
sensors

Article

Impacts of Residual Stress on Micro Vibratory
Platform Used for Inertial Sensor Calibration

Rui Hao, Huijun Yu, Bei Peng, Haixiang Zhan and Wu Zhou *

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; hr1351440347@std.uestc.edu.cn (R.H.); yuhjuestc@126.com (H.Y.);
beipeng@uestc.edu.cn (B.P.); zhanhaixiang@163.com (H.Z.)
* Correspondence: zhouwu916@uestc.edu.cn; Tel.: +86-1588-2211-305

Received: 11 May 2020; Accepted: 14 July 2020; Published: 16 July 2020
����������
�������

Abstract: A micro vibratory platform driven by converse piezoelectric effects is a promising in-situ
recalibration platform to eliminate the influence of bias and scale factor drift caused by long-term
storage of micro-electro–mechanical system (MEMS) inertial sensors. The calibration accuracy is
critically determined by the stable and repeatable vibration of platform, and it is unavoidably impacted
by the residual stress of micro structures and lead zirconate titanate (PZT) hysteresis. The abnormal
phenomenon of the observed displacement response in experiments was investigated analytically
using the stiffness model of beams and hysteresis model of piezoelectric material. Rather than the
hysteresis, the initial deflection formed by the residual stress of the beam was identified as the main
cause of the response error around the zero position. This conclusion provides guidelines to improve
the performance and control of micro vibratory platforms.
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1. Introduction

Micro-electro–mechanical system (MEMS) inertial sensors are widely used in the aerospace
field [1] and in intelligent robots [2]. However, its bias and scale factor drift caused by temperature [3]
and long-term storage [4,5] prevent its applications in highly precise fields [6]. Therefore, an in-situ
and movable recalibration platform or method is much needed to suppress the drift without relying on
fixed equipment [7] and strict environmental requirements [8]. To meet these requirements, a micro
vibratory platform driven by converse piezoelectric effect was proposed to provide an inertial stimulus
for both gyroscope [9] and accelerometer [10] calibration. Compared with the self-test structure that
is usually used for evaluating the device performance [11], the vibratory platform can generate an
accurate signal to quantitatively calibrate the bias and scale factor of sensors.

A multi-axis vibratory platform designed by a team at the University of Michigan for in situ
self-calibration of general MEMS inertial sensors [12,13], which can achieve 150◦/s angular rate and 0.3 g
(1 g = 9.8 m/s2) linear acceleration. It is integrated with the commercial Invensense MPU-6500 (IMU)
and is expected to provide the scale-factor calibration with estimation error <20 ppm, yet the capacitive
position sensor for platform motion detection has temperature drift [14] and dielectric polarization
effect [15]. After that, a team at Cornell University reported a new vibratory platform for gyroscope
calibration [16], which adds an integrated optical metrology system and a CMOS (Complementary
Metal Oxide Semiconductor) imager for closed loop control of the vibratory platform. The piezoelectric
vibratory platform is capable of generating 0~300◦/s angular rate for scale factor and bias measurement,
and it has 0~90 m/s2 in-plane acceleration to extract the gyroscope in-plane acceleration sensitivities.
The additional optical metrology system can ensure the long-term stability of the vibratory platform at
10 ppm. In the same period, a team at the China Academy of Engineering Physics also reported a micro
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vibratory platform with high dynamic for the in-situ calibration of inertial MEMS devices [17]; it can
provide 16 g acceleration and 720◦/s angular rate for 19 mg payload (a commercial 3-axis accelerometer
H3LIS331DL).

However, due to the appearance of the residual stress of micro fabrication and the hysteresis
effect [18,19] of piezoelectric material, the vibratory stage exhibited an initial displacement of 0~20 µm
and an abnormal displacement response, which was obtained using an optical measurement system
proposed in our previous work [20]. After that, the platform was optimized to gain a lower off-axis
error less than 1% [21], but the improvement contributed little to reducing the error induced by residual
stress and the hysteresis effect.

This study aimed to find out the underlying mechanism behind the abnormal z-axis displacement
curve of the platform test. The test results are shown in Section 2 to show which error needs to
be studied, and Section 3 describes how the investigation was carried out in detail. In Section 4,
the influence of residual stress on the vibratory platform displacement response is discussed farther.
Finally, a conclusion is included in Section 5.

2. Platform Test

The optical test method [20] and fabrication [21] of a vibratory platform were reported in recent
work. The measurement principle is as follows. It consists of a central vertical cavity surface emitting
laser (VCSEL) and several photodiodes (PDs); when the vibratory platform vibrates along the z-axis,
the relative movement between the vibratory platform surface and the light receiving surface of optical
measurement system affects the intensity of reflected light from VCSEL. Then, the reflected lights can
be extracted by the PDs array to achieve accurate motion perception and estimation (Figure 1).
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Figure 1. Schematic diagram of the optical measurement system. 

The vibratory platform is shown in Figure 2. It consists of a rigid stage supported by four 
L-shape beams which were constructed using a silicon structure layer, a lead zirconate titanate (PZT) 
drive layer, and two metal electrode layers. The movement along the z-axis was actuated by a 
designed combination of positive voltage on the inner parts and negative voltage on the outer parts. 
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Figure 2. Piezoelectric vibratory platform. 

Figure 1. Schematic diagram of the optical measurement system.

The vibratory platform is shown in Figure 2. It consists of a rigid stage supported by four L-shape
beams which were constructed using a silicon structure layer, a lead zirconate titanate (PZT) drive
layer, and two metal electrode layers. The movement along the z-axis was actuated by a designed
combination of positive voltage on the inner parts and negative voltage on the outer parts.

Sensors 2020, 20, x FOR PEER REVIEW 2 of 14 

 

the in-situ calibration of inertial MEMS devices [17]; it can provide 16 g acceleration and 720°/s 
angular rate for 19 mg payload (a commercial 3-axis accelerometer H3LIS331DL). 

However, due to the appearance of the residual stress of micro fabrication and the hysteresis 
effect [18,19] of piezoelectric material, the vibratory stage exhibited an initial displacement of 0~20 μm 
and an abnormal displacement response, which was obtained using an optical measurement system 
proposed in our previous work [20]. After that, the platform was optimized to gain a lower off-axis 
error less than 1% [21], but the improvement contributed little to reducing the error induced by 
residual stress and the hysteresis effect. 

This study aimed to find out the underlying mechanism behind the abnormal z-axis 
displacement curve of the platform test. The test results are shown in Section 2 to show which error 
needs to be studied, and Section 3 describes how the investigation was carried out in detail. In 
Section 4, the influence of residual stress on the vibratory platform displacement response is 
discussed farther. Finally, a conclusion is included in Section 5. 

2. Platform Test 

The optical test method [20] and fabrication [21] of a vibratory platform were reported in recent 
work. The measurement principle is as follows. It consists of a central vertical cavity surface emitting 
laser (VCSEL) and several photodiodes (PDs); when the vibratory platform vibrates along the z-axis, 
the relative movement between the vibratory platform surface and the light receiving surface of 
optical measurement system affects the intensity of reflected light from VCSEL. Then, the reflected 
lights can be extracted by the PDs array to achieve accurate motion perception and estimation 
(Figure 1). 

PD1 PD4PD3
VCSEL

PD2

α

Z

z

rr Receiving 
Surface

Reflective Surface

Vibratory Platform
YX

 

Figure 1. Schematic diagram of the optical measurement system. 

The vibratory platform is shown in Figure 2. It consists of a rigid stage supported by four 
L-shape beams which were constructed using a silicon structure layer, a lead zirconate titanate (PZT) 
drive layer, and two metal electrode layers. The movement along the z-axis was actuated by a 
designed combination of positive voltage on the inner parts and negative voltage on the outer parts. 

PZT

Si

Electrode

Ground

Anchor
Anchor

Anchor Anchor

Vibratory 
Platform 3mm

L-shaped  
piezoelectric 

beam

y

z x

V
-V

Rigid stage

2

1
4

3

o

σ(x,y,z)

σ (x,y,z)＇

b

TPZT

TSi

 
Figure 2. Piezoelectric vibratory platform. Figure 2. Piezoelectric vibratory platform.



Sensors 2020, 20, 3959 3 of 13

The excitation voltage was a sinusoidal signal with an amplitude of 8 V and frequency of 317 Hz.
The test results indicate an obvious offset near the zero point of displacement in Figure 3a, and when
different voltages with amplitudes from 3 V to 9 V were applied to acquire the amplitude-frequency
curves, an increase of resonant frequency of stage from 500 Hz to 510 Hz appeared, as shown in
Figure 3b. The abnormal phenomenon could be induced from the residual stress [22] in each L-shape
beam, as shown the right side of Figure 1, PZT hysteresis, or both [23]. The following will describe our
investigation of the influence of both mechanisms.
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3. Investigation of the Abnormal Phenomenon

3.1. Influence of Residual Stress

The residual stress of the beam for supporting the vibratory platform is caused by the micro
fabrication processes, like deposition, etching, sputtering, releasing, and so on. It induces an initial
displacement of the vibratory platform. Before that, the four L-shaped beams of the MEMS micro
vibratory platform are connected with each other to form a closed ring beam. The relationship between
each part can be seen in Figure 4.
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The vibratory platform can be parted with four L-shaped beams and a rigid stage. The in-plane
deformation of the beam is negligible when compared to the out-of-plane deformation. Due to the
symmetry of structure and load, only one single L-shape beam needs to be modeled. One end of beam
fixed on the substrate had the boundary condition of all the displacement and rotation equal to zero,
and the other end, connecting to the stage, has a zero rotation and a single translation freedom along
z-axis, called a guided boundary condition [24,25].

Because of the elastic deformation of materials, the stress gradient is linear within each layer of
L-shaped beam [26]. The stress in the top and bottom layer of the beam is assumed to be σ1 and σ3,
and the stress at the interface between the piezoelectric layer and the silicon layer is σ2 (Figure 5).
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Figure 5. Deformation diagram of L-shaped piezoelectric micro beam and vibratory platform with 
inside residual stress. 
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where the TPZT and TSi represent the thickness of PZT layer and Si layer, respectively. The bottom of
the beam as the zero point of the z coordinate. The uniform stress (the first two items in Equation (1)),
Tpzt (σ1+σ2)/ (2(Tpzt+TSi))+ TSi (σ2+σ3)/(2(Tpzt+TSi)) accounts for the in-plane elongation of the beam,
whereas the (σ1-σ2)((z-TSi)/Tpzt) + (σ2-σ3)(z/TSi) (the stress gradient component, the last two items in
Equation (1)) causes out-of-plane deflection. The equivalent bending moment due to residual stress
can be written as:
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where b is the width of beam. The equivalent bending moment, M, is a linear combination of
stress gradient due to residual stress. Then, a beam theory was used to calculate the beam initial
deflection [27] by:

EI
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where the C1 and C2 are decided by specific boundary conditions. Substituting y = li, (li is the length of
i-th part of each L-shaped beam) into Equation (4), the initial deflection of the beam can be expressed as:

zinitial(li) = (σ1 − σ2)
[

bl2
TPZTEI

(
(TPZT+TSi)

3

3 − TPZT
2TSi − TPZTTSi

2
)]

+(σ2 − σ3)
[

bl2
TPZTEI

T3
Si
3

]
+C1li + C2.

(5)

The initial deflection zinitial (li) of the piezoelectric micro beam is a linear combination of residual
stress gradient and z = zinitial (l1) +zinitial (l2). The obvious difference of curvatures of two segments
results from the distinguished load and end constraints. Thus, the residual stress is replaced by the
initial deflection z to investigate the impacts of displacement response (Figure 6).
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The L-shaped beam is divided into two segments for a simple analysis. When one segment is
considered, the other is treated as a rigid body. The guided boundary can be replaced by a set of Fx,
Fy, Fz, Mx, My, and M, and the Fxi, Fyi, Fzi, Mxi, Myi, and Mzi represent the set of force and moment at
the end of each part of the L-shaped beam respectively, where the subscript i indicates the i-th part of
L-shaped beam (Figure 7).
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The relationship between Fx, Fy, Fz, Mx, My, Mz and Fxi, Fyi, Fzi, Mxi, Myi, and Mzi are shown in
Equation (6):

Fx1 = Fx, Fy1 = Fy, Fz1 = Fz, Mx1 = Mx, My1 = My, Mz1 = Mz

Fx2 = Fy, Fy2 = −Fx, Fz2 = Fz, Mx2 = My, My2 = −Mx + Fzl1, Mz2 = Mz − Fxl1
(6)

The stiffness, Fz/z, is regarded as the solution by the following constraints at the corner of the
L-shaped beam in Equation (7).

x1(0) = y2(l2), y1(0) = x2(l2), z1(0) = z2(l2), θx1(0) = −θy2(l2), θy1(0) = θx2(l2), θz1(0) = θz2(l2), (7)
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where xi, yi and zi represent the displacement of the i-th part on the x-axis, y-axis, and z-axis, respectively.
θxi, θyi and θzi represent the angle of the i-th part around the x-axis, y-axis, and z-axis, respectively.
Then, the differential equation of deflection is given by [28] as:

EIi
d2zi(yi)

dy2
i

= Fzi(li − yi) + Mxi − dEpztbd31Vi − Fyi[zi(li) − zi(yi)], (8)

In Equation (8), the Epzt is the elastic modulus of PZT. EIi is the flexural rigidity. d is the distance
between the PZT layer center coordinate and the neutral surface. b is the width of beam, and d31 is the
piezoelectric coefficient [29]. Vi is the driving voltage.

The solution of the differential equation is shown in Equations (9) and (10):

zi(yi)
∣∣∣αi1<0 = Ci1

Fzi
EIi

cos
(√
−αi1yi

)
+ Ci2

Fzi
EIi

sin
(√
−αi1yi

)
+

Fzi
EIi

yi − αi1zi(li) −
Fzi
EIi

li −Ci3

−αi1
, (9)

zi(yi)
∣∣∣αi1>0 = Ci1

Fzi
EIi

e
√
αi1 yi + Ci2

Fzi
EIi

e−
√
αi1 yi +

Fzi
EIi

yi + αi1zi(li) −
Fzi
EIi

li −Ci3

αi1
, (10)

where αi1 = Fyi/EIi, the unknown coefficients Ci1, Ci2, and C i3 were listed in Table 1, parameter kri is
the torsional stiffness of the i-th part.

Table 1. The coefficients of Equations (9) and (10).

Coefficient Expression

α11 < 0, C11
(cos(

√
−α11l1)−1)

−α3/2
11

(
sin(
√
−α11l1)+

EI1
kr1

√
−α11 cos(

√
−α11l1)

)
α11 < 0, C12

(
sin(
√
−α11l1)+

EI1
kr1

√
−α11

)
−α3/2

11

(
sin(
√
−α11l1)+

EI1
kr1

√
−α11 cos(

√
−α11l1)

)

α11 < 0, C13

Fz1
EI1

(1−cos(
√
−α11l1))−

√
−α11l1 sin(

√
−α11l1)−(−α11)l1

EI1
kr1

cos(
√
−α11l1)

−α1/2
11

(
sin(
√
−α11l1)+

EI1
kr1

√
−α11 cos(

√
−α11l1)

)
+z1(l1)

−α3/2
11 sin(

√
−α11l1)+α2

11
EI1
kr1

cos(
√
−α11l1)

−α1/2
11

(
sin(
√
−α11l1)+

EI1
kr1

√
−α11 cos(

√
−α11l1)

)
α21 < 0, C21 −

(1−cos(
√
−α21l2))+

√
−α21

EI2
kr2

sin(
√
−α21l2)

−α3/2
21

(
sin(
√
−α21l2)+

EI2
kr2

√
−α21 cos(

√
−α21l2)

)
α21 < 0, C22

1
−α3/2

21

α21 < 0, C23

Fz2
EI2


(1−cos(

√
−α21l2))+

√
−α21

EI2
kr2

sin(
√
−α21l2)

−α1/2
21

(
sin(
√
−α21l2)+

EI2
kr2

√
−α21 cos(

√
−α21l2)

)
−

√
−α21l2 sin(

√
−α21l2)+(−α21)l2

EI2
kr2

cos(
√
−α21l2)

−α1/2
21

(
sin(
√
−α21l2)+

EI2
kr2

√
−α21 cos(

√
−α21l2)

)


+z2(l2)

−α3/2
21 sin(

√
−α21l2)+α2

21
EI2
kr2

cos(
√
−α21l2)

−α1/2
21

(
sin(
√
−α21l2)+

EI2
kr2

√
−α21 cos(

√
−α21l2)

)
α11 > 0, C11 −

e
√
α11 l1−1+

√
α11

EI1
kr1

e
√
α11 l1

α3/2
11

(
e2√α11 l1+

√
α11

EI1
kr1

+
√
α11

EI1
kr1

e2√α11 l1−1
)

α11 > 0, C12
e
√
α11 l1

(
e
√
α11 l1+

√
α11

EI1
kr1
−1

)
α3/2

11

(
e2√α11 l1+

√
α11

EI1
kr1

+
√
α11

EI1
kr1

e2√α11 l1−1
)
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Table 1. Cont.

Coefficient Expression

α11 > 0, C13

Fz1
EI1

1+
√
α11l1−2e

√
α11 l1+e2√α11 l1−

√
α11l1e2√α11 l1−α11l1

EI1
kr1
−α11l1

EI1
kr1

e2√α11 l1

√
α11

(
e2√α11 l1+

√
α11

EI1
kr1

+
√
α11

EI1
kr1

e2√α11 l1−1
)

+z1(l1)
α3/2

11 (1−e2√α11 l1 )+α2
11

EI1
kr1

+α2
11

EI1
kr1

e2√α11 l1

√
α11

(
e2√α11 l1+

√
α11

EI1
kr1

+
√
α11

EI1
kr1

e2√α11 l1−1
)

α21 > 0, C21 −
e
√
α21 l2−1+

√
α21

EI2
kr2

α3/2
21

(
e2√α21 l2+

√
α21

EI2
kr2

+
√
α21

EI2
kr2

e2√α21 l2−1
)

α21 > 0, C22

e2√α21 l2−e
√
α21 l2+

√
α21

EI2
kr2

e2√α21 l2

α3/2
21

(
e2√α21 l2+

√
α21

EI2
kr2

+
√
α21

EI2
kr2

e2√α21 l2−1
)

α21 > 0, C23

Fz2
EI2

(e
√
α21 l2−1)

2
+
√
α21

EI2
kr2
(e2√α21 l2−1)−

√
α21l2(e2√α21 l2−1)+α21l2

EI2
kr2
(e2√α21 l2+1)

√
α21

(
e2√α21 l2+

√
α21

EI2
kr2

+
√
α21

EI2
kr2

e2√α21 l2−1
)

+z2(l2)
α3/2

21 (e2√α21 l2−1)+α2
21

EI2
kr2
(e2√α21 l2+1)

√
α21

(
e2√α21 l2+

√
α21

EI2
kr2

+
√
α21

EI2
kr2

e2√α21 l2−1
)

For brevity, the unknown coefficient C i3 can be abbreviated as C i3 = Ai3 Fzi/EIi + Bi3 zi (li).
Substituting yi = li into Equations (9) and (10), the result can be expressed in Equation (11).

Fzi
zi

∣∣∣∣Fyi>0 = Bi3
[
αi1

(Ci1
EIi

e
√
αi1li + Ci2

EIi
e−
√
αi1li −

Ai3
EIiαi1

)]−1

Fzi
zi

∣∣∣∣Fyi<0 = Bi3
[
αi1

(Ci1
EIi

cos(
√
−αi1li) +

Ci2
EIi

sin(
√
−αi1li) −

Ai3
EIiαi1

)]−1
(11)

It can be seen that Equation (11) is a piecewise function (αi1 = Fyi/EIi); it is related to the axial force
Fyi which is determined by the beam initial deflection z, vibration displacement, and driving voltage.
The relationship between stiffness and displacement under different voltages is depicted in Figure 8.
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It can be seen that Equation (11) is a piecewise function (αi1 = Fyi/EIi); it is related to the axial 
force Fyi which is determined by the beam initial deflection z, vibration displacement, and driving 
voltage. The relationship between stiffness and displacement under different voltages is depicted in 
Figure 8. 
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Figure 8. Stiffness of L-shaped piezoelectric beam. 

There was a sharp increase of stiffness around zero displacement, because the axial force, Fyi, 
changed from a compressive state of negative displacement to a tensile state of positive 
displacement due to the residual stress. The level of stiffness variation is also related to the driving 
voltage as the internal stress level results from the piezoelectric layer deformation. The stiffening 
effect also appeared in the stage of large deformation of the beam and lead to a higher frequency of 
the vibratory platform. 

Figure 8. Stiffness of L-shaped piezoelectric beam.

There was a sharp increase of stiffness around zero displacement, because the axial force, Fyi,
changed from a compressive state of negative displacement to a tensile state of positive displacement
due to the residual stress. The level of stiffness variation is also related to the driving voltage as the
internal stress level results from the piezoelectric layer deformation. The stiffening effect also appeared
in the stage of large deformation of the beam and lead to a higher frequency of the vibratory platform.
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3.2. Modeling PZT Hysteresis

The PZT hysteresis is another factor possibly resulting in a displacement error. The hysteretic
behavior of piezoelectric material under the voltage stimulus is reported in [30,31]. To model this
mechanism, the polynomial-based hysteresis model is simple and suitable to analyze the dynamic
response of the system [32,33], which can be expressed as Equation (12):

f (E) = di jE− ηE3 +
ζ

ω3

.
E

3
, (12)

where the f (E) is the hysteresis loop function. dij is the piezoelectric coefficient. E is the electric field,
and ω is the frequency. The parameters η and ζ are the fitting parameters determining the shape of the
hysteresis loop (Figure 9).
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of the residual stress and the PZT hysteresis, respectively. It indicates that the offset of the zero 
point is attributed to the residual stress and has almost nothing to do with the hysteresis of PZT 
materials (Figure 10b). 

Figure 9. Hysteresis loop function with different parameters η and ζ.

In this example, the electric field is E = Vmax sin (ωt)/TPZT, where Vmax is the maximum amplitude
of voltage, 10 V, and TPZT is the thickness of the piezoelectric layer, 17µm. The hysteresis loop function
f(E) is described as the scaling behavior [34] of hysteresis in PZT ceramic by different η and ζ.

3.3. Residual Stress vs. PZT Hysteresis

Based on the mechanisms described above and the electromechanical coupling model reported in
previous work, the commercial software Simulink was utilized to simulate the displacement response
of vibratory platform. While the vibratory platform can be regarded as a mass-spring-damping system,
and its vibration equation is shown in Equation (13).

M
..
z + C

.
z + Kz = K f

(
di jE− ηE3 +

ζ

ω3

.
E

3)
, (13)

where M and C represent the equivalent mass and damping coefficient separately, K is the stiffness in
Equation (12). The right side of the equation represents the equivalent driving force which contains the
hysteresis loop function, and the Kf is the coefficient. In Figure 10a,b show the influence of the residual
stress and the PZT hysteresis, respectively. It indicates that the offset of the zero point is attributed to
the residual stress and has almost nothing to do with the hysteresis of PZT materials (Figure 10b).
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4. Discussion 

In Section 3, the different stress gradient and load condition are discussed for the abnormal 
phenomena of the platform vibration. We set the linear stress gradient to ξ, and then the results of 
different stress gradients were simulated, as can be seen in Figure 12. 

Figure 10. Displacement response simulation 8 V (317 Hz); (a) residual stress; (b) lead zirconate titanate
(PZT) hysteresis.

For a comparison, Figure 11 considered both the residual stress and PZT hysteresis to investigate
the impacts on the platform. The experiments and theoretical/simulation show agreement with
each other.
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frequency response.

4. Discussion

In Section 3, the different stress gradient and load condition are discussed for the abnormal
phenomena of the platform vibration. We set the linear stress gradient to ξ, and then the results of
different stress gradients were simulated, as can be seen in Figure 12.
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Figure 12. Displacement response simulation under different residual stress gradient 8 V (317 Hz); 
(a) ξ stress gradient; (b) 2ξ stress gradient; (c) 3ξ stress gradient; (d) 7ξ stress gradient. 
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Figure 12. Displacement response simulation under different residual stress gradient 8 V (317 Hz);
(a) ξ stress gradient; (b) 2ξ stress gradient; (c) 3ξ stress gradient; (d) 7ξ stress gradient.

The increase of the stress gradient caused the apparent abnormal phenomenon that can be seen
in Figure 12. When the residual stress gradient increased to a certain level, the platform even failed
(Figure 12d).

Moreover, whether the platform was loaded or not also affected the displacement response.
The cases of unload or with a 40 mg load can be seen in Figure 13.
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Figure 12. Displacement response simulation under different residual stress gradient 8 V (317 Hz); 
(a) ξ stress gradient; (b) 2ξ stress gradient; (c) 3ξ stress gradient; (d) 7ξ stress gradient. 

The increase of the stress gradient caused the apparent abnormal phenomenon that can be seen 
in Figure 12. When the residual stress gradient increased to a certain level, the platform even failed 
(Figure 12d). 

Moreover, whether the platform was loaded or not also affected the displacement response. 
The cases of unload or with a 40 mg load can be seen in Figure 13. 
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5. Conclusions 

In this study, the observed displacement response errors were investigated theoretically. It was 
concluded that both the displacement offset and increased frequency are caused by the residual 
stress from microfabrication, rather than the hysteresis of PZT materials. The initial deflection 
induced by residual stress makes the stage need more electrical energy to conquer the resistance of 
axial strain. Therefore, a good recalibration accuracy can be obtained by stress-free supporting 
beams or using the stimulus far from the zero point to calibrate the inertial sensors. 
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In Figure 13, when the 40 mg load is fixed on the platform, its first-order natural frequency
decreased, which made the vibration state of platform closer to the resonance state. Although the
loaded platform (40 mg) weakened its abnormal displacement response, this abnormal phenomenon
was still obvious under the low frequency working state, which seriously affected the calibration
accuracy across the full frequency range.

The displacement deviation induced by residual stress could be explained as follows.
The fabricated beam exhibited an initial deflection zi (li) (Figure 14). When the stage moved to
the zero position, more strain energy was needed to overcome the resistance of compressing beam and
the axial load of PZT layer under the driving voltage, and therefore the needed energy from actuation
costs more time than normal state, which shows an abnormal of movement through zero position.
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5. Conclusions

In this study, the observed displacement response errors were investigated theoretically. It was
concluded that both the displacement offset and increased frequency are caused by the residual stress
from microfabrication, rather than the hysteresis of PZT materials. The initial deflection induced by
residual stress makes the stage need more electrical energy to conquer the resistance of axial strain.
Therefore, a good recalibration accuracy can be obtained by stress-free supporting beams or using the
stimulus far from the zero point to calibrate the inertial sensors.
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