tomato Cold 1 image instance. The HSV domain (Figure 7e) is characterized by three 
layers, corresponding respectively to the Hue (Figure 7f), i.e., the colour’s position on the colour 
wheel, the Saturation (Figure 7g), i.e., amount of hue or departure from neutral (zero denotes a 
neutral shade, whereas 1 indicates maximum saturation), and Value (Figure 7h, i.e., the maximum 
value among the red, green, and blue components of a specific colour).  

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 7. Red–Green–Blue (RGB) image (a), red channel (b), green channel (c), and blue channel (d), 
Hue–Saturation–Value (HSV) image (e), hue channel (f), saturation channel (g)  
and value channel (h). 

Taking into account the experimental conditions, in terms of light source, food fouling colours, 
and camera settings, a tailored image processing procedure was developed in this research for 
quantifying the fouling volume. From the separated channels, a new image 𝐼  is computed as 
reported in Equation (2). 𝐼 = ൫∁ሺ𝑅 − 𝑆ሻ൯ − 𝐵 − 𝐻 (2) 

where 𝑅 is the red channel, 𝑆 is the saturation channel, 𝐵 is the blue channel, 𝐻 is the hue channel, 
and the operator ∁  indicates the image complement (negative image). In such an image, the 
background results are removed, and the pixel intensity results to be proportional to the fouling 
volume, as it can be seen in the result shown in Figure 8. 

 
Figure 8. Processed image for fouling estimation. 
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The fouling volume can be graphically visualized as the pixel intensity (z-axis) as a function of 
the image pixels (x and y axes) shown in the 3D plot reported in Figure 9, where the pixel intensity 
was normalized between 0 and 1 for an enhanced visualisation. 

 
(a) 

(b) 

 
(c) 

Figure 9. 3D fouling volume representation. (a) Gravy, (b) tomato, and (c) malt. 

Then, the computation of the fouling volume for the single image instance is computed as the 
sum of the pixel intensities, 𝑖, within the image I, as reported in Equation (3). 

Fouling Volume = ෍ 𝑖௣௠ൈ௡
௣ୀଵ  (3) 

where 𝑚 and 𝑛 are the vertical and the horizontal resolution of the image. 
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In order to estimate the amount of fouling, a Fuzzy c-means clustering-based thresholding 
method [34] was applied to the processed image following the steps listed below:  

The FCM is carried out by minimizing a certain objective function as shown in Equation (4) 

𝐽௠ = ෍෍𝜇௜௝௠ฮ𝑥௜ − 𝑐௝ฮଶ஼
௝ୀଵ

ே
௜ୀଵ  (4) 

where  is the number of the data points, here represented by the image pixels (𝑥௜), 𝐶 is the number 
of clusters, and 𝑚 is the fuzzy partition exponent corresponding to the fuzzy overlap degree. 𝑐௝ is 
the center of the 𝑗௧௛ cluster and 𝜇௜௝ is the degree of membership of each pixel (𝑥௜) in the 𝑗௧௛ cluster. 
For the image segmentation proposed in this paper, the steps for the FCM implementation are as 
follows: 

• Set the number of clusters 𝐶 = 3, respectively “small”, “medium”, and “large” based 
on the pixel intensity value. The fuzzy matrix exponent 𝑚 was set to 2. 

• Initialize the cluster membership with random 𝜇௜௝ values. 
• Compute the cluster centers according to Equation (5): 𝑐௜௝ ∑ 𝜇௜௝௠𝑥௜ே௜ୀଵ∑ 𝜇௜௝௠ே௜ୀଵ  (5) 

• Update 𝜇௜௝ as per Equation (6): 𝜇௜௝ = 1
∑ ቆฮ𝑥௜ − 𝑐௝ฮ‖𝑥௜ − 𝑐௞‖ቇ ଶ௠ିଵ஼௞ୀଵ

 
(6) 

• Compute the value of the objective function 𝐽௠ 
• Recompute 𝑐௜௝ , 𝜇௜௝ , and 𝐽௠  until meeting a termination criterion, such as a 

minimum improvement or maximum number of iterations. 
• Retrieve the final centroids coordinates and the final fuzzy membership degree of 

each piece of pixel data. 
• Assign each pixel to one of the three clusters based on the maximum membership 

degree. 
• Compute the maximum pixel intensity value for the cluster “small” maxሺ𝑖௦௠௔௟௟ሻ and 

the minimum pixel intensity value for the cluster “medium” minሺ𝑖௠௘ௗ௜௨௠ሻ. 
• Compute the threshold value as the average of the two values computed above, i.e.,  𝑇 = ሾ୫ୟ୶ሺ௜ೞ೘ೌ೗೗ሻି୫୧୬ሺ௜೘೐೏೔ೠ೘ሻሿଶ . (7) 

An example of segmented image using the FCM thresholding technique is reported in  
Figure 10a. To facilitate the computation process, the segmented image was then transformed to its 
negative, as shown in Figure 10b. 

  
(a) (b) 

Figure 10. Image segmentation steps: Fuzzy c-means (FCM) segmented image (a), negative (b). 
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From the negative segmented image, the surface fouling is computed as the sum of the pixel 
intensities, 𝑖௣, as reported in Equation (8), where 𝑚 and 𝑛 are the horizontal and vertical image 
resolution, respectively. 

Surface Fouling = ෍ 𝑖௣௠ൈ௡
௣ୀଵ  (8) 

Within the acquired image, a Region of Interest (ROI) was determined in correspondence of the 
sensor positioning; therefore, the surface fouling and the fouling volume were computed only for the 
ROI area, i.e., a circle with radius = 45 pixels, as depicted in Figure 11. 

 
Figure 11. Region of Interest (ROI). 

Figure 12 shows examples of surface fouling and fouling volume trends. The increasing trend 
occurring in some of the samples is explained by the fact that during the cleaning process, fouling 
material lumps are progressively smeared over a larger surface [14]. 

As regards fouling volume charts, the fluctuations are due to the small size of the ROI and the 
transient nature of the fouling, i.e., during the cleaning process, fouling may temporarily increase in 
the ROI as it is moves across the surfaces [14,16]. 

The results in Figure 12 show that for all three fouling materials, the number of fouled pixels 
and the fouling volume reduces in the ROI during the cleaning processes and achieves a value of zero 
when all fouling has been removed. 

  

(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 12. Surface fouling for gravy_cold_1 (a), fouling volume for gravy_cold_1 (b), surface fouling 
for malt_cold_2 (c), fouling volume for malt_cold_2 (d), surface fouling for tomato_cold_1 (e), and 
fouling volume for tomato_cold_1 (f). 

Although the general trend of reduction is consistent between the surface fouling and fouling 
volume for the different fouling materials, differences do exist within the results. These are most 
noticeable for tomato where fouling volume (Figure 12f) begins to reduce at the start of the cleaning 
process, whereas surface fouling (Figure 12e) does not begin to reduce until after approximately the 
seventh image instance. This result indicates that volume fouling is a more useful technique to 
monitor cleaning processes; however, this trend was not identified with the gravy or malt  
(Figure 12a–d). For the gravy, both the surface fouling and fouling volume followed a similar trend 
of reducing until the 80th image instance before increasing slightly. The volume fouling for the malt 
also appeared to increase marginally between the image instances of 15 and 25. Although it would 
not be expected for the amount of fouling to increase during cleaning processes, there are numerous 
explanations for this result. Only a small ROI of interest is been analysed, and it is possible that 
fouling from the surrounding area has moved into this ROI due to the mechanical motion of the 
flowing fluid. For the case of the gravy, it is known that this swells as it absorbs water and also 
becomes partly detached from the base of the surface [27], resulting in a lump of gravy that would 
move slightly closer to the top of the rig and nearer the camera, resulting in more fouling within the 
ROI. It was not surprising to identify different results for surface fouling and fouling volume between 
the three fouling materials studied. It is well known that materials with different physicochemical 
properties foul and are removed from surfaces differently [37]. Previous research has shown that 
tomato is removed primarily by mechanical force, whereas gravy initially swells due to moisture 
absorption before been removed as a bulk lump, and malt dissolves gradually into the fluid [27].  
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2.3. Machine Learning Regression for Surface Fouling and Fouling Volume Estimation  

The estimation of surface fouling and fouling volume was modelled in this research as a 
regression problem from an ultrasonic signal. In this respect, the statistical features from wavelet 
decomposition vector (partially illustrated in Figure 6) were inputted to a Neural Network data 
fitting [25] decision-making support system for surface fouling quantification purposes. Three-layer 
feed-forward neural networks were built with the following architecture:  

• Input layer nodes corresponding to the seven features extracted from the wavelet 
approximation coefficients 

• Hidden layer nodes (HLN): 7 
• Target layer: one node corresponding to the number of white pixels computed via 

image processing  
• The training algorithm adopted in this research was the Bayesian Regularization (BR) 

[27]. 
• The dataset was partitioned into three sets using specified indices, specifically 

alternating one instance for training, one for validation, and one for testing [22]. 

3. Results and Discussion 

Regression results are characterized by two indicators of the goodness of fitting, namely the Root 
Mean Squared Error (RMSE) and the correlation coefficient R, which are computed according to 
Equations (9) and (10). 

𝑅𝑀𝑆𝐸 = ඩ1𝑁෍ሺ𝑦௜ − 𝑦ො௜ሻଶே
௜ୀଵ  (9) 

𝑅 = ඨ1 − ∑ ሺ𝑦௜ − 𝑦ො௜ሻଶே௜ୀଵ∑ ሺ𝑦௜ − 𝑦തሻଶே௜ୀଵ  (10) 

where, with reference to both surface fouling and fouling volume, 𝑦௜ are the actual values, 𝑦ො௜ are 
the values predicted by the NN, and 𝑦ത represents the average values. 

The results for all the tests are reported in Table 2 and Table 3, both in terms of R coefficient and 
RMSE for all the tests, which are divided in categories. 

Table 2. Summary of surface fouling Neural Network (NN) regression results. RMSE: Root Mean 
Squared Error. 

Surface Fouling 

Dataset 
R RMSE 

Training Test Overall Training Test Overall 
Gravy Cold 0.9210 0.8923 0.9175 360.4690 363.6912 361.6612 
Gravy Hot 0.9275 0.9355 0.9285 723.6536 660.2220 700.1839 

Gravy Cold+Hot 0.9271 0.8486 0.9149 544.6095 790.3567 635.5366 
Malt Cold 0.9978 0.9132 0.9635 156.9672 1142.7719 521.7149 
Malt Hot 0.9462 0.8524 0.9195 744.4553 1131.9732 887.8369 

Malt Cold+Hot 0.9813 0.9595 0.9784 469.5991  656.6640 538.8131 
Tomato Cold 0.9439 0.9056 0.9305 670.1577 914.743 760.6543 
Tomato Hot 0.9359 0.9256 0.9324 832.4331 883.7525 851.4213 

Tomato Cold+Hot 0.9104 0.9136 0.9075 912.20 1023.70 953.4550 
COLD 0.9395 0.9310 0.9366 616.4055 659.4567 632.3344 
HOT 0.9238 0.8576 0.9006 838.0589 1157.3449 956.1947 
ALL 0.9173 0.8320 0.8877 783.6593 1120.2075 908.1821 
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Table 3. Summary of fouling volume NN regression results. 

Fouling Volume 

Dataset R RMSE 
Training Test Overall Training Test Overall 

Gravy Cold 0.9673 0.9307 0.9337 112.9609 130.3614 119.3991 
Gravy Hot 0.8169 0.8025 0.8119 800.9874 857.0363 821.7255 

Gravy Cold+Hot 0.9119 0.7079 0.8772 466.5958 869.9793 615.8477 
Malt Cold 0.9728 0.7890 0.9027 453.6082 1374.5441 794.3545 
Malt Hot 0.9461 0.8024 0.9016 669.7703 1174.9157 856.6741 

Malt Cold+Hot 0.9336 0.9121 0.9301 734.3514  815.3636 764.3259 
Tomato Cold 0.9498 0.8422 0.9116 413.8871 739.6857 534.4326 
Tomato Hot 0.9833 0.9399 0.9690 289.2188 546.4321 384.3877 

Tomato Cold+Hot 0.9232 0.9071 0.9176 573.7849 623.9646 592.3514 
COLD 0.9387 0.9095 0.9287 493.7523 603.0507 534.1927 
HOT 0.8584 0.8201 0.8453 789.2190 901.1648 830.6389 
ALL 0.9243 0.8264 0.8897 571.2305 878.7315 685.0059 

Results are shown for the three different NN phases. In this respect, the training results 
correspond to the NN performance obtained by using the training samples including the validation 
samples, accounting for two-thirds of the whole dataset. The test results correspond to the remaining 
one-third of the dataset samples used to train the system. The overall results show a weighted average 
of the training and test results. 

The regression results for surface fouling (Table 2) and fouling volume (Table 3) show acceptable 
results with R coefficient values above 0.8 for all models developed and above 0.9 for many. There 
was no clear difference in regression accuracy between the surface fouling and fouling volume 
models or in the models developed for the different fouling materials.  

In general, the models developed for the cleaning experiments at the lower temperature had 
better model performance, but this is most likely because the fouling took a longer time to clean at 
the lower temperature, so more data were available to train the models.  

It is difficult to directly compare these results with those from the literature, as the authors are 
not aware of previous research that has combined US measurements with neural networks to develop 
regression models that are capable of monitoring cleaning processes. However, previous work has 
used similar methods to monitor mixing progress with similar R values reported [45]. 

The model performance could be improved with more training data, which could be achieved 
by either (1) performing more experiments, (2) increasing the frequency of data collection during the 
experiments, or (3) adding additional optical and ultrasonic sensors to the experimental rig. From an 
industrial perspective, large amounts of data would be collected during routine CIP cycles, allowing 
the development of highly accurate and reliable regression models. Indeed, for industrial 
implementation, datasets would need to be generated for each installation and fouling type to 
develop accurate monitoring capabilities, thus improvements in performance are inherent with 
application. 

Figures 13 and 14 display the predicted and measured surface fouling and fouling volume for 
the three different materials. In general, the predicted results are in good agreement and follow the 
trend of the measured results, highlighting the potential of the technique. There appears to be less 
error between the predicted and measured results for the fouling volume, whilst the predictions of 
tomato fouling have the most error, but this could be attributed to the fact that there was less data 
available to train the models.  
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Figure 13. Measured surface fouling versus NN estimations for gravy_cold_1 (a), malt_cold_2 (b), 
and tomato_cold_1 (c) tests. 
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Figure 14. Measured fouling volume vs. NN estimations for gravy_cold_1 (a), malt_cold_2 (b), and 
tomato_cold_1 (c) tests. 

The analysis of the charts in Figures 13–14 highlights how different materials yield to different 
cleaning trends and different NN performance in terms of regression accuracy. 

The main factor explaining the presence of such outliers is represented by the number of 
available samples. Meanwhile, the gravy absorbs the water and requires longer time to perform the 
cleaning process, resulting in a larger amount of data, therefore yielding to a more accurate 
regression. In contrast, the malt and tomato require a shorter cleaning time as they instead dissolve. 
Consequently, the number of available samples results is smaller thus; although overall accurate, the 
regression shows a (small) number of outliers. 
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From a strictly computational point of view, this can be further explained by how the nature of 
the fouling material affects the cleaning trend. As regards the malt and tomato, the surface fouling 
plots show a cleaning trend characterized by a two-phase process, i.e., a “flat” one and a “rapid 
descent” one. This means that the neural network is trained and tested with a high rate of different 
input signals but very similar target values, yielding to a lower regression performance. 

4. Conclusions 

This work has demonstrated how ultrasonic and optical sensors can be used to monitor surface 
fouling removal and therefore cleaning processes. Three different food fouling materials (tomato, 
gravy, and malt) were studied, and it was found that although they all cleaned via different 
mechanisms, they could all effectively be monitored via the sensing methods. The optical sensor 
provided spatial information on the area and volume of fouling in the region of interest, providing a 
greater insight to the fouling removal process than the ultrasonic method. However, it would be 
extremely difficult to effectively image the fouling in industrial equipment such as pipe work, so the 
ultrasonic method would be a more suitable industrial technology. Both sensors could only provide 
information on a small area of equipment, so care must be taken when deploying this in industrial 
environments to determine the most effective number of sensors to utilize and the precise locations 
to place these sensors. A larger number of sensors would provide more data but would come with 
additional costs. The regression machine learning models were effective at predicting the area and 
volume of fouling present from the ultrasonic measurements. In this respect, the surface fouling was 
estimated with an average RMSE of 746.265 (from 156.967 to 1157.345) and an average R of 0.921 
(from 0.832 to 0.9978), while the fouling volume was estimated with an average RMSE of 650.498 
(from 112.961 to 1374.544) and an average R of 0.8927 (from 0.708 to 0.983). A detailed experimental 
validation would be required to establish a quantitative correspondence between pixel intensity and 
fouling thickness under the adopted experimental conditions, i.e., lights and camera, which were 
finalized upon determining the maximum thickness detectability. In industry, the accuracy of 
prediction would be improved with the collection of larger datasets used to train the models, which 
would be generated for each installation and fouling material. 

Additionally, outliers and missing data have been manually removed in a preliminary data 
screening phase. In this respect, future work will also include an automatic data debugging 
procedure that can be applied to detect evident outliers and image artefacts that could affect the 
processing and NN performance, yielding to misleading results. 

The experimental limitations of the proposed monitoring systems are certainly represented by 
the number and the small size of the region of interest ROI, i.e., a single ROI of roughly 6000 pixels, 
as well as by the limited range of water temperature used cleaning, i.e., 12 °C and 45 °C and by the 
limited number of different fouling materials. Other limitations include the use of only a single point 
measurement, which may not be sensitive to fouling in the rest of the equipment.  

A limitation to the industrial implementation is represented by operational difficulty in the 
proper positioning of the US sensors within an existing industrial equipment, especially in the 
presence of heater jackets on the pipes. 

Future research is aimed at determining the exact number of sensors as well their optimized 
positioning. Additionally, the cleaning performance of different types of fouling materials 
characterized by various concentrations of fats, minerals, and proteins has to be investigated. Finally, 
efforts will be focused on integrating the sensing units with a control system. Similar issues can be 
encountered in the image acquisition process, which is required to label the US data and needs to be 
carefully designed to be implemented in existing facilities. 
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