
sensors

Letter

Efficient Estimation of CFO-Affected OFDM BER
Floor in Small Cells with Resource-Limited
IoT End-Points

Adriana Lipovac 1,* , Vlatko Lipovac 1 and Borivoj Modlic 2

1 Department of Electrical Engineering and Computing, University of Dubrovnik, 20000 Dubrovnik, Croatia;
vlatko.lipovac@unidu.hr

2 Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia;
borivoj.modlic@fer.hr

* Correspondence: adriana.lipovac@unidu.hr

Received: 28 May 2020; Accepted: 1 July 2020; Published: 4 July 2020
����������
�������

Abstract: Contemporary wireless networks dramatically enhance data rates and latency to become a
key enabler of massive communication among various low-cost devices of limited computational
power, standardized by the Long-Term Evolution (LTE) downscaled derivations LTE-M or narrowband
Internet of Things (NB IoT), in particular. Specifically, assessment of the physical-layer transmission
performance is important for higher-layer protocols determining the extent of the potential error
recovery escalation upwards the protocol stack. Thereby, it is needed that the end-points of low
processing capacity most efficiently estimate the residual bit error rate (BER) solely determined by
the main orthogonal frequency-division multiplexing (OFDM) impairment–carrier frequency offset
(CFO), specifically in small cells, where the signal-to-noise ratio is large enough, as well as the OFDM
symbol cyclic prefix, preventing inter-symbol interference. However, in contrast to earlier analytical
models with computationally demanding estimation of BER from the phase deviation caused by
CFO, in this paper, after identifying the optimal sample instant in a power delay profile, we abstract
the CFO by equivalent time dispersion (i.e., by additional spreading of the power delay profile that
would produce the same BER degradation as the CFO). The proposed BER estimation is verified by
means of the industry-standard LTE software simulator.

Keywords: LTE; IoT; end-point; BER estimation; time-sampling; BER abstraction

1. Introduction

Deployment of the high-speed and low-latency wireless networks is under way to revolutionize the
mission of Information and Communications Technology (ICT) in general. This is much more than just
an upwards evolution of the fourth-generation (4G) Long-Term Evolution (LTE) broadband standard
into the 5G New Radio (NR), but also a key enabler of Internet of Things (IoT) through the LTE’s
downscaled derivations LTE-M and narrowband (NB) IoT, which regulate efficient interconnecting of
many energy-sufficient low-cost devices, such as smart meters, various sensors, devices in vehicles,
etc. [1–3]. Unfortunately, these are often computationally limited, specifically for assessing the
physical-layer transmission performance, aimed to be used by higher-layer protocols to determine the
extent of their involvement in the potential error recovery escalation upwards the stack [4].

As energy-efficient error control algorithms require reliable and accurate, but still simple and thus
computationally efficient, estimation of transmission performance over various (sometimes mutually
diverse) channels, it is quite a specific task to investigate [5,6].
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Generally, digital data transmission is subject to symbol errors due to transmission media
imperfections, such as time dispersion (mostly caused by multipath propagation) and additive noise,
as well as other non-additive and non-linear imperfections on the part of equipment.

With this regard, the long lasting trend of replacing the bit error rate (BER) as a former sole
qualifying transmission performance indicator, by the in-service measurable (and thus network
operator friendly) block error rate (BLER), has finally ended by adopting the latter in LTE and 5G NR
physical layer test standards [7,8].

Nevertheless, as the only parameter closing in the probability of a bit error, the BER still counts in
the analysis, enabling estimation of BLER (by adopting a particular time distribution of erroneous
bits within data blocks [7]), whose in-service direct measurement relies on identifying and counting
erroneous blocks, which may be unreliable, especially when retransmission requests are rare, so that
each failed block becomes more significant [9]. Moreover, it is the overall accuracy of BLER that
effectively determines the so-called residual channel to the higher-layer protocols, and thus the
cross-layer protocol stack design [7,8]. Specifically, if the connectionless User Datagram Protocol
(UDP) is used at the transport layer for reduced overhead and increased throughput (i.e., “goodput“),
inaccurate estimation of the physical layer transmission performance might either unnecessarily engage
the application layer for this task (with even more overhead, the most expensive at this layer), or have
the errors propagated through the stack up to the application itself.

With this regard, it is often needed to most efficiently estimate the orthogonal frequency-
division multiplexing (OFDM) BER floor mainly affected by the OFDM-inherent transmission
impairments–carrier frequency offset (CFO) and large peak-to-average power ratio (PAPR). However,
for small cells and IoT end-points with limited computing power, we may consider PAPR as either
insignificant (e.g., when the high-power amplifier (HPA) operates in its linear regime) or reduced by
clipping or any other PAPR reduction method [10,11]. Moreover, in indoor or small-cell propagation
environment, we may also assume the signal-to-noise ratio (SNR) to be quite large, as well as the
OFDM symbol cyclic prefix (CP) guard time to be much longer than expected channel delay spread,
thus preventing inter-symbol interference (ISI) due to channel time dispersion.

This implies that, practically, CFO remains a very dominant influencer of BER in the environment
of interest here.

Accordingly, in contrast to earlier proposed computationally demanding estimation of BER being
determined mainly by residual CFO, in Section 2, the OFDM BER floor model is developed for small
cells and IoT end-points with limited computing power. In Section 3, we abstract the CFO by equivalent
additional time dispersion of the power delay profile, to the extent that would produce the same BER
degradation as the CFO. The proposed model is verified in Section 4 by conventional link abstraction
based on the additive white Gaussian noise (AWGN), as well as by means of the industry-standard
software simulator. Conclusions are reviewed in Section 5.

2. Efficient Estimation of Residual OFDM BER for Small Cells

2.1. General Error Floor Due to Time Dispersion

Let us first review the OFDM BER floor for propagation environments ranging from indoor to
small-cell outdoor, where mostly strong signals and thus large SNRs can be expected in various 4G/5G
scenarios for residual channel estimation.

Consider an OFDM symbol
M∑

m=1
sme jϕm · e jm· 2π

MTs τ at an arbitrary sampling instant τ, as comprising

M original symbols sme jϕm of duration TS each. On the other hand, the multipath channel is represented
by the sum of complex delta functions, each with a Rayleigh-weighted amplitude Ai, uniformly
distributed phase, and certain delay τi, i ∈ [1, 2, . . . , N].
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Then the OFDM BER floor for the gray-mapped m-quadrature amplitude modulation (m-QAM)
formats applied in 4G/5G is [12]:
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π
·
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Ts

)2
· ∆s2

n/n+1

]
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km =


1.000; m = 4 for 4−QAM
0.750; m = 16 for 16−QAM
0.583 ; m = 64 for 64−QAM

(1)

where ∆τ−i and ∆τ+i :
∆τ−i = τ− τ−i ; ∆τ+i = τ− τ+i (2)

are relative delays of the channel response impulses, with respect to τ that distinguishes the preceding
(“−”) from the delayed (“+”) multipath echoes.

Furthermore, the normalized “−” and “+” rms delay spreads in Equation (1) are defined as:
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respectively, whereas the mean aggregate “−” and “+” echoes’ powers, relative to the total mean power,

W =
N∑

i=1
A2

i = 1, are:

W− =
N−∑
i=1

(
A−i

)2
, W+ =

N∑
i=N−+1

(
A+

i

)2
; W− + W+ = 1 (4)

respectively, where N− denotes the count of preceding echoes (out of N overall) that, timewise,
corresponds to the sampling instance.

Moreover, the variances of differences between the n-th and the (n+1)-th OFDM symbol in
the observed data sequence, and between the (n−1)-th and the n-th OFDM symbol E

[
∆s2

n/n+1

]
and

E
[
∆s2

n−1/n

]
, respectively [12]:

E
[
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M2 (5)

can reasonably be expected to be small, as the difference between neighboring OFDM symbols does not
change fast; rather it can be regarded as almost constant for the observed (n-indexed) triplet of symbols.

Moreover, as the coefficient km in Equation (1) is the only distinguishing BER factor of higher
modulation schemes with respect to binary phase-shift keying (BPSK), this implies that we can
substitute the value 1/M for BPSK variances in Equation (5) into Equation (1), which transforms the
latter to:
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The BER floor estimation given by Equation (6), does not necessarily presume applying CP
(to mitigate the multipath), but can easily incorporate it in the model by taking into account just the
index range in Equations (3) and (4), which is outside of the CP span [12].
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2.2. Computationally Efficient BER Floor for Small Cells

Furthermore, for the power delay profile rms delay spread up to 50 ns, data transmission speed in
the order of, say, 100 Mbit/s, and M equal to 2048, 4096, . . . , we can justifiably consider that:

E
[

∆τ−
√

MTs

]
, E

[
∆τ+
√

MTs

]
<< 1 (7)

Whereas from Equation (4) it is obvious that: W−, W+ < 1.

This implies that the distinct “−” and “+” rms delay spreads

√
W−E

[(
∆τ−
√

MTs

)2
]
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W+E

[(
∆τ+
√

MTs

)2
]
, respectively, are both much smaller than unity. Consequently, their product

in the numerator of the subtrahend in Equation (6) is negligible with respect to their sum in the
denominator, implying that the whole subtrahend can be neglected, so Equation (6) can be justifiably
approximated as it follows (in simpler notation where: E[x] = x):

BER =
km

2
√
πMTs

·

(
√

W− ·
√
(τ− τ−)2 +

√

W+ ·

√
(τ− τ+)2

)
(8)

where Equation (2) is taken into account to emphasize the arbitrary sample delay τ as the variable now.

2.3. Optimal Sample Delay for Least BER Floor

The optimal sample time instant τopt which minimizes the BER floor, can be found by deriving
Equation (8):

d
dτ

(
√

W− ·
√
(τ− τ−)2 +

√

W+ ·

√
(τ− τ+)2

)
= 0 (9)

Tedious testing of the second derivation is not necessary to be presented here, as no maximal P(e)
value exists, so the first derivation is sufficient with this regard.

Furthermore, let us preselect the expected optimal sampling region: τi(N
−) < τ < τi(N

− + 1) of
the power delay profile where the “borderline” value of N− between the “−“ and “+“ echoes mutually
balances W− and W+, and thus maximizes the numerator of the second term in Equations (1) and (6),
and consequently minimizes BER.

Moreover, if (without much loss of accuracy) we consider that both W− and W+ are independent
of τ, then after making derivation in Equation (9) we obtain:

√

W− ·
τ− τ−√
(τ− τ−)2

+
√

W+ ·
τ− τ+√
(τ− τ+)2

= 0 (10)

Solving the implicitly expressed Equation (10) provides the optimal sample delay τ = τopt.
Moreover, considering balanced “−” and “+” rms delay spreads, both denominators in Equation

(10) take mutually close values, so it reduces to:

√

W− ·
(
τ− τ−

)
+
√

W+ ·
(
τ− τ+

)
≈ 0 (11)

enabling a simple approximate explicit expression for the optimal sample time:

τopt ≈

√
W− · τ− +

√

W+ · τ+
√

W− +
√

W+
(12)
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As it is obvious from Equation (12), generally, the optimal sample delay is not at the mean delay:

τ =
W− · τ− + W+

· τ+

W− + W+
= W− · τ− + W+

· τ+ =
N∑

i=1

(
Ai

)2
τi (13)

Specifically, for symmetrical delay profiles, such as, for example, the two-delay model [9], it is:
W− ≈W+

≈ 0.5, and: τ− = −τ+, implying that Equations (12) and (13) are identical in that the optimal
sample delay is at the centerline of the power delay profile.

Thereby, as the mean delay alike, τopt is also explicit in Equation (12), and determined by
interpretable, though somewhat modified, delay dispersion parameters (distinct for “−“ and “+”
echoes of the power delay profile).

However, apart from the general BER floor expression in Equation (6) that is really rather complex,
from the perspective of low-performance network end-points, even Equation (12) is still somewhat
more demanding for implementation than Equation (13); specifically as sampling at the mean delay
further simplifies Equation (8), so that the residual BER becomes proportional to delay variance:

BER =
km

2
√
πMTs

·

√
(τ− τ)2 =

km

2
√
πMTs

·

√
var(τ) (14)

This, as well the formal similarity between Equations (12) and (13), raise the question of
near-optimality of the mean delay (as the simplest to “tune-in”) (i.e., what will be the BER penalty for
choosing the mean delay in Equation (13) instead of the optimal sample time in Equation (12).

Looking analytically, we can comment that the weighting factors of “−“ and “+” mean delays in
Equation (12) are “−“ and “+” normalized aggregate rms values of the profile impulses’ amplitudes,
whereas the powers themselves have the weighting role in Equation (13). This implies somewhat
greater sensitivity of the mean delay on the imbalance between the “−“ and “+” parameters, while in
Equation (13) it is a bit smoother.

Moreover, if we observe the i-th echo of the received OFDM symbol:

r̂i =
M∑

m=1

sme jϕ
· e jm· 2π

MTs (τ+∆τopt−τi); i = 1, 2, . . .N (15)

which is not time-sampled at the optimal sampling instant τ = τopt, but with the offset of ∆τopt of the
mean delay τ from τopt, it introduces the phase shift:

ϑi = m ·
2π

MTs
· ∆τopt (16)

and, consequently, the symbols’ constellation rotation, as well as scattering of symbol constellation
spots, since Equation (16) depends on m (i.e., the rotation angle is echo-dependent).

This (rotation) outcome is similar to the carrier lock angle error [13–15] (while symbol spots
scattering can be attributed to noise) being the arithmetic mean between the angles θI and θQ of the I
and Q axis, respectively, and the cluster-fitting lines (Figure 1) [16].

The carrier lock error distorts the constellation effectively closing the eyes of I and Q components
by degrading the equivalent SNR of the additive white Gaussian noise (AWGN), as well as the
non-AWGN impairments abstracted by AWGN that would equally increase BER.

Moreover, under our assumption of a high SNR, which is quite realistic for small cells due to their
short propagation paths [12], we expect that the OFDM BER floor is affected by time dispersion just to
the extent for which the echo delays exceed the standard CP of 4.69 µs, which is very unlikely to occur
in small cells [17].
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This finally implies that the only remaining OFDM impairment with regard to BER floor is CFO,
even if it was compensated (mostly in time domain), as a phase error may still reside (to be corrected,
too, mostly in frequency domain).
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Figure 1. Carrier lock angle error [16].

3. Efficient OFDM BER Floor with Joint Near-Optimal Time Sampling and CFO

3.1. CFO Abstraction by AWGN

The impact of CFO on the BER floor (considered to be determined just by the CFO) can be
modeled by conventional AWGN link abstraction, for example, as the PAPR was shown to affect the
CFO-induced phase distortion ∆Φkmax of the k-th original (pre-OFDM) symbol, as a function of BER,
with the CFO ∆ fCFO as the parameter [18]. Inversing the relationship ∆Φkmax(BER), we obtain:

BER
(
∆Φ2

kmax

)
≈

4
log2 M

·Q


√

3
M− 1

·
1

10 · log

10
s2
k

30·(∆ fCFOMTs)2
·∆Φ2

kmax
− 10

BACK−OFF
10




; 1 ≤ k ≤M (17)

where Q[·] is a Gaussian tail function. From Equation (18), it is obvious that its computational burden
is quite demanding for network end-points with low processing capacity.

For HPA back-off of 10 dB, Equation (17) is graphed in Figure 2.

3.2. CFO Abstraction by Time Dispersion

If we observe the received OFDM symbol with offset ∆ fCFO of the subcarrier frequency recovered
at the receiver, with respect to the transmitted frequency m · 2π

MTs
, the i-th echo in Equation (15) of the

received OFDM symbol transforms to:

r̂iCFO =
M∑

m=1

sme jϕ
· e j(m· 2π

MTs +∆ fCFO)·(τ+∆τopt−τi); i = 1, 2, . . . , N (18)

Now, the residual CFO being a non-AWGN impairment, can be abstracted not by conventional
AWGN, but by, in this case more convenient, equivalent additional delay spread that would cause the
same phase and thus BER floor degradation, described exclusively by time dispersion [12].
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Accordingly, we modify Equation (19) considering the observed i-th echo CFO-free but with
shifted sample time τ for ∆τiCFO that would introduce equal phase shift to that echo as it would to the
CFO ∆ fCFO [12]:(

m ·
2π

MTs
+ ∆ fCFO

)
·

(
τ+ ∆τopt − τi

)
=

(
m ·

2π
MTs

)
·

(
τ+ ∆τopt + ∆τiCFO − τi

)
; i = 1, 2, . . . , N (19)

From Equation (19), it implies that, for the actual echo, the additional delay ∆τiCFO can abstract
the CFO frequency offset ∆ fCFO under the following condition:

∆τiCFO = ∆ fCFO ·
MTs

2πm
·

(
τ+ ∆τopt − τi

)
(20)

As it can be seen from Equation (20), expectedly, the abstracting additional delay ∆τiCFO is directly
proportional to the CFO and to the relative delay of the echo in subject to the mean delay (as ∆τopt <<),
and inversely to the subcarrier frequency (as lower sub channels are more CFO-sensitive).

Finally, the echoes’ delays of the equivalent CFO-inclusive power delay profile are linear with the
non CFO-inclusive ones:

τiEQ = τi + ∆ fCFO ·
MTs
2πm ·

(
τ+ ∆τopt − τi

)
=

=
(
1− ∆ fCFO ·

MTs
2πm

)
· τi + ∆ fCFO ·

MTs
2πm ·

(
τ+ ∆τopt

) (21)

4. Experimental Analysis

As the model is generally applicable to any OFDM-based wireless network, including the full-scale
LTE (supported by our simulator) and its downscaled derivations LTE-M or NB IoT, we targeted
no specific use case. Symbolically speaking, out of “mc2” (measure, compute and communicate)
overall mission activities of cellular IoT networks, our model has to do with “c2” focusing on the
second “c” (i.e., communicate), while taking care of the first one (compute) efficiently; meaning that
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the model applicability is not limited by any specific “m” scenario (i.e., use case) of OFDM-based
wireless networks.

The efficient BER floor estimation model with near-optimal sampling at the mean delay of the
power delay profile, as well as with CFO abstraction by time dispersion, was verified by comparing
the results achieved two-fold: first by Equations (12)–(14) and (21), and then by software simulations.

4.1. Simulation Setup

We used the industry-standard, system-level software simulator SystemVue from Keysight
Technologies, tailored for LTE (i.e., 5G NR numerology 0) physical layer tests [19]. Specifically,
we configured it for measuring BER on the OFDM-based LTE Frequency-Division Duplex (FDD)
downlink, with channel bandwidth of 5 MHz, packet switching, and 16 QAM exemplar modulation
type [19]. We conducted the embedded framed BER tests on a specific Single-Input Single-Output
(SISO) LTE downlink channel (PDSCH 1 (UE 1)), whereas the reference channels complied to TS 36.101,
and the faded one to the definition in Annex B of TS 36.101 (Figure 3).

However, some embedded assumptions of the professional tool operation were not a good match
for the analytical model verification. In this regard, we needed to disable the embedded CP data
protection [19] (which we could only do by manipulating input data so as to mimic operation beyond
the normal CP length of 4.69 µs), as well as disable the hybrid automatic repeat request (HARQ)
protocol error control at physical (PHY) and Medium-Access Control (MAC) layers.

As the simulator setup provides sampling just at the very beginning of the delay profile with no
other option, the only available means to simulate impact of various sample delay positions on BER was
“nesting” progressive additional delays in the profile, while tracking BER reduction to the minimum.

We used two test power delay profiles, namely the extended pedestrian A (EPA) standard power
delay profile model (Table 1, Figure 4) and the delay-limited exponential model (Figure 5), where for
the latter, the a priori chosen probability p = 99% determines the maximal delay to be 4.6 times the rms
delay spread, thus leaving just 1% of the corresponding delay-unlimited exponential profile to remain
beyond the span of the limited one [19].

Table 1. EPA delay profile [8]; mean= 0.2555, variance = 0.0613.

Tap Delay (ns) Power (dB)

1 0 0.0
2 30 −1.0
3 70 −2.0
4 90 −3.0
5 110 −8.0
6 190 −17.2
7 410 −20.8

4.2. Verification of Efficient BER for Small Cells with Optimal and Near-Optimal Sampling

Firstly, we checked the accuracy (in terms of both BER and delay) of the optimal sample time
τopt estimated by Equation (12), with respect to the values obtained by simulations, where the latter
was essentially based on the “sliding” process of trying all sample instants to identify the one, which
minimizes the number of error occurrences.

The exemplar results obtained for the examined EPA and exponential profiles by simulations
are presented in Figures 6 and 7, respectively, where it can be seen that the obtained τopt values are
4.3008 × 10−8 s and 1.2141 × 10−7 s, respectively.

On the other hand, the corresponding τopt values, estimated according to Equation (12) are
4.2976 × 10−8 s and 1.2095 × 10−7 s, respectively, which is an excellent match to the figures obtained by
the simulator.
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After verifying Equation (12), we see in Figures 5 and 6 that the curves around the minima are
rather smooth and flat, so that we expect the optimal sample point to be quite close to the mean delay.

Indeed, sampling at the mean delay (Equation (13)), exhibits negligible worsening of BER with
regard to the optimal sampling; just about 0.2% on average, for all three modulation types and both
profiles, as evident in Figure 8, where the BER floor is graphed as a function of rms delay spread,
adopting Equations (12) and (13). This finally verifies the use of the mean delay as the near-optimal
sampling instant.
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4.3. Verification of CFO Abstraction by Time Dispersion

Now, let us validate Equation (21) by accordingly modifying the EPA power delay profile to the
equivalent CFO-inclusive ones for various CFO values, as presented in Tables 1–6.

Table 2. Modified EPA delay profile; CFO = 5 Hz; mean = 0.2556, variance = 0.0614.

Tap Delay (ns) Power (dB)

1 0 0.0
2 30.01 −1.0
3 70.02 −2.0
4 90.03 −3.0
5 110.04 −8.0
6 190.06 −17.2
7 410.14 −20.8

Table 3. Modified EPA delay profile; CFO = 70 Hz; mean = 0.2567, variance = 0.0619.

Tap Delay (ns) Power (dB)

1 0 0.0
2 30.14 −1.0
3 70.33 −2.0
4 90.42 −3.0
5 110.51 −8.0
6 190.91 −17.2
7 411.91 −20.8

Table 4. Modified EPA delay profile; CFO = 300 Hz; mean = 0.2606, variance = 0.0638.

Tap Delay (ns) Power (dB)

1 0 0.0
2 30.61 −1.0
3 71.41 −2.0
4 91.82 −3.0
5 112.23 −8.0
6 193.81 −17.2
7 418.22 −20.8
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Table 5. Modified EPA delay profile; CFO = 1 kHz; mean = 0.2725, variance = 0.0698.

Tap Delay (ns) Power (dB)

1 0 0.0
2 32.01 −1.0
3 74.67 −2.0
4 96.11 −3.0
5 117.33 −8.0
6 202.67 −17.2
7 437.33 −20.8

Table 6. Modified EPA delay profile; CFO = 5 kHz; mean = 0.3406, variance = 0.1091.

Tap Delay (ns) Power (dB)

1 0 0.0
2 40.01 −1.0
3 93.33 −2.0
4 120.01 −3.0
5 146.67 −8.0
6 253.33 −17.2
7 546.67 −20.8

Thereby, the BER values coming out of both the ISI of the EPA channel and the five selected
exemplar CFO values, are presented, for 16 QAM modulation type, in Table 7.

Table 7. Inter-symbol interference (ISI) and (time-dispersion-abstracted) CFO-based BER floor; 16 QAM,
EPA profile.

CFO BER Estimated (21) BER Estimated (18) BER Simulated

0 Hz (EPA) 1.2969 × 10−2 1.3141 × 10−2 1.2827 × 10−2

5 Hz 1.2990 × 10−2 1.3182 × 10−2 1.2901 × 10−2

70 Hz 1.3096 × 10−2 1.3244 × 10−2 1.2978 × 10−2

300 Hz 1.3498 × 10−2 1.3711 × 10−2 1.3415 × 10−2

1 kHz 1.4767 × 10−2 1.5013 × 10−2 1.4681 × 10−2

5 kHz 2.3081 × 10−2 2.3454 × 10−2 2.2901 × 10−2

On the first look, the above BER values of the order of 1% seem quite high. However, these pertain
to the case when the CP of 4.69 µs was not applied, otherwise the entire EPA power delay profile
would be contained within the CP span, implying that BER = 0, whereas, for the exponential profile,
BER would have taken very small values, closer to zero with “steeper” power delay profile. This paves
the way to isolation of the impact of CFO alone on BER, once considering the CP applied.

Considering CFO as a random variable, which is statistically independent of other BER degrading
impairments including ISI (due the EPA delay spread) in this case, we can justifiably consider their
related error occurrences as mutually independent, too, and so additive. This further implies that we
can calculate the CFO-exclusive BER values, as offsets with respect to the first value (for 0 Hz) in each
column of Table 7.

This way obtained entries of Table 8 are BER penalties of the five selected exemplar CFO values,
for 16 QAM modulation.

As we can see from Tables 7 and 8, there is excellent matching between the estimated and the
simulated CFO-induced BER floor values, which validates the CFO abstraction by the time dispersion
model proposed here. Somewhat different values coming out of the AWGN abstraction (which is
computationally demanding but we used it here as just another means of verification), are still in
accordance with the ones coming out of the model as well as the simulator.
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As we can see, only for the largest selected CFO of 5 kHz, supposedly acting on the very first
subcarrier (m = 1) (i.e., for the worst-case CFO), the BER change with respect to the EPA profile is still
minor, from 0.012969 to 0.023081.

Table 8. Time dispersion abstracted CFO-exclusive BER penalties; 16 QAM, EPA profile.

CFO BER Estimated (21) BER Estimated (18) BER Simulated

0 Hz (EPA) 1.2969 × 10−2 1.3141 × 10−2 1.2827 × 10−2

5 Hz 0.0021 × 10−2 0.0041 × 10−2 0.0074 × 10−2

70 Hz 0.0127 × 10−2 0.0103 × 10−2 0.0151 × 10−2

300 Hz 0.0498 × 10−2 0.0570 × 10−2 0.0588 × 10−2

1 kHz 0.1798 × 10−2 0.1872 × 10−2 0.1854 × 10−2

5 kHz 1.0112 × 10−2 1.0313 × 10−2 1.0074 × 10−2

5. Conclusions

In cellular IoT networks, there is a need for computationally non-demanding assessment of OFDM
transmission performance that is either expressed by or related to the irreducible BER floor, which
needs to be estimated by end-points of limited processing capacity, and directed upwards through the
protocol stack to higher-layer protocols, thus influencing their error detection and correction actions.

The standard framework that the model targets is LTE, specifically its downscaled versions LTE-M
and NB IoT, but its validity stretches to 5G NR as well.

Specifically, in indoor or small-cell outdoor environment, short propagation paths justify the
assumption of high SNR, and enable the transmitter HPA to operate almost in a linear regime, thus
effectively removing the excessive PAPR from the short list of the main BER influencers; quite alike
as the time dispersion caused by inter-symbol interference was prevented by a large enough OFDM
symbol cyclic prefix. This retains just the CFO (including the PAPR-induced additional CFO) as the
sole OFDM impairment determining the BER floor in indoor or small-cell outdoor environment.

Furthermore, in contrast to earlier analytical models demanding considerable processing power
for estimating BER, in this paper, after identifying the optimal sample instant in a power delay profile,
we abstract the CFO by equivalent time dispersion that would produce the same BER degradation as
the CFO. This finally provided the novel CFO-inclusive BER floor estimation proportional to delay
variance of the power delay profile, as well as the CFO-exclusive BER estimation.

The proposed BER estimation is verified by the common AWGN link abstraction, and by means
of the industry-standard software simulator in the LTE FDD downlink environment.
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